用户名: 密码: 验证码:
功能梯度混凝土立井井壁承载性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土厚壁圆筒是一种重要的支护结构,在矿山、水利水电、化工等工程领域有着广泛的应用。立井井壁是采矿工程广泛应用的一种混凝土厚壁圆筒。在厚壁圆筒设计中,经常会遇到有关厚壁圆筒在外载作用下应力、变形、极限承载力的计算问题。本文为了提高厚壁圆筒的极限承载能力,尝试将已应用于航空航天、核反应堆及化学工业等领域的功能梯度的概念引入到混凝土材料当中,通过理论分析、功能梯度混凝土的配制、物理模拟试验相结合的方法,研究了功能梯度特性在轴对称荷载作用下立井井壁中的应用。
     (1)通过反演分析证明了:功能梯度材料(FGM)特性有利于减小厚壁圆筒的应力集中,使其能承受的弹性极限承载力大于经典均质厚壁圆筒的弹性极限承载力。当FGM圆筒的壁厚较大时,功能梯度厚壁圆筒的弹性极限承载力随着壁厚的增加而显著增加。
     (2)建立了不同模量双层混凝土厚壁圆筒的优化设计方法,获得了双层混凝土厚壁圆筒在外载和单轴抗压强度已知情形下,所需要的最小壁厚,内外层的最佳厚度比值和最佳弹性模量比值。
     (3)对双层厚壁圆筒进行了弹塑性分析,综合考虑了轴向荷载对弹性和塑性极限承载力的影响:考虑轴向的中间主应力时,双层厚壁圆筒的弹性和塑性极限承载力均有一定程度的提高。
     (4)选定多项影响混凝土强度和弹性模量的试验因素,进行配比试验,初步得到了实现混凝土功能梯度特性的最优试验因素。
     (5)通过FGM厚壁圆筒与传统厚壁圆筒物理模型对比试验,发现FGM厚壁圆筒承受的弹性极限承载力的确大于经典均质厚壁圆筒的弹性极限承载力,从而验证了前面的理论成果。
     (6)研究了在非轴对称地应力作用下的井筒应力分析问题,并根据围岩与支护结构的不同接触条件,精确给出了井壁荷载的确定方法,解决了以往在井壁应力分析时,井壁外荷载必须事先假定的难题。
Concrete thick-walled hollow cylinders are widely used in hydropower, traffic, mining and military engineering. Shaft lining is a kind of concrete thick-walled hollow cylinder. In the thick-walled cylinder design, problems such as the stress, deformation, ultimate bearing capacity, are often encountered. In order to increase the ultimate bearing capactiy of thick-walled hollow cylinder, the concept of Functionally Graded (FM), which has been widely used in some fields, i.e. Aerospace, nuclear reactors and chemical industry, was introduced into concrete material. By theoretical analysis, preparation of functionally graded concrete and physical simulation test, the application of functionally graded concept in increasing the ultimate bearing capacity of shaft lining was analyzed.
     (1) Based on the inversion analysis, we found that functional gradient materials (FGM) can reduce stress concentration of thick-walled cylinder and let the FGM thick-walled hollow cylinder have a higher ultimate bearing capacity than the conventional homogeneous thick-walled hollow cylinder does. As the thickness of cylinder is relatively thick, the elastic ultimate bearing capacity of FGM hollow cylinder can be improved significantly with the increase of thickness.
     (2) The optimal design method for doubled layered thick-walled hollow cylinder with different elastic modulus was established. The minimum wall thickness required, the best thickness ratio and the modulus ratio of inner layer to outer layer are calculated for cases in which the external load and uniaxial compressive strength are known already.
     (3) Elasto-plastic analysis for double layered thick-walled hollow cylinder was carried out. The effects of the axial load on the elastic and plastic ultimate bearing capacity were analyzed. As the intermediate principal stress was taken into consideration, the elastic and plastic ultimate bearing capacity of double layered thick-walled hollow cylinder increase.
     (4) Ratio tests were carried out in order to get the variations of the compressive strength and elastic modulus versus a number of factors. The optimal experimental factors for functionally graded concrete has been preliminarily obtained.
     (5) Model tests of thick-walled hollow cylinder were carried out. The tests results validated the theoretical conclusion, i.e. FGM thick-walled hollow cylinder has higher ultimate bearing capacity than homogeneous thick-walled hollow cylinder does.
     (6) A vertical shaft lining remotely loaded by non-axisymmetrical in situ stresses was analyzed. Two extreme boundary conditions along the liner/ground interfaces, namely, pure bond and pure slip cases, are implemented. The accurate solutions of the loads acting on the outer boundary of liner were obtained.
引文
[1]徐栓强,俞茂宏.厚壁圆筒安定问题的统一解析解[J].机械工程学报,2004,40(9):23-27.
    [2]冯剑军,张俊彦,韩利芬.壁厚对厚壁圆筒的极限荷载的影响[J].湘潭大学自然科学学报,2004,26(1):97-101.
    [3]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1998.
    [4]Rabin, B.H., Shiota, I. Functionally gradient materials[J]. Materials Research Bulletin,1995, 20(1):14-18.
    [5]边洁,下威强,管从胜,陈蕴博,徐庆苹.梯度功能材料研究的一些进展[J].金属热处理,2003,28(9):13-19.
    [6]傅正义,袁润章,赵修建.梯度功能材料的研究[J].复合材料学报,1992,9(1):23-30.
    [7]刘长生,方建成,陈庆财.梯度功能材料的制备与性能评价[J].机械工程材料,2006,30(10):1-4.
    [8]韩杰才,徐丽,下保林,张幸红.梯度功能材料的研究进展及展望[J].固体火箭技术,2004,27(3):207-215.
    [9]新野正之,平井敏雄,渡边龙三.倾斜功能材料[J].日本复合材料学会志,1987,13(6):257-264.
    [10]刘书田,程耿东.基于均匀化理论的梯度功能材料优化设计方法[J].宇航材料工艺,1995(6):21-27.
    [11]李永,宋健,张志民.梯度功能材料力学[M].北京:清华大学出版社,2003.
    [12]Tanigawa, Y. Some basic thermoelastic problems for nonhomogeneous structural materials[J]. Applied Mechanics Reviews,1995,48:377-389.
    [13]Reddy, J.N., Chin, C.D. Thermomechanical analysis of functionally graded cylinders and plates[J]. International Journal of Solids and Structures,1998,21:593-626.
    [14]Drake, J.T., Williamson, R.L. Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-metal Interface Part Ⅱ-Interface Optimization for Residual Stress Reduction[J]. J.Appl.Phy.,1993,74:1321-1326.
    [15]Bahr, H.A., Balke, H., Fett, T. Cracks in functionally graded materials[J]. Materials Sciences and Engineering,2003, A362:2-16.
    [16]Kostorz, G., Lavetnia, B.J., Verner, B., Kato, M. Special Issue:papers from the German Priority Programme (Functionally Graded Materials)[J]. Materials Science and Engeering, 2003,A362:1-105.
    [17]朱永彬,宁南英,孙阳,张琴,傅强.聚合物功能梯度材料的研究现状与展望[J].高分子通报,2007(06):24-31.
    [18]赵伟彪,龚家聪,陶正炎.梯度功能材料.[J].功能材料,1993,24(3):277-281.
    [19]叶波,李庆余,赵恒勤.梯度功能材料制备方法研究现状与展望[J].矿产保护与利用,2004(04):47-51.
    [20]续晶华,耿浩然,田宪法,孙佳伟.功能梯度材料的制备方法与性能评价[J].热加工工艺,2009,38(18):57-60.
    [21]吴利英.梯度功能材料的发展和应用[J].航空制造技术,2003(12):57-61.
    [22]王立平,高燕,胡丽天,薛群基.电沉积功能梯度材料的研究现状及展望[J].表面技术,2006,35(02):1-3.
    [23]李智慧,何小凤,李运刚.功能梯度材料的研究现状[J].河北理工大学学报,2007,29(01):45-50.
    [24]黎文献,张刚,赖延清,田忠良,秦庆伟.梯度功能材料的研究现状与展望[J].材料导报,2003,17:222-225.
    [25]丁时锋,李清香,徐明晗.功能梯度材料制备的研究现状[J].广西轻工业,2009(11):8-9.
    [26]吕爱钟,张路青.用于提高立井井壁弹性极限承载力的梯度功能材料反演[C],第十届全国岩石力学与工程学术大会.威海,2008,131-137.
    [27]Shao, Z.S., Ma, G.W. Thermo-mechanical stresses in functionally graded circular hollow cylinder with linearly increasing boundary temperature[J]. Composite Structures,2008,83: 259-265.
    [28]Liew, K.M., Kitiporncai, S., X.Z., Z., X.Z., L. Analysis of the thermal stress behavior of functionally graded hollow circular cylinders[J]. International Journal of Solids and Structures,2003,40:2355-2380.
    [29]Obata, Y., Noda, N. Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material[J]. Journal of Thermal Stress,1994,17:471-488.
    [30]Kim, K.S., N., N. Green's function approach to unsteady thermal stresses in an infinite hollow cylinder of functionally graded material[J]. Acta Mechanics,2002,156:145-161.
    [31]Ootao, Y., Tanigawa, Y., Nakamura, T. Optimization of material composition of FGM hollow circular cylinder under thermal loading:a neural network approach[J]. Composites Part B: engineering,1999,30:415-422.
    [32]Andrew, J.G., Senthil, S.V. Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm[J]. Computer Methods in Applied Mechanics and Engineering,2006,195:5926-5948.
    [33]Andrew, J.G., Senthil, S.V. Multi-objective optimization of functionally graded materials with temperature-dependent material properties[J]. Materials & Design,2007,28: 1861-1879.
    [34]Senthil, S.V., Jacob, L.P. Multi-objective optimization of functionally graded thick shells for thermal loading[J]. Composite Structures,2007,81:386-400.
    [35]张晓丹,王三强,刘冬青.基于遗传算法轴对称梯度功能材料优化设计[J].北京科技大学学报,2002,24(6):630-632.
    [36]Tutuncu, N., Ozturk, M. Exact solutions for stresses in functionally graded pressure vessels[J]. Composites Part B:Engineering,2001,32(8):683-686.
    [37]Dai, H.L., Fu, Y.M., Dong, Z.M. Exact solutions for functionally graded pressure vessels in a uniform magnetic field[J]. International Journal of Solids and Structures,2006,43: 5570-5580.
    [38]Lu, A.Z., Zhang, N. Inversion of Functionally Graded Materials to Improve the Elastic Ultimate Bearing Capacity of Thick-Walled Hollow Cylinder[J]. Advanced Materials Research,2012,378-379:116-120.
    [39]Horgan, C.O., Chan, A.M. The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials[J]. J. Elasticity,1999,55:43-59.
    [40]Pan, E., Roy, A.K. A simple plane-strain solution for the functionally graded multilayered isotropic cylinders[J]. Structural Engineering and Mechanics,2006,24:1-14.
    [41]Oral, A., Anlas, G. Effects of radially varying moduli on stress distribution of nonhomogeneous anisotropic cylindrical bodies[J]. International Journal of Solids and Structures,2005,42:5568-5588.
    [42]Batra, R.C., Iaccarinob, G.L. Exact solutions for radial deformations of a functionally graded isotropic and incompressible second-order elastic cylinder[J]. International Journal of Non-Linear Mechanics,2008,43:383-398.
    [43]Batra, R.C., Bahrami, A. Inflation and eversion of functionally graded non-linear elastic incompressible circular cylinders[J]. International Journal of Non-Linear Mechanics,2009, 44:311-323.
    [44]Nie, G.J., Batra, R.C. Material tailoring and analysis of functionally graded isotropic and incompressible linear elastic hollow cylinders[J]. Composite Structures,2010,92:265-274.
    [45]Batra, R.C. Optimal Design of Functionally Graded Incompressible Linear Elastic Cylinders and Spheres[J]. AIAA JOURNAL,2008,46(8):2050-2057.
    [46]Tutunca, N., Ozturk, M. Exact solutions for stresses in functionally graded press vessels[J]. Composites Part B:engineering,2001,32:683-686.
    [47]Shi, Z., Zhang, T., Xiang, H. Exact solutions of heterogeneous elastic hollow cylinders[J]. Composite Structures,2007,79(1):140-147.
    [48]Xiang, H., Shi, Z., Zhang, T. Elastic analyses of heterogeneous hollow cylinders[J]. Mechanics Research Communications,2006,33(5):681-691.
    [49]Jabbari, M., Sohrabpour, S., Eslami, M.R. General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads[J]. Journal of Applied Mechanics,2003,70:111-118.
    [50]Eslami, M.R., Babaei, M.H., Poultangari, R. Thermal and mechanical stresses in a functionally graded thick sphere[J]. International Journal of Pressure Vessels and Piping, 2005,82(7):522-527.
    [51]Batra, R.C., Iaccarino, G.L. Exact solutions for radial deformations of a functionally graded isotropic and incompressible second-order elastic cylinder[J]. International Journal of Non-Linear Mechanics,2008,43(5):383-398.
    [52]Nie, G.J., Batra, R.C. Material tailoring and analysis of functionally graded isotropic and incompressible linear elastic hollow cylinders[J]. Composite Structures,92(2):265-274.
    [53]Nie, G.J., Batra, R.C. Static deformations of functionally graded polar-orthotropic cylinders with elliptical inner and circular outer surfaces[J]. Composites Science and Technology, 2010,70(3):450-457.
    [54]Tutuncu, N., Temel, B. A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres[J]. Composite Structures,2009,91(3):385-390.
    [55]Tutuncu, N. Stresses in thick-walled FGM cylinders with exponentially-varying properties[J]. Engineering Structures,2007,29(9):2032-2035.
    [56]Theotokoglou, E.E., Stampouloglou, I.H. The radially nonhomogeneous elastic axisymmentric problem[J]. International Journal of Solids and Structures,2008,45: 6535-6552.
    [57]Horgan, C.O., Chan, A.M. The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials[J]. Journal of Elasticity,1999,55: 43-59.
    [58]Batra, R.C., Bahrami, A. Inflation and eversion of functionally graded non-linear elastic incompressible circular cylinders[J]. International Journal of Non-Linear Mechanics,2009, 44(3):311-323.
    [59]Marin, L., Lesnic, D. The method of fundamental solutions for nonlinear functionally graded materials[J]. International Journal of Solids and Structures,2007,44(21):6878-6890.
    [60]Shokrolahi-Zadeh, B., Shodja, H.M. Spectral equivalent inclusion method:Anisotropic cylindrical multi-inhomogeneities[J]. Journal of the Mechanics and Physics of Solids,2008, 56(12):3565-3575.
    [61]Chen, Y.Z., Lin, X.Y. An alternative numerical solution of thick-walled cylinders and spheres made of functionally graded materials[J]. Computational Materials Science,2010, 48(3):640-647.
    [62]吕爱钟,蒋斌松.岩石力学反问题[M].北京:煤炭工业出版社,1998.
    [63]吕爱钟,张路青.地下隧洞力学分析的复变函数方法[M].北京:科学出版社,2007.
    [64]Timoshenko, S.P., Goodier, J.N. Theory of elasticity[M]. New York:McGraw-Hill,1970.
    [65]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002.
    [66]徐芝纶.弹性力学[M].北京:高等教育出版社,1990.
    [67]过镇海.混凝土的强度和变形(试验基础和本构关系)[M].北京:清华大学出版社,1997.
    [68]过镇海.混凝土的强度和变形——试验基础和本构关系[M].北京:清华大学出版社,1997.
    [69]过镇海,王传忠.多轴应力下混凝土的强度和破坏准则研究[J].土木工程学报,1991,24(3):1-14.
    [70]吴兆汉,万耀青.机械优化设计[M].北京:机械工业出版社,1986.
    [71]刘北辰.弹性力学[M].北京:冶金工业出版社,1979.
    [72]俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.
    [73]Yu, M., He, L. A new model and theory on yield and failure of materials under the complex stress state-Mechanical Behavior of Materials-6[M]. Oxford:Pergamon Press,1991.
    [74]李建春,张永强,俞茂宏.一个弹粘塑性问题的统一解析解[J].力学与实践,2000,22(1):31-34.
    [75]宋俐,张永强,俞茂宏.压力隧洞弹塑性分析的统一解[J].工程力学(ENGINEERING MECHANICS),1998,15(4):57-61.
    [76]张常光,胡云世,赵均海,杨砚宗.深埋圆形水工隧洞弹塑性应力和位移统一解[J].岩土工程学报(Chinese Journal of Geotechnical Engineering),2010,32(11):1738-1745.
    [77]赵均海,张永强,李建春.用统一强度理论求厚壁圆筒和厚壁球壳的极限解[J].应用力学学报,2000,17(1):157-161.
    [78]张常光.圆形压力隧洞弹塑性应力和位移分析[硕士学位论文].西安:长安大学,2008.
    [79]王亮.基于统一强度理论的桩基扩孔问题弹塑性分析[博士学位论文].西安:长安大学,2007.
    [80]中华人民共和国住房和城乡建设部.混凝土结构设计规范2011,中国建筑工业出版社:北京.
    [81]Lu, A.-Z., Xu, G.-S., Zhang, L.-Q. Optimum design method for double-layer thick-walled concrete cylinder with different modulus[J]. Materials and Structures,2011,44:923-928.
    [82]下发洲,邹定华,胡曙光,韩宏伟.轻集料取代碎石对混凝土强度和弹性模量影响的研究[J].河南理工大学学报,2005,24(2):136-139.
    [83]李斯海.厦门市仙岳山隧道围岩稳定性三维有限元计算分析[J].岩石力学与工程学报,2000,19(2):211-214.
    [84]余卫平,汪小刚,杨健,王玉芳.地下洞室群围岩稳定分析[J].矿山压力与顶板管理,2005(3):14-17.
    [85]师金峰,张应龙.超大断面隧道围岩的稳定性分析[J].地下空间与工程学报,2005,1(2):227-230.
    [86]Chi, J.M., Huang, R., Yang, C.C., Chang, J.J. Effect of aggregate properties on the strength and stiffness of lightweight concrete[J]. Cement & Concrete Composites,2003,25:197-205.
    [87]胡元芳.小线间距城市双线隧道围岩稳定性分析[J].岩石力学与工程学报,2002,21(9):1335-1338.
    [88]王春生,周翠英.梅河高速公路隧道稳定性数值模拟[J].中山大学学报(自然科学版),2005,44(1):38-40.
    [89]刘刚,宋宏伟,段现军.矩形巷道松动圈回归公式[J].煤炭科学技术,2001,29(6):38-40.
    [90]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008.
    [91]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建材工业出版社,2004.
    [92]Gesoglu, M., Giineyisi, E., Ozturan, T. Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete[J]. Cement and Concrete Research, 2002,32(10):1545-1550.
    [93]Shkolnik, I.E. Influence of high strain rates on stress-strain relationship, strength and elastic modulus of concrete[J]. Cement and Concrete Composites,2008,30(10):1000-1012.
    [94]吕丽萍,史忠.浅谈影响混凝土弹性模量的因素[J].混凝土,2003(01):33-34.
    [95]任锋,陈营明,曲华明.对混凝土弹性模量影响因素的探讨[J].济南大学学报,1997,7(2):91-93.
    [96]王元丰,梁亚平.高性能混凝土的弹性模最与泊松比[J].北方交通大学学报,2004,28(1):5-7.
    [97]王中华,张伟,吴刚,吕锋.混凝土弹性模量与混凝土配合比相关性探讨[J].商品混凝土,2007(01):21-23.
    [98]李九苏,肖汉宁,龚建清.再生骨料水泥混凝土的级配优化试验研究[J].建筑材料学报,2008,11(1):105-110.
    [99]王怀亮,宋玉普.不同骨料级配混凝土的双轴压强度试验和破坏准则[J].水利学报,2008,39(12):1353-1359.
    [100]王怀亮,宋玉普.两种级配混凝土试件双轴作用下强度、变形分析[J].人民长江,2008,39(12):53-55.
    [101]Obla, K., Kim, H., Lobo, C. Effect of Continuous (Well-Graded) Combined Aggregate Grading on Concrete Performance Phase A:Aggregate Voids Content (Packing Density). 2007, NRMCA Research Laboratory.
    [102]Zhou, F.P., Lydon, F.D., Barr, B.I.G. Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete[J]. Cement and Concrete Research,1995, 25(1):177-186.
    [103]Ramesh, G., Sotelino, E.D., Chen, W.F. Effect of transition zone on elastic moduli of concrete materials[J]. Cement and Concrete Research,1996,26(4):611-622.
    [104]杨久俊,董延玲,海然,吴科如.骨料表面化学预处理对界面区的组分梯度分布和混凝土力学性能的影响Ⅰ:骨料化学预处理对其表面特性与界面过渡区结构的影响[J].混凝土与水泥制品,2003(06):1-5.
    [105]杨久俊,董延玲,海然,吴科如.骨料表面化学预处理对界面区组分梯度分布和混凝土力学性能的影响Ⅱ:骨料化学预处理对混凝土力学性能的改善[J].混凝土与水泥制品,2004(01):15-17.
    [106]宋小软,张燕坤,侣建.粉煤灰陶粒混凝土的弹性模最计算[J].工业建筑,2006(02):61-63.
    [107]高礼雄,胡曙光,丁庆军.高强粉煤灰陶粒的研制及其混凝土试配[J].桂林工学院学报,2002,22(2):171-173.
    [108]李瑞璟,何锦云,赵喜敬,崔治.高强粉煤灰陶粒混凝土弹性模量及泊松比的试验研究[J].煤炭工程,2003(08):29-31.
    [109]龚洛书.高强陶粒和高性能轻集料混凝土[J].混凝土,2000(2):7-11.
    [110]袁海庆,静行,汤道义,刘文龙.掺废橡胶粉页岩陶粒混凝土的受压性能[J].建筑材料学报,2007,10(3):369-373.
    [111]刘巽伯,李平江,计亦奇.陶粒有效弹性模量及其预估[J].混凝土,2005(03):35-38.
    [112]邹彦宁,曹万智,田历芳.粘土陶粒轻质高性能混凝土的研究[J].混凝土,2007(06):46-49.
    [113]黄少文,徐玉华.废旧轮胎胶粉对水泥砂浆力学性能的影响[J].南昌大学学报(工科版),2004,26(4):53-55.
    [114]于利刚.废橡胶粉的杂化改性及其对水泥基材料结构与性能的影响[博士学位论文].广州:华南理工大学,2010.
    [115]刘日鑫.胶粉/废砂/水泥混凝土材料的研究[博士学位论文].昆明:昆明理工大学,2007.
    [116]徐至钧.纤维混凝土技术及应用[M].北京:中国建筑工业出版社,2003.
    [117]邓宗才.高性能合成纤维混凝土[M].北京:科学出版社,2003.
    [118]陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994.
    [120]陈惠发,A.F.萨里普.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004.
    [121]王素,陈南飞,朱玉明,朱心雄.基于CATIA平台的功能梯度材料实体建模方法[J].中国机械工程,2007(04):454-456.
    [122]Huo, X.S., Al-Omaishi, N., Tadros, M.K. Creep, Shrinkage,Modulus of Elasticity of High-Performance Concrete[J]. ACI Materials Journal 2001,98(6):440-449.
    [123]ACI318-95. Building Code Requirements for Reinforced Concrete and Commentary, in American Concrete Institute.1995, Detroit:MI.
    [124]ACI363, C. State-of-the Art Report on High-Strength Concrete, in American Concrete Institute.1992, Detroit:MI.
    [125]吴中伟,廉慧珍.高性能混凝土第2版[M].北京:中国铁道出版社,1999.
    [126]CEB-FIP Model Code 1990.1993, Thomas Telford:U.K.
    [127]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [128]混凝土基本力学性能研究组.混凝土的几个基本力学指标[M].北京:中国建筑工业出版社,1977.
    [129]成厚昌.高性能混凝土的力学性能研究[J].重庆建筑大学学报,1999,21(3):74-77.
    [130]Institute, T.S. Requirements for Design and Construction of Reinforced Concrete Structures TS 500.2000, Ankara.
    [131]刘栋梁,姚学锋,许蔚.功能梯度材料的静态断裂特性实验[J].清华大学学报(自然科学版),2007(02).
    [132]Zhao, X.-H., Chen, W.F. Effective elastic moduli of concrete with interface layer[J]. Computers & Structures,1998,66(2-3):275-288.
    [133]Zhao, X.-H., Chen, W.F. The effective elastic moduli of concrete and composite materials[J]. Composites Part B:Engineering,1998,29(1):31-40.
    [134]应宗权,杜成斌,孙立国.基于随机骨料数学模型的混凝土弹性模量预测[J].水利学报,2007,38(8):933-937.
    [135]应宗权,杜成斌.考虑界面影响的混凝土弹性模量的数值预测[J].工程力学,2008,25(8):92-96.
    [136]刘数华,方坤河,王晓燕.混凝土抗压弹性模量研究[J].大坝与安全,2004(06):7-9.
    [137]盛黎,叶青,鲍永涛,张向军.混凝土有效弹性模量计算模型的探讨[J].混凝土,2003(08).
    [138]Teng, T.L., Chu, Y.A., Chang, F.A., Chin, H.S. Calculating the elastic moduli of steel-fiber reinforced concrete using a dedicated empirical formula[J]. Computational Materials Science,2004,31(3-4):337-346.
    [139]Topcu, I.B., Bilir, T., Boga, A.R. Estimation of the modulus of elasticity of slag concrete by using composite material models[J]. Construction and Building Materials,2010,24(5): 741-748.
    [140]Yan, K., Shi, C. Prediction of elastic modulus of normal and high strength concrete by support vector machine[J]. Construction and Building Materials,24(8):1479-1485.
    [141]韩涛.钢骨高强钢纤维混凝土井壁力学特性研究.徐州:中国矿业大学,2007.
    [142]沈观林,马良理.电阻应变计及其应用[M].北京:清华大学出版社,1983.
    [143]华东水利学院.模型试验量测技术[M].北京:水利电力出版社,1984.
    [144]Cui, G.-x. Loading of shaft lining for deep alluviam[J]. Chinese Journal of Geotechnical Engineering,2003,25(3):294-298.
    [145]Jiang, B.-S., Zhang, P., Bou, X.-Y. Calculating theory of shaft lining[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(Suppl):2183-2186.
    [146]林小松.有限长复合厚壁圆筒井壁的空间轴对应力分析[J].煤炭学报,1990,16(4):35-45.
    [147]蒋斌松.复合井壁的弹性分析[J].煤炭学报,1997,20(4):397-401.
    [148]Jiang, B.-s. On Axisymmetric Deformation Analysis of a Finite Composite Shaft Lining[J]. Engineering Mechanics,1998,15(4):89-95.
    [149]Unrug, K.F. Shaft design criteria[J]. Geotechnical and Geological Engineering,1984,2(2): 141-155.
    [150]Link, H., Lutgendorf, H.O., Stoss, K. Richtlinien Zur Berechnung Von Schachtauskleidungen In Nicht Standfestem Gebirge (Guidelines for Calculating Shaft Linings in Incompetent Strata)[M]. Third Edition ed. Essen:Gluckauf,1985.
    [151]Brown, E.T., Bray, J.W. Rock Support Interaction Calculations for Pressure Shafts and Tunnels. in Proceedings of International Society of Rock Mechanics (ISRM) Symposium. 1982. Aachen:A.A. Balkema, Rotterdam.
    [152]吴庆良,吕爱钟.一类非均布荷载作用下厚壁圆筒平面问题的应力解析解[J].工程力学,2011,28(6):6-10.
    [153]吴庆良.具有功能梯度特性多层混凝土厚壁圆筒的应力分析.华北电力大学,2009.
    [154]Iyengar, K.T.S.R., Yogananda, C.V. Long Circular Cylindrical Laminated Shells Subjected to Axisymmetric External Loads[J]. ZAMM-Journal of Applied Mathematics and Mechanics,1964,44(6):270-272.
    [155]蒋斌松.有限长复合井壁的轴对称变形分析[J].工程力学,1998,15(4):89-95.
    [156]Chandrashekhara, K., Bhimaraddi, A. Elasticity solution for a long circular sandwich cylindrical shell subjected to axisymmetric load [J]. International Journal of Solids and Structures,1982,18(7):611-618.
    [157]Atkinson, C., Eftaxiopoulos, D.A. Numerical and analytical solutions for the problem of hydraulic.fracturing from a cased and cemented wellbore[J]. International Journal of Solids and Structures,2002,39(6):1621-1650.
    [158]Hoeg, K. Stresses against underground structural cylinders[J]. J. Soil Mech. Fdns Dir. Am. Sot. cit. Engrs.,1968,94(SM4):833-858.
    [159]Moore, I.D., Booker, J.R. Behaviour of buried flexible cylinders under the influence of nonuniform hoop compression[J]. International Journal of Solids and Structures,1985,21(9): 943-956.
    [160]Carter, J.P., Booker, J.R. Elastic consolidation around a lined circular tunnel[J]. International Journal of Solids and Structures,1984,20(6):589-608.
    [161]Moore, I.D., Booker, J.R. Simplified theory for the behaviour of buried flexible cylinders under the influence of uniform hoop compression[J]. International Journal of Solids and Structures,1985,21(9):929-941.
    [162]Muskhelishvili, N. Some Basic Problems of the Mathematical Theory of Elasticity[M]. The Netherlands:Noordhoof Ltd.:Groningen,1963.
    [163]Jaeger, J.C., Cook, N.G.W. Fundamentals of Rock Mechanics[M]. London, UK:2nd edn, Chapman & Hall,1976.
    [164]Li, S.C., Wang, M.B. An elastic stress-displacement solution for a lined tunnel at great depth[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(4): 486-494.
    [165]Li, S.C., Wang, M.B. Elastic analysis of stress-displacement field for a lined circular tunnel at great depth due to ground loads and internal pressure[J]. Tunnelling and Underground Space Technology,2008,23(6):609-617.
    [166]王明斌.有压隧洞结构稳定性力学模型研究[山东大学博士学位论文].济南:山东大学,2009.
    [167]Lu, A.-z., Zhang, L.-q., Zhang, N. Analytic stress solutions for a circular pressure tunnel at pressure and great depth including support delay[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(3):514-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700