用户名: 密码: 验证码:
废胶粒介质草坪建植体系草坪植物生态学响应特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要利用废胶粒为填充介质,以提高草坪的耐践踏性能,目的是为了废橡胶资源化利用及降低草坪管理成本与提高草坪的使用年限。实验在分析废胶粒基本物理化学特性的基础上,通过不同比例废胶粒填充于土壤介质中,进行了草坪植物生态特征的研究,同时,在田间实验条件下,土壤基质填充相同比例、不同大小直径的废胶粒,经过两个生长季对草坪应用生态性能及植物的生理生态的研究,获得的主要结论如下:
     (1)废胶粒的填充对酸碱溶液具有缓冲的功能,可校正其酸碱值为中性(pH7-7.5)。本研究所使用3种不同直径的橡胶颗粒的介质保水能力都比不加胶粒的介质强,随着粒径的减小,介质保水能力有明显的提升。
     (2)室内粒级比例优化,从形态指标来看,6个处理中以胶粒15%+堆肥10%+河沙75%的基质组配生长最好,但从生理指标来看,以胶粒18%+堆肥10%+河沙72%的生长响应最强。
     (3)草坪植物外观形态方面,废旧胶粒除对草坪植物的株高生长有一定的抑制作用外,对于盖度、地上生物量、分蘖数、茎节数、叶片数、根系生长等都有较为明显的促进作用,且3种胶粒中,胶粒越小,表现就越显著。
     (4)草坪植物生态生理方面,胶粒可以提高草坪植物可溶性糖和叶绿素的单位含量,同时降低粗纤维的单位含量,增加了草坪植物的耐践踏能力;胶粒作用下,脯氨酸的单位含量也在增加,说明草坪植物的抗逆性有所增强;胶粒还对草坪植物叶片的光合能力有很大地提升作用。
     (5)践踏胁迫下,胶粒对于践踏具有一定的缓冲作用,且3种胶粒中,粒径越小,缓冲作用就越明显。
Soil compaction is an old and serious problem in turf management. Vast array of techniques and equipments have been developed to solve this problem, including machinery and amendment materials for topdressing which were marketed worldwide, yet the problem persists. This research intended to study the application of crumb rubber from waste rubber to turf to relieve soil compaction. This technology consumes much waste crumb rubber that can ease environment problem caused by waste rubber.
     The physical and chemical properties of crumb rubber were the first issue addressed in this research in order to identify both the hazardous and beneficial potential of crumb rubber added to turfgrass as well as influence to environment. By adding different proportion of waste crumb rubber to soil medium in lab experiment, we analyzed the growing response of turfgrass to crumb rubber. Finally we added same proportion of different sized waste crumb rubber to soil medium on the field. In the next year we trampled on it at the end of regreening, analyzed the ecological and physiological characteristics of turfgrass, by which we got the best turfgrass medium to traffic tolerance. The results showed as follows:
     (1) The ability of crumb rubber to buffer solution acidity from the range of 3 to 11 and neutralize it around pH 7 was a significant finding. The water retention ability, pH buffering ability and impact reduction properties of the crumb rubber were studied from the perspective of utilizing it on turf. The results showed the crumb rubber had better water retention ability than that of sand as soil amendment.
     (2) In the six treatments of the lab experiment, the composition of scrumb rubber 15%+compost 10%+sand 75%served as medium to ryegrass was most effective for its morphological character. And from the view of physiological stand, the composition of scrumb rubber18%+composti 10%+ sand 72%brought the most evident growing response of ryegrass.
     (3) Under the stress, the coverage of ryegrass descended almost vertically, and the smaller the diameter of crumb rubber was, the higher the coverage was. The change of biomass on the ground was smilar to the change of coverage, the smaller the diameter of crumb rubber was, the higher the biomass was. The reduction of the tillers in the control was greater than that in the other treatments. The numbers of stem node and leaves decreased accordingly after being trampled.
     (4) As for the change of physiological characters, the content of coarse-fible after trampled was different, the most is the control and the fewest is 1-2mm. The content of chlorophyll and soluble sugar were also increased as above, so was the photosynthetic physiological function of laminae.
     (5) Waste crumb rubber had evident ability to buffer under the trampled stress. And the smaller the diameter of crumb rubber was, the more obvious the effect was.
引文
[1] Adhikari B, De D,Maiti S. Reclamation and recycling of waste rubber[J]. Prog Polym Sci, 2000, 25(11): 909-948
    [2] Adriano D C, Weber JT. Influence of fly ash on soil physical properties and turfgrass establistunent[J]. Environ Qual, 2001, 30:596-601.
    [3] Ball A D, Shah D, Whentley C F. Assessment of the potential of a novel newspaper/horse manure-based compust[J]. Bioresouce Technology, 2000, 73:163-167.
    [4] Beard J B. Turfgrass: science and culture [M]. New Jersey, Prentice Hall, 1973: 325-367; 368-380.
    [5] Bowman D C, Evans R Y, Dodge L L. Growth of chrysanthemum with ground automobile tires used as a container soil amendment[J]. HortScience, 1994, 29:774-776.
    [6] Caroll M J, Petrovic A M. Wear tolerance of Kentucky bluegrass and creeping bentgrass following nitrogen and potassium application[J]. Hort Science, 1991,26:851-853.
    [7] Carrow R N. Influence of soil compaction on three turfgrass species[J]. Agron J.1980, 72:1039-1042.
    [8] Carrow R N, Johnson B J. Turfgrass wear as affecged by golf car tire design and traffic pattems[J]. Amer Soc Hort Sci,1989,114(2):240-246.
    [9] Cattani D J, Clark K W. Influence of wear stress on turfgrass growth components and visual density ratings[J]. Can.J.Plant Sci, 1991,71:305-308.
    [10] Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants [M]. Plant J., 1993:215-223.
    [11] Dunn J H, Minner D D, Fresenburg B F, et al. Influence of core aerification, topdressing, and nitrogen on mat, roots, and quality of 'Meyer' zoysiagrass[J]. Agron. J. 1995, 87: 891-894.
    [12] Foy C D. Toxic factors in acid soil[J]. Horticulture, 1975,53: 38-43.
    [13] Fushtey S G, Taylor D K, Daphe Fairey. The effect of wear stress on survival of turfgrrass in pure stands and in mixture[J]. Can J Plant Sci. 1993,63:317-322.
    [14] Groenevelt P H, Grunthal P E. Utilisation of crumb rubber as a soil amendment for sports turf[J]. Soil and Tillage Research, 1998, 47:169-172.
    [15] Haw D T, Decker A M.Healing potential of creeping bentgrass as affected by nitrogen and soil temperature[J].Agron J, 1977,69:212-214.
    [16] Kohlmeier G P, Eggens J L. The influence of wear and nitrogen on creeping bentgrass growth[J] .Can J Plant Sci. 1983,63:189-193.
    [17] Li Y X, Zhao L, Chen T B. The municipal sewage sludge compost used as lawn medium [J]. Acta Ecologica Sinica,2002,22(6):797-801.
    [18] Li Z Q, Han J G, Chen H, et al. Effects of perforation and fertilization on the turf quality of kentucky bluegrass[J]. Pratacultural Science,2000,17(6):71-80.
    [19] Malmgren, Shideler RK, Bulter K D, et al. The effect of ploymer and rubber particles on arena soil characteristics [J]. Journal of Equime Veterinary Sci. ,1994,14(1):38 -42.
    [20] Marcum K B, Murdoch G L. Growth responses,ion relations,and osmotic adaptions of eleven C_4 grass to salinity[J].Agron J, 1990,82:892-896.
    [21] Marcum K B, Murdoch C. Salinity tolerance mechanism of six C_4 rurfgrasses[J].J Am Soc Hortic Sci. 1994,119:779-784.
    [22] Mellor D R. Picture perfect: moving techniques for lawns, landscapes, and sports[M]. Michigan: Ann Aobor Press, 2001:85-88.
    [23] Murphy J A, Rieke P E, Erickson A E. Core cultivation of a putting green with hollow and solid tines[J]. Agron. J,1993, 85: 1 -9.
    [24] Murphy J A, Rieke P E . High-pressure water injection and core cultivation of a compacted putting green[J]. Agron. J. 1994, 86: 719-724.
    [25] Ouedraogo E, Mando A, Zomber N P. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa[J]. Agriculture Ecosystems and Environment. 2001, 84: 259-266.
    [26] Olle Hoist, Bengt Stenberg, Magdalena Christiansson . Biotechnological possibilities for waste tyre-rubber treatment Biodegradation[M] Netherlands : Kluwer Academic Publishers, 1998,9:301-310.
    [27] O'Neil K J, Carrow RN. Perennial ryegrass growth, water use, and soil aeration status under soil compaction[J]. Agron. J, 1983, 75: 177-180.
    [28] Persson H. Methods of studying root dynamics in relation to nutrient cycling. In: Harrison AF, Ineson P, Heal OW eds. Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Application and Interpretation[M]. London and New York: Elsevier Applied Science,1990:103-109.
    [29] Plaster E J. Soil science and management. [M]. New York: Delmar Publishers, 1992,89-96.
    
    [30] Riggle D. Finding markets for scrap tires[J]. Biocycle ,1994,35(3): 41-55.
    [31] Rogers III J N, Waddingtion D V. Impact absorption characteristics on turf and surfaces[J]. Agron.J, 1992, 84: 203-209.
    [32] Rogers III J N, Vanini, Cram J R. Simulated traffic on turfgrass topdressed with Crumb rubber [J] .Agron J,1998,90:215-221.
    [33] Shearman R C, Beard J B. Influence of nitrogen and potassium on turfgrass wear tolerance[J].ASA,Madison WI.Agronomy abstracts, 1975:101.
    [34] Shearman R C, Beard J B. Turfgrass wear tolerance mechanisms: I .wear tolerance of seven turfgrass species and quantitative methods for determining turfgrass wear tolerance[J] .Agron J, 1975,67:208-211.
    [35] Shearman R C, Beard J B. Turfgrass wear tolerance mechanisms: II .effects of cell wall constituents on turfgrass wear tolerance [J].Agron J, 1975, 67:211-215; 215-218.
    [36] Shilddck J P. Turfgrass mixtures underwear treatments[J].J Sports Turf Res Inst.1975,15:9-40.
    [37] Swartz W E, Kardos L T. Effects of compaction on physical properties of sand-soil-peat mixtures at various moisture contents[J]. Agron. J, 1963,55:7-10.
    [38] Trenholm L E, Duncan R R, Carrow R N. Wear tolerance shoot performance, and Spectral reflectance of seashore Paspalum and Bermudagass[J].Crop Sci,1999,39:1147-1152.
    [39] Trenholm L E, Carrow R N, Duncan R R. Mechanism of wear tolerance in seashore Paspalum and Bermudagrass[J].Crop Sci,2000,40:1350-1357.
    [40] Trenhohn L E, Carrow R.N. Duncan R.R. Relationship of multispectral radiometry data to qualitative data in turfgrass research[J]. Crop. Sci., 1999,39:763~769.
    [41] Taylor D H, Blake G R. Sand content of sand-soil-peat mixtures for turfgrass[J]. Soil Sci. Soc. Am. J,1979,43:394-398.
    [42] Victor B Younger. Accelerated wear tests on turfgrasses [J].Agron J, 1961,53:21~-218.
    [43] Waddington D V, Carrow R N., Shearman R C. Turfgrass[M]. Madison,Wisconsin, USA. 1992: 285-325.
    [44] Wood G M. Use of energy absorbing materials to permit turf growth in heavily trafficked areas[J]. Agron. J, 1973,65:1004-1005.
    [45] Wright C P M, Eggens J L,Hines R J, et al. Leaf number estimation from shoot dry weight measurements for two turfgrass species[J].Can J Plant Sci., 1989,69:297-304.
    [46] Xu O, Huang B. Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures[J]. Crop Sci.,2000,40: 1363-1368.
    [47] 白木,周洁.废旧橡胶回收利用有起色[J].中国资源综合利用,2001(10):39-40.
    [48] 白永飞,许志信.典型草原主要牧草植株贮藏碳水化合物分布部位的研究[J].中国草地,1996,(1):7-9.
    [49] 白玉龙.粗纤维测定法牧草细胞壁成分损失的研究[J].草业科学,1997,14(3):28-31.
    [50] 曹俊久.废轮胎资源利用为辅助燃料[C].废轮胎资源化利用技术与策略研讨会论文集.1996:1-22.
    [51] 陈和生,孙振.纳米科学技术与精细化工[J].湖北化工,1991,(1):8-9.
    [52] 程林梅,李占林,高洪文.水分胁迫对白羊草光合生理特征的影响[J].中国农学通报,2004,20(6):231-233.
    [53] 杜占池,杨宗贵.羊草和大针茅光合作用午间降低与生态因子关系的研究[J].自然资源学报,1990,5(2):177-186.
    [54] 高宁.水分胁迫下两种草坪植物的渗透调节与抗旱性的关系[J].中国草地,1995,(4):45-47
    [55] 龚富生.植物生理学实验[M].北京:气象出版社,1995:74-77.
    [56] 郭兴启,李向东,朱汉城,等.马铃薯Y病毒(PVY)的侵染对烟草叶片光合作用的影响[J].植物病理学报,2000,30(1):94-95.
    [57] 韩秀山.我国废旧橡胶利用的发展趋势[J].再生资源研究,2001(1):19.
    [58] 胡监,张婉如,王振权.动物饲养学实验指导[M].长春:吉林科学技术出版社1990:45-46.
    [59] 胡赞民,Steven R L,ARSon等.用分子标记研究禾本科赖草属植物可溶性碳水化合物、色素积累和生长特性之间的遗传相关性[J].植物学报,2002,44(10):1173-1181.
    [60] 黄炳球,林韶湘.丁草胺对稗草作用活性的研究[J].杂草学报,1992,6(2):29-35
    [61] 黄祖长.废橡胶的回收利用[J].废橡胶的回收利用,2004,34(1):37-50.
    [62] 晶山.我国废旧橡胶利用大有可为[J].中国化工信息,2001,13(3):11.
    [63] 李德颖,Warren F Hunt.混播草坪上足球运动践踏模拟效果的研究[J].农业工程学报,1997,13(2):164-168.
    [64] 刘超峰,杨振如.废橡胶制取细胶粉的技术开发及应用概况[J].上海塑料,2005,12(4):23-26.
    [65] 刘长柏.废胎胶利用现状和加工技术[J].现代化工,1994,2(2):11-16.
    [66] 刘建秀,贺善安,刘久东.华东地区暖地型草坪植物特征特性及其经济价值[[J].中国草地,1997,(40)62-66,78.
    [67] 刘锦春.橡胶颗粒型弹性地砖的研制[J].特种橡胶制品,2003,24(3):29-33.
    [68] 刘颖,王德利,韩士杰,等.不同放牧率下小花碱茅可溶性碳水化合物和氮素含量的变化[J].草业学报,2003,12(4):40-44.
    [69] 刘真琦,刘振业,马达鹏,等.水稻叶绿素含量及其与光合速率关系的研究[M].作物学报,1984,10(1):57-64.
    [70] 刘增元.2004年废橡胶综合利用产生回顾及展望[J].橡塑资源利用,2005,(2):21-24.
    [71] 龙广成,谢友均,李建.废旧橡胶颗粒改性水泥混凝土及其工程应用[J].粉煤灰,2005 2:3-4
    [72] 陆永其.国外废橡胶资源的利用情况[J].再生资源研究,2005,(1):16-19.
    [73] 罗俊强,韩烈保,陈宝书.北京林业大学学报[J].2003,22(2):77-80.
    [74] 吕锡扬.“黑色污染”及其再生资源的循环利用[J].中国轮胎资源综合利用,2006,(12):23-26.
    [75] 马万里,韩烈保,罗菊春.草坪植物的新资源——苔草属植物[J].草业科学,2001,18(2):43-45,56.
    [76] 潘瑞炽,董愚得.植物生理学(第二版)[M].北京:高等教育出版社,1985:75.
    [77] 钱敏.废旧橡胶胶粉化——再生胶工业的发展方向[J].再生资源研究,2001,(4):16.
    [78] Redfe.D,魏宏阳,位振军.影响粗纤维消化和利用的限制因素[J].国外畜牧学——饲料,1998,(5):13-16.
    [79] 史新妍,辛振祥,金振国.废旧轮胎胶粉的加工技改性[J].橡塑技术与装备,2005,31(11):11-13.
    [80] 孙吉雄.草坪绿地实用技术指南[M].北京:金盾出版社,2002:344-358.
    [81] 孙玉海,盖国胜,张培新.我国废橡胶资源化利用的现状和发展趋势[J].橡胶工业,2003,50:760-763.
    [82] 孙玉海,张培新,刘剑洪.胶粉的生产利用现状及前景分析[J].再生资源研究,2004,(1):24-27.
    [83] 唐弢,漆新华,王维平,等.我国废旧轮胎资源循环利用的现状、问题及对策研究[C].2005年中国可持续发展论坛——中国可持续发展研究会2005年学术年会论文集(上册),2005.
    [84] 汤章成.现代植物生理学指南[M].北京:科学出版社,1999:127.
    [85] 汤章城,王育启,吴亚华,等.不同抗旱品种高粱苗中脯氨酸积累的差异[J].植物生理学报,1986,12:154-162.
    [86] 涂芳,薛娜.胶粉的生产应用现状及发展[J].中国资源综合利用,2006,24(4):22-24.
    [87] 王帮锡,黄久常,王辉,等.不同植物在水分胁迫条件下脯氨酸的积累与抗旱性的关系[J].植物生理学报,1989,5(15):46-51.
    [88] 王世珍,蔡庆生,孙菊华,崔照平.冷锻炼下高羊茅抗冻性的变化与碳水化合物和脯氨酸含量的关系[J].南京农业大学学报,2003,26(3):10-13.
    [89] 王文恩,傅强.狗牙根草坪秋季交播多年生黑麦草建坪技术研究[J].湖北农业科学,2003,(1):81-83.
    [90] 王艳,张绵.结缕草和早熟禾解剖结构与其抗早性、耐践踏性和弹性关系的对比研究[J].辽宁大学学报(自然科学版),2000,27(4):371-375.
    [91] 王艳,张绵,张学勇,等.结缕草与草地早熟禾的弹性与耐磨性对比研究[J].草业科学,2002,19(2):56-59.
    [92] 温明章,郭继勋.退化白三叶草坪的复壮研究[J].草叶科学,1997(5):50-54.
    [93] 夏玉宇,朱丹.饲料质量分析检验[M].北京:化学工业出版社,1994:185.
    [94] 萧运峰,陈茂庆.野生生草坪植物——寸草苔的研究[J].生物学杂志,1996,13(4):15-17,32.
    [95] 邢廷铣,陈惠萍.全熟期墨麦草化学成分和体外消化率的若干相关特性研究[J].草与畜杂志 1994,(1):22-24.
    [96] 许大全.光合作用效率[M].上海:上海科学技术出版社,2002:86—95.
    [97] 许志信,图朝鲁,卫智军.牧草再生与储藏碳水化合物含量变化的关系研究[[J].草业学报,1993,2(4):13-18.
    [98] 杨富裕.过度践踏草坪的施肥管理[J].花木盆景,2000,(9):15-15.
    [99] 杨胜.饲料分析及饮料质量检测技术[M].北京:北京农业大学出版社,1999:205.
    [100] 杨在娟,岳春雷.濒危植物短柄五加光合特性及其与生态因子的关系[J].浙江林业科技,2002,22(1):7-10.
    [101] 曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002,13(5):611-614.
    [102] 赵光贤.橡胶再生资源的开发和利用[J].橡胶工业,2005,52:632-636.
    [103] 张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸的含量的方法[J].植物生理学通讯,1990,(4):62-65.
    [104] 张道远,尹林克,潘伯荣.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠,2003,23(3):252-256.
    [105] 张金喜.废橡胶作为弹性沥青混凝土路面材料的实验研究[J].建筑材料学报,2004,7(4):396-401.
    [106] 周士义,张崇良.废旧橡胶的加工利用[J].煤矿现代化,2004年(2):37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700