用户名: 密码: 验证码:
破碎废弃硒鼓、废旧冰箱箱体的涡流分选及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子废弃物蕴含丰富的资源,被称为“城市矿山”。目前,国内外电子废弃物的处理与资源化过程中普遍存在着资源利用效率低、技术及装备简易落后、易带来二次污染等问题。开发新工艺、新设备成为电子废弃物资源化领域的迫切需求。本文在分析了废弃硒鼓、废旧冰箱箱体物料组分的基础上,设计了废弃硒鼓、废旧冰箱箱体资源化工艺。建立了涡流分选的涡流力模型,颗粒分离距离计算模型,为废弃硒鼓、废旧冰箱箱体资源化关键技术涡流分选提供理论基础。在理论分析的基础上,构建了废弃硒鼓、废旧冰箱箱体资源化生产线,并对生产线各工序的操作参数进行了优化,实现了废弃硒鼓、废旧冰箱箱体的破碎解离-涡流分选。并对废弃硒鼓、废旧冰箱箱体资源化生产线进行了环境风险分析。
     在分析废弃硒鼓和废旧冰箱箱体物料组分的基础上,分别提出了废弃硒鼓的封闭破碎、旋风/除尘、磁选、涡流分选和废旧冰箱箱体的封闭破碎-活性炭吸附-气流分选-磁选-涡流分选的回收工艺。
     涡流分选由于影响因素众多,生产中分离效率低,难以满足生产需要。通过正交试验设计的方法,研究了涡流分选过程中操作参数对涡流分选的影响。实验结果表明磁辊转速与输送带喂料线速度之差(ωR-v)为影响涡流分选的关键因素,输送带喂料速度(v)为一般因素,接料位置(H)为次要因素。喂料速度越小,磁辊转速与输送带喂料线速度之差越大,分选效果越好;接料位置0.9 m为实验室涡流分选机最佳接料位置。
     建立了涡流分选涡流力模型,并通过对颗粒运行轨迹中脱离角(α0)的计算表明,计算结果与实验结果相吻合。与以前模型相比,新建的模型增加了对颗粒因素(圆形颗粒半径,矩形,三角形片状颗粒的长、宽、高、周长)和磁辊参数(磁辊直径,磁辊表面磁场强度)的分析。新建的涡流力模型可用来指导涡流分选操作参数调节,涡流分选机结构设计,和物料的破碎。
     建立了涡流分选颗粒分离距离计算模型,对颗粒运行轨迹中磁场逃逸点进行了研究。与以前模型相比,新模型增加了磁场边界、接料位置等涡流分选影响参数。模型可用来预测涡流分选效果。模型建立过程中得出了颗粒尺寸因素>磁场转速因素>颗粒形状因素的涡流分选影响因素关系。根据涡流力模型和颗粒分离距离计算模型总结出了提高涡流分选分离效率的方法,并在此基础上设计了分选性能更好的涡流分选机。
     根据设计的工艺,采用新设计的涡流分选机及其它机械设备,分别构建了废弃硒鼓、废旧冰箱箱体资源化生产线,并通过总结出的提高涡流分选的方法与实验对生产线涡流分选工序及其它工序的操作参数进行了优化。
     (i)废弃硒鼓资源化生产线优化的操作参数为:破碎机转速1200 rpm,筛网筛孔尺寸15 mm,破碎机装备冷凝水系统;旋风分离器风机风速1.4 m/s;布袋除尘器风机风速0.3 m/s;磁选机转速350 rpm (3.3 m/s);涡流分选机喂料速度40 rpm (0.4 m/s),磁辊转速800 rpm (7.5 m/s)。生产线总功率190 kW,回收能力500 kg/h,回收率98.2 %。
     (ii)废旧冰箱箱体资源化生产线优化的操作参数为:破碎机转速1800 rpm,筛网筛孔尺寸10 mm,破碎机外壁装备冷凝水系统;活性炭吸附塔风机转速1200rpm,管道气流入口筛网筛孔孔尺寸0.5 mm;气流分选机风机风速0.95 m/s;磁选机转速350 rpm (3.3 m/s);涡流分选机喂料速度: 40 rpm (0.4 m/s),磁场转速1000 rpm (7.5 m/s)。生产线总功率240 kW,回收能力773.8 kg/h,回收率达97.6%。
     对废弃硒鼓资源化生产线噪声排放水平、空气颗粒物浓度、碳粉泄漏情况,对废旧冰箱箱体资源化生产线噪声排放水平,CFC-11泄漏情况,空气颗粒物浓度及其中重金属浓度,和各工序余灰中重金属浓度进行了监测和分析。
     (i)废弃硒鼓资源化生产线环境风险分析结果为:破碎,搅拌-磁选工序噪声排放水平超过90 dB(A)(职业安全健康噪声标准),采用隔声罩处理后,噪声排放水平降至67.6 dB(A);空气颗粒物浓度(TSP、PM10)达我国室内空气质量标准,TSP中碳粉有机组分浓度最高为0.026 mg/m3,PM10中未检测到碳粉有机组分,生产线不存在碳粉泄漏危害人体健康的危险。
     (ii)废旧冰箱箱体资源化生产线环境风险分析结果为:破碎工序噪声水平超过90 dB(A)(职业安全与健康噪声标准),经隔声罩处理后噪声水平降至69.7dB(A);破碎机和气流分选机附件检测到浓度6-9 mg/m3和5-7 mg/m3的CFC-11气体,其值低于我国规定的氟化物排放浓度标准(11 mg/m3);破碎机腔内CFC-11浓度较高(216-739 mg/m3),但由于活性炭吸附塔的作用,车间内和活性炭吸附塔气流出口处均未检测到CFC-11气体;空气颗粒物(TSP、PM10)浓度符合我国室内空气质量标准,且其中重金属浓度不会威胁人体健康;生产线余灰中检测到铜(1672-11925 mg/kg)、铅(356.1-11490 mg/kg)、锡(211.9-686.5 mg/kg)三种重金属,铜的最高浓度超过土壤环境质量标准30倍,铅的最高浓度超标20倍。
     以上研究为破碎废弃硒鼓、废旧冰箱箱体涡流分选提供了理论基础,提出了高效、环保、经济可行的废弃硒鼓、废旧冰箱箱体无害化处置方法,同时也为回收其它电子废弃物提供了技术储备与参考。
E-waste has been considered as“city-mine”due to containing aboundant metals. However, there was a lack in recovery technology and heavy secondary pollution had been produced. Developing new technologies and equipments have been the pressing demand for recovering e-waste. In this study, recovery technologies of waste toner cartridges (TCs) and refrigerator cabinets (RCs) were proposed based on the analysis of their components. Eddy current separation was employed as a key technology in the recovery technologies. Then, for improving the separation rate of eddy current separation (ECS), model of eddy current force and models for calculating the separation distance between different kinds of particles were constructed. Based on the proposed recovery technologies, production lines for recovering waste TCs and RCs were constructed and the operation paramenters of every process were studied. In finals, risk assessments of the recovery lines were made on their environment-friendly performance.
     Based on the analysis of comprised materials and pollution factors, a recovery technology of waste TCs was proposed including closed shearing, cyclone separation, bag-type dust collection, magnetic separation, and ECS. For preventing the leakage of CFC-11 gas, recovering technology of waste RCs was proposed after analysing the comprised materials. It included closed shearing, activated carbon adsorption, air current separation, magnetic separation, and ECS.
     In the recovery technologies of waste TCs and waste RCs, separation rate of ECS was low because of its abundant influenced factors. According to orthogonal experimental design, operation parameters of ECS were investigated. The experimental results indicated that speed difference between feeding speed and rotation speed of magnetic field (ωR-v) was the key influencing factor. Feeding speed was general influencing factor. Collection position of particles was subordination influencing factor. Separation rate was improved as the increasing of (ωR-v) and the decreasing of feeding speed. Collection position 0.9 m was the optimizing parameters of the eddy current separator in lab.
     New models for computing the acting force between particle and eddy current separator were established for guiding operation of ECS, configuration design of separator, and shearing mode of materials. The models were tested by the calculation and investigation of detachment angle (α0) of particle in ECS. Compared to former models, new models had the advantage on providing more detailed shape parameters of particle such as radius, length, width, thickness, and circumference. Furthermore, influencing factors of magnetic drum radius and magnetic field intensity of separator surface were added in the new models.
     Models for calculating separation distance between different particles in ECS were established for investigating the influencing factors. The models can be used to forecast separation quality of ECS by calculating the separating distances. Based on the analysis of the calculated separation distances, sequence of the influencing factors was derived as: particle size>rotation speed of magnetic field>shape of particle. Then, the approaches for improving the separation quality of eddy current separation were discussed. A new eddy current separator was designed for obtaining better separation quality according to the suggestion of the approaches. Additionally, the investigation of the exiting point of particle from magnetic field boundary extended the scope of theoretical investigation of ECS.
     Production lines of recovering waste TCs and waste RCs were constructed in enterprise based on the proposed recovery technologies. The operation parameters of every process were researched.
     (i) Optimized operation parameters of the recovering line of waste TCs were given in follows. Rotation speed of shearing machine was 1200 rpm, size of screen hole of shearing machine was 15mm, and circulating water should be fixed on shearing machine. Wind speed of the fans of cyclone separation and bag-type dust collector were 1.4 m/s and 0.3 m/s respectively. Rotation speed of magnetic separator was 350 rpm (3.3 m/s). Feeding speed of eddy current separator was 40 rpm (0.4 m/s), rotation speed of magnetic drum was 800 rpm (7.5 m/s).
     The recovery capability of waste TCs recovery line was 500 kg/h and recovery rate was 98.2% with the power demand 190 kW.
     (ii) Optimized operation parameters of the recovering line of waste RCs were given in follows. Rotation speed of shearing machine was 1800 rpm, size of the screen hole of shearing machine was 10mm, and circulating water should be fixed on shearing machine. Rotation speed of the fan of activated carbon adsorption tower was 1200 rpm. Wind speed of the fan of air current separator was 0.95 m/s. Rotation speed of magnetic separator was 350 rpm (3.3 m/s). Feeding speed of eddy current separator was 40 rpm (0.4 m/s), rotation speed of magnetic drum was 1000 rpm (7.5 m/s). The recovery capability of waste RCs recovery line was 773.8 kg/h and recovery rate was 97.6% with the power demand 240 kW.
     Risk assessment of the recovering line of waste TCs were made on noise level, density of airborne particles, and leakage of toner in recovering process. Risk assessments of the recovering line of waste RCs were made on noise levels, leakage of CFC-11, density of airborne particles, and the exposure of heavy metals in the recovering process.
     (i) Results of risk assessment of the recovering line of waste TCs were given in follows.
     Noise levels of shearing and agitating-magnetic separation exceeded 90 dB(A) (Occupational Safety and Health Standards). After employing acoustic hood, the noise level was controlled to 67.6 dB(A). Concentrations of airborne particles (TSP、PM10) met the the Indoor Air Quality Standard of Chinese. The highest density of organic particles from toner in TSP samples was 0.026 mg/m3, and little organic particle was found in PM10 samples. It meant that little risk was brought to human healthy by organic particle of toner in recovering process.
     (ii) Results of risk assessment of the recovering line of waste RCs were given in follows.
     Noise levels of shearing process exceeded 90 dB(A) (the Occupational Safety and Health Standards). After employing acoustic hood, the noise level was controlled to 69.7 dB(A). Concentrations of CFC-11 around shearing machine and air current separation were 6-9 mg/m3 and 5-7 mg/m3, lower than the concentration of fluoride in Ambient Air Quality Standard of Chinese. Although high concentration (216-739 mg/m3) of CFC-11 was detected in the inner of shearing machine, little CFC-11 was detected in workshop and the gas outlet of actived carbon adsorption tower due to its running. the concentrations of airborne particles (TSP、PM10) met the Indoor Air Quality Standard of Chinese and the concentration of heavy metals in TSP and PM10 were safe for workers. High concentrations of copper (1672-11925 mg/kg), lead (356.1-11490 mg/kg), and tin (211.9-686.5 mg/kg) were detected in the residual ashes of the recovering line, and concentrations of copper and lead exceeded the heavy metal concentrations in Environment Quality Standard for Soils thirtyfold and twentyfold respectively.
     This study offered the theoretical basis of eddy current separation for recovering waste toner cartridges and refrigerator cabinets. Meanwhile, high-efficiency, environment-friendly, and cost saving production lines for recovering waste toner cartridges and refrigerator cabinets were developed. The works of this study may contribute little to the technology informations for e-waste recovering.
引文
[1] Robinson, B. E-waste: An assessment of global production and environmental impacts. Science of the Total Environment, 2009, 408 (2), pp. 183–191.
    [2] Ogunseitan, O. A.; Schoenung, M. J.; Saphores, M.; Shapito, A. A. The electronics revolution: from e-wonderland to e-wasteland. Science, 2009, 326 (5953), pp. 670-671.
    [3] Stone, R. Confronting a toxic blowback from the electronics trade. Science, 2009, 325 (5944), pp. 1055.
    [4] EPA. Statistics on the Management of Used and End-of-Life Electronics. 2010. Available from: http://www.epa.gov/wastes/conserve/materials/ecycling/manage.htm.
    [5] Protomastro, G. Electronic scrap management in Argentina. In: Lechner, P.(Ed.), Prosperity Waste and Waste Resources. Proceedings of the 3rd BoKu Waste Conference, BoKu-University of Natural Resources and Applied Life Sciences, Vienna, Austria, 2009, April 15–17, pp: 113–122.
    [6] Rocha, G. Diagnosis of Waste Electric and Electronic Equipment Generation in the State of Minas Gerais. Fundacao Estadual do Meio Ambiente (FEAM), Governo Minas, Minas Gerais, Brazil. 2009.
    [7] METI Achievement of Home Appliance Recycling Law and Designated Home Appliances Recycling Act by Manufacturers and Importers/Ministry of Economy, Trade and Industry. Available from:
    [8] Aizawa, H.; Yoshida, H.; Sakai, S. Current results and future perspectives for Japanese recycling of home electrical appliances. Resources, Conservation and Recycling, 2008, 52 (12), pp. 1399–1410.
    [9] Ongondo, F.; Williams, I.; Cherrett, T. How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management, 2011, 31(4), pp. 714-730.
    [10] 2009-2010年中国电子废弃物市场调查咨询报告, 2009. http://www.askci.com/reports/2009-04/20094201090.html.
    [11]周全法,朱雯,废电脑及其配件中金的回收.中国资源综合利用, 2003, (7): 315.
    [12]胡天觉,曾光明等,从家用电器废物中回收贵金属.中国资源综合利用,2001, (7): 12-15.
    [13] Legarth, J. Environmental decision making for recycling options. Resources, Conservation and Recycling, 1997, 19 (2), pp. 109-135.
    [14] Lehner, T. Integrated recycling of non-ferrous metals at Boliden Ltd, R?nnsk?r Smelter. IEEE International Symposium on Electronics & the Environment, 1998, pp. 42-47.
    [15]胡远军,李麒麟,徐东军.废旧印制电路板物理回收及综合利用.印制电路信息, 2007, (4): 59-62.
    [16] Widmer, R. Global perspectives on e-waste. Environmental Impact Assessment Review, 2005, (5 SPEC. ISS.), pp. 436-458.
    [17]高丽峰,赵丹丹.基于循环经济理念下的电子废弃物再利用.中国环保产业. 2004, (12): 20-22.
    [18] Gotoh, S. Waste management and recycling trends in Japan. Resources and Conservation, 1987, (14): 15-28.
    [19] Sum, E. The recovery of metals from electronic scrap. Journal of Metals, 1991, 43 (4), pp. 53-68.
    [20] Hoffmann, J. Recovering precious metals from electronic scrap. Journal of Metals, 1992, 44 (7), pp. 43-48.
    [21]李金惠,程桂石.电子废物管理理论与实践.北京:中国环境科学出版社, 2010.
    [22] Leung, A.; Duzgoren-Aydin, N.; Cheung, K.; Wong, M. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environmental Science and Technology, 2008, 42 (7), pp. 2674-2680.
    [23] Sj?din, A.; Carlsson, H.; Thuresson, K.; Sj?din, S.; Bergman, A. Flame retardant indoor air at an electronics recycling plant and other work environments. Environmental Science and Technology, 2001, 35 (3), pp. 448-454.
    [24] Huo, X.; Peng, L.; Xu, X.; Zheng, L.; Qiu, B.; Qi, Z.; Zhang, B.; Han, D.; Piao, Z. Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environmental Health Prospect, 2007, 115 (7), pp. 1113-1117.
    [25]潘虹梅,李凤全,叶玮,王俊荆.电子废弃物拆解业对周边土壤环境的影响—以台州路桥下谷岙村为例.浙江师范大学学报(自然科学版), 2007, 30 (1): 103-108.
    [26] Basel convention on the control of transboundary movements of hazardous wastes and Their Disposal. http://www.basel.int/text/con-e-rev.pdf.
    [27] Yu, J.; Williams, E.; Ju, M.; Shao, C. Managing e-waste in China: Policies, pilot projects and alternative approaches, Resources, Conservation and Recycling, 1999, 54 (11), pp. 991-999.
    [28]郭廷杰.日本《家电再生法》实施状况简介.再生资源研究, 2002, (3): 7-9.
    [29] Chung, S.; Zhang, C. An evaluation of legislative measures on electrical and electronic waste in the People’s Republic of China. Waste Management, 2011, 31(12), pp. 2638–2646.
    [30] Ali, L.; Chan, Y. Impact of RoHS/WEEE on effective recycling- electronics system integration. Proceedings - 2008 2nd Electronics System integration Technology Conference, ESTC, 2008, pp: 521-524.
    [31]夏志东,史耀武,郭福.电子电气产品的循环经济战略及工程.北京:科学出版社, 2007.
    [32] Wright, R.; Elcock, K. The RoHS and WEEE directives: Environmental challenges for the electrical and electronic products sector. Environmental Quality Management, 2006, 15 (4): 9-24.
    [33]孔令锋.家电以旧换新政策的环保效应与电子废弃物治理.生态环境, 2010, (6): 164-167.
    [34] Shen, H.; Forssberg, E. An overview of recovery of metals from slag. Waste Management, 2003, 23 (10), pp. 933-949.
    [35] Cui, J.; Forssberg, E. Mechanical recycling of waste electric and electronic equipment: a review. Journal of Hazardous Materials, 2003, 99 (3), pp. 243-263.
    [36] Li, J.; Xu, Z.; Zhou, Y. Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards. Journal of Electrostatics, 2007, 65 (4), pp. 233-238.
    [37]马俊伟,王真真,李金惠.电选法回收废印刷线路板中金属Cu的研究.环境科学, 2006, (9): 1895-1900.
    [38]白庆中,王晖,韩洁,聂永丰.世界废弃印刷电路板的机械处理技术现状.环境污染治理, 2001, 2 (1): 84-89.
    [39]杨玉芬,盖国胜,徐盛明,陈清如.废印刷线路板回收利用的现状与存在的问题.环境污染与防治. 2004, 26 (3): 193-195.
    [40]温雪峰,范英宏,赵跃民,曹亦俊,柴晓兰,段晨龙,王海峰,用静电选的方法从废旧电路板中回收金属富集体的研究.环境工程, 2004, 22 (2), pp. 78-81.
    [41] Li, J.; Lu, H.; Guo, J.; Xu, Z.; Zhou, Y. Recycle technology for recovering resources and products from waste printed circuit boards. Environment Science and Technology, 2007, 41 (6), pp. 1995-2000.
    [42] Li, J.; Xu, Z. Environmental friendly automatic line for recovering metal from waste printed circuit boards. Environment Science and Technology, 2010, 44 (4), pp. 1418-1423.
    [43] Veit, H. M.; Bernardes, A. M. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. Journal of Hazardous Materials, 2006, 137 (3), pp. 1704-1709.
    [44] Park, Y.; Fray, D. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 2009, 164(2-3), pp. 1152-1158.
    [45] Huang, K.; Guo, J.; Xu, Z. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. Journal of Hazardous Materials, 2009, 164 (2-3), pp. 399-408.
    [46] Melchiorre, M.; Jakob, R. Electronic Scrap Recycling. Microelectronics Journal. IEEE, 1996, (28): 8-10.
    [47] Veldhuizen, H.; Sippel, B.开采废弃电子产品.产业与环境, 1995, 17 (3): 7-11.
    [48] Yokoyamas, J. Recycling of printed wiring board waste, Proceedings of 1993 IEEE/Tsukuba. International Work Shop on Advanced Robotics, IEEE, 1993, 55-58.
    [49]朱建新,聂永丰,李金惠.废镍镉电池的真空蒸馏回收技术.清华大学学报(自然科学版), 2003, 43(6): 858-861.
    [50] Mou P.; Gao J.; Duan G. A physical process for recycling and reusing waste printed circuit boards, Proceedings of the 2004 IEEE International Symposium on Electronics and the Environment, May 10-13, 2004, Scottsdale, AZ, United States: 237–242
    [51]胡利晓,温雪峰,刘建国,李金惠,聂永丰,俞子达.废印刷电路板的静电分选实验研究,环境污染与防治, 2005, 27 (5): 326-329.
    [52]唐敬麟.破碎与筛分机械设计选用手册.北京:化学工业出版社, 2001.
    [53] Peterson, W. Numerical solution of eddy current problems in ferromagnetic bodies travelling in a transverse magnetic field. International Journal Numeric Method Engineering, 2003, 58 (12), pp. 1749-1764.
    [54] Benaboua, A.; Georgesa, S. Permanent magnet modeling for dynamic applications. Journal of Magnetism and Magnetic Materials, 2008, 320: 830-835.
    [55]孙云丽,段晨龙,左蔚然,俞和胜,刘昆仑.电子废弃物的资源循环研究.中国资源综合利用, 2007, (25): 35-38.
    [56]任君焘,鞠美庭.电子废弃物中贵重金属的回收技术研究.环境科学与管理, 2008, (33): 117-121.
    [57] Huang, K.; Li, J.; Xu, Z. A Novel Process for recovering Valuable Metals from Waste Nickel- Cadmium Batteries. Environmental Science and Technology, 2009, 43 (23), pp. 8974-8978.
    [58] Huang, K.; Li, J.; Xu, Z. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment. Waste Management, 2011, 31 (6), pp.1292-1299.
    [59]高忠爱,祁梦兰,吴大宝.固体废物的处理与处置.北京:高等教育出版社, 1993.
    [60] Zhang, S.; Forssberg, E.; Menad, N.; Bjorkman, B. Metals recycling from electronic scrap byair table separation - theory and application, TMS Annual Meeting, EPD Congress, 1998, pp. 497–515.
    [61]徐敏,李光明,殷进,贺文智.废弃线路板的破碎解离和气流分选研究.环境科学与技术, 2007, (5): 72-74.
    [62]殷进.废弃印刷电路板破碎解离与气流分选研究. [硕士学位论文],上海:同济大学,2006.
    [63] Settimo, F.; Bevilacqua, P.; Rem, P. Eddy current separation of fine nonferrous particles from bulk streams. Physical Separation in Science and Engineering, 2004, 13 (1), pp. 15-23.
    [64] Rolicz, P. Eddy currents generated in a system of two cylindrical conductors by a transverse alternating magnetic field. Electric Power Systems Research, 2009, 79 (2), pp. 295-300.
    [65] Zhang, S.; Forssberg, E.; Arvidson, B.; Moss, W. Aluminum recovery from electronic scrap by High-Force eddy-current separators. Resources, Conservation and Recycling, 1998, 23 (4), pp. 225-241.
    [66] Rem, P.; Beunder, E.; van den Akker, A. Simulation of Eddy-Current Separators. IEEE Transactions on Magnetic, 1998, 34 (4), pp. 2280-2286.
    [67] Lungu, M. Separation of small nonferrous particles using an angular rotary drum eddy-current separator with permanent magnets. International Journal Mineral Process, 2005, 78 (1), pp. 22-30.
    [68] Lungu, M.; Schlett, Z. Vertical drum eddy-current separator with permanent magnets. International Journal Mineral Process, 2001, 63 (4), pp. 207-216.
    [69] Schlett, Z.; Claici, F.; Mihalca, I.; Lungu, M. A new static separator for metallic particles from metal-plastic mixtures using eddy currents. Minerals Engineering, 2002, 15(1-2), pp. 111-113.
    [70] Meier-Staude, R.; Schlett, Z.; Lungu, M.; Baltateanu, D. A new possibility in Eddy-Current separation. Minerals Engineering, 2002, 15(4), pp. 287-291.
    [71] Ko¨hnlechner, R.; Schlett, Z.; Lungu, M.; Caizer, C. A new wet Eddy-current separator. Resources, Conservation and Recycling, 2002, 37(1), pp. 55-60.
    [72] Rem, P.; Leest, P.; van den Akker, A. A model for eddy current separation. International Journal Mineral Process, 1997, 49(3-4), pp. 193-200.
    [73] Zhang, S.; Rem, P.; Forssberg, E. Particle trajectory simulation of two-drum eddy current separators. Resources, Conservation and Recycling, 1999, 26 (2), pp. 71-90.
    [74] Maraspina, F.; Bevilacquaa, P.; Rem, P. Modeling the throw of metals and nonmetals in eddy current separations. International Journal Mineral Process, 2004, 73 (1), pp. 1-11.
    [75] Schlett, Z.; Lungu, M. Eddy-current separator with inclined magnetic disc. Minerals Engineering, 2002, 15 (5), pp. 365-367.
    [76] Zhang, S.; Forssberg, E. Mechanical recycling of electronics scrap: the current status and prospects. Waste Management Resource, 1998, 16 (2), pp. 119-128.
    [77] Zhang, S.; Forssberg, E.; Arvidson, B.; Moss, W. Separation mechanisms and criteria of a rotating eddy-current separator operation. Resources, Conservation and Recycling, 1999, 25 (3-4), pp. 215-232.
    [78]王全强,段晨龙,张洪建.涡电流操作参数对铝分选影响的研究.中国资源综合利用, 2005,12: 22-25.
    [79]吴彩斌,王全金,向速林,陈鹏.涡电流分选富集线路板中有价金属研究.环境科学与技术, 2008, 31: 12-18.
    [80]贺文智,李光明,马兴发,黄菊文,王华,徐敏.电子与电器废弃物资源化处理技术.环境污染治理技术与设备, 2006, 7: 109-114.
    [81]魏金秀,汪永辉,李登新.国内外电子废弃物现状及其资源化技术.东华大学学报(自然科学版), 2005, 3: 133-138.
    [82]陈泉源,柳欢欢,朱凌云.电子废弃物回收利用的物理分选技术.中国资源综合利用, 2006, 24: 6-10.
    [83]余前航.碳粉品质是硒鼓质量的关键.中国计算机用户, 2004, 4: 12.
    [84]贺文恕.激光打印机的硒鼓和碳粉.办公设备, 2006, 83: 35-36.
    [85]马丁.采购硒鼓假冒产品多.电脑采购, 2000, 45: 3.
    [86] García-Pi?eres, A.; Hildesheim, A.; Herrero, R.; Trivett, M.; Williams, M.; Atmetlla, I.; Ramírez, M.; Pinto, L. Persistent human papillomavirus infection is associated with a generalized decrease in immune responsiveness in older women. Cancer Research, 2006, 66 (22), pp. 11070-11076.
    [87] Duursen, v.; Sanderson, M.; van de Berg, J. Cytochrome P450 1A1 and 1B1 in human blood lymphocytes are not suitable as biomarkers of exposure to dioxin-like compounds: Polymorphisms and interindividual variation in expression and inducibility. Toxicological Sciences, 2006, 85 (1), pp. 703-712.
    [88] Devos, S.; Van Den Heuvel, R.; Hooghe, R.; Hooghe-Peters, E. Limited effect of selected organic pollutants on cytokine production by peripheral blood leukocytes. European Cytokine Network , 2004, 15 (2), pp. 145-151.
    [89] Cui, L.; Sun, H.; Wishnok, J.; Tannenbaum, S.; Skipper, P. Identification of adducts formed by reaction of N-acetoxy-3,5- dimethylaniline with DNA. Chemical Research in Toxicology, 2007, 20 (11), pp. 1730-1736.
    [90] Pampillón, C.; Mendoza, O.; Sweeney, N.; Strohfeldt, K.; Tacke, M. Diarylmethyl substituted titanocenes: Promising anti-cancer drugs. Polyhedron, 2006, 25 (10), pp. 2101-2108.
    [91] Duan, J.; Jeffrey, A.; Williams, G. Assessment of the medicines lidocaine, prilocaine, and their metabolites, 2,6-dimethylaniline and 2-methylaniline, for DNA adduct formation in rat tissues. Drug Metabolism and Disposition, 2008, 36 (8), pp. 1470-1475.
    [92] Toner cartridge recycling information options. Available from: http://www.dep.state.fl.us.
    [93]激光打印机的硒鼓再生技术.印前技术, 2002,7-1.
    [94]王永新,彭瑞敏,马春艳,宫长红,张爱武.激光打印机硒鼓的再生利用技术.电脑知识与技术, 2008, 4: 1008-1010.
    [95]叶雨.绿色打印,从回收硒鼓做起.中国高新技术产业导报, 2002, 13.
    [96]曹振宇,朱炜,周根贵,吴善滨,孙科达.硒鼓墨盒回收渠道初探.物流科技, 2008, 2: 80-84.
    [97]张震.硒鼓、墨盒回收有猫儿腻.中国消费者报, 2003, B01.
    [98] Williams, J.; Shu, L. Analysis of Remanufacturer Waste Streams Across Product Sectors. Proceedings of the 2000 IEEE International Symposium on Electronics and the Environment, May 8-10, San Francisco, CA , USA, 2000, 260-265.
    [99]王建明.发明专利《废旧硒鼓回收处理工艺》,公开号: CN101109925, 2006.
    [100]王建明.发明专利《废旧硒鼓回收处理系统》,公开号: CN200950213, 2007.
    [101]李英顺,黄晨,朱理立,顾卫星,杨义晨.废弃打印机硒鼓回收过程墨粉防爆研究.环境工程, 2011, 6 (29): 100-102.
    [102]吴慧媛,刘景洋,董丽伟,傅晓恒.我国各省市冰箱报废量预测.再生利用, 2011, 4(1): 31-34.
    [103] Lambert, A.; Stoop, M. Processing of discarded household refrigerators: lessons from the Dutch example. Journal of Cleaner Production, 2001, 9 (3), pp. 243-252.
    [104] Ralph J. Cicerone, Richard S. Stolarski and Stacy Walters. Stratospheric Ozone Destruction by Man-Made Chlorofluoromethanes. Science, 1974, 185 (4157), pp. 1165–1167
    [105] Zhao, X.; Duan, H.; Li, J. An evaluation on the environmental consequences of residual CFCs from obsolete household refrigerators in China. Waste Management, 2011, 31(3), pp. 555-560.
    [106]刘景洋,段宁,杨勇,郭玉文,乔琦.废旧冰箱拆解及聚氨酯泡沫放置的一氟三氯甲烷释放量研究.环境污染与防治, 2010, (7): 1-5.
    [107]李旭华,段宁,刘景洋,郭玉文.废聚氨酯硬泡热处理特性及产物检测分析.环境科学与技术, 2009, (6): 103-107.
    [108]杨勇,刘景洋,郭玉文,杨敏,乔琦.加热移除废弃聚氨酯硬泡中CFC-11的研究.中国环境科学, 2009, 29 (4): 397-401.
    [109] Ilgin, M.; Gupta, S. Comparison of economic benefits of sensor embedded products and conventional products in a multi-product disassembly line. Computers and Industrial Engineering, 2010, 59 (4), pp. 748-763.
    [110] Udomsawat, G.; Gupta, S. Multi-Kanban Mechanism for Appliance Disassembly. Proceedings of the SPIE International Conference on Environmentally Conscious Manufacturing V, Boston, Massachusetts, 2005, 30-41.
    [111] Kondo, Y.; Hirai, K.; Kawamoto, R.; Obata, F. A discussion on the resource circulation strategy of the refrigerator. Resources Conservation and Recycling, 2001, 33 (3), pp. 153-165.
    [112] Lambert, A.; Stoop, M. Processing of discarded household refrigerators: lessons from the Dutch example. Journal of Cleaner Production, 2001, 9 (3), pp. 243-252.
    [113] Deng J.; Wen X.; Zhao Y. Evaluating the treatment of E-waste-a case study of discarded refrigerators. Journal of China University Mining and Technology, 2008, 18 (3), pp. 0454-0458.
    [114] Kotera,Y.; Hirasawa, E.; Sakitani, H. Integrated Recycle Plant for Electric Home Appliances- Automated Primary Disassembling for Refrigerators. http://www.computer.org/portal/web/csdl/doi/10.1109/ECODIM.1999.747621.
    [115]胡彪,李健.基于国情的废电冰箱资源化利用和无害化处理工艺.中国资源综合利用, 2007, 25: 18-22.
    [116] Editorial. What do C&D waste and end-of-life refrigerators have in common? Waste Management, 2008, 28: 2031.
    [117] Martin S.; Geering, A. Opportunities and Threats of Current E-Waste Collection System in China: A Case Study from Taizhou with a Focus on Refrigerators, Washing Machines, and Televisions. Environmental Engineering Science, 2010, 27(1), pp. 29-36.
    [118] Nicol, S.; Thompson, S. Policy options to reduce consumer waste to zero: comparing product stewardship and extended producer responsibility for refrigerator waste. Waste Management and Research, 2007, 25 (3), pp. 227-233.
    [119] Nicol, S. Refrigerators Given Cold Shoulder: Strategies to Improve Sustainable Refrigerator Management in Manitoba. From: A thesis of Natural Resources Institute of University of Manitoba. 2008. http://gradworks.umi.com/MR/41/MR41443.html.
    [120] James, G.; Burt, B.; Franklin, M.; Rock, B. Method and apparatus for recovering blowing agent in foam production.USA: 4531951, 1985, 7-30.
    [121]胡嘉琦,符永高,赵新,王玲,张小平.黏胶基活性炭纤维对三氯一氟甲烷的吸附性能.环境科学研究, 2009, 9: 1089-1092.
    [122] Filardo, G.; Galia, A.; Gambino, S. Supercritical- Fluid Extraction of CFCs from Rigid Polyurethane Foams. The Journal of Supercritical Fluids, 1996, 9: 234-237.
    [123]路洪洲,李佳,郭杰,许振明.基于可资源化的废弃印刷线路板的破碎及破碎性能.上海交通大学学报, 2007, 41: 551-556.
    [124] Yang, H. Solid Waste Treatment Technology and Engineering Application. China machine press: Beijing. 2003. (In Chinese).
    [125] Yan, M.; Peng, X. Magnetic base and magnetic materials. Zhejiang University press: Zhejiang. (in Chinese).
    [126]奚旦立,孙裕生,刘秀英.环境监测.北京:高等教育出版社, 2004.
    [127] Xiang, D.; Mou, P.; Wang, J.; Duan, G.; Zhang, H. Printed circuit board recycling process and its environmental impact assessment. International Journal of Advanced Manufacture Technology, 2007, 34 (9-10), pp. 1030-1036.
    [128] U. S. EPA. Exposure Factors Handbook; EPA/600/P-95/002Fa, b, c; Environmental Protection Agency, Office of Research and Development: Washington, DC, 1997.
    [129] Baptista, L.; Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmosphere Environment, 2005, 39 (25), pp. 4501-4512.
    [130] U. S. EPA. Guidelines for Exposure Assessment; EPA/600/Z-92/001; Environmental Protection Agency, Office of the Science Advisor: Washington, DC, 1992.
    [131] Chinese MEP. Emission standard for industrial enterprise noise at boundary. From: http://kjs.mep.gov.cn/hjbhbz/bzwb/wlhj/hjzspfbz/200809/t20080918-128936.htm. 2008.
    [132] Schomer, P. white paper: Assessment of noise annoyance. http://www.nonoise.org/library.htm. 2004.
    [133] Chinese MEP. Indoor Air Quality Standard of Chinese. From: http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/200303/t20030301_67375.htm. 2003.
    [134] Chang, J.; Liu, M.; Li, X.; Lin, X.; Wang, L.; Gao, L. Primary research on health risk assessment of heavy metals in road dust of Shanghai. China Environment Science, 2009, 29 (5), pp. 548-554.
    [135] Chinese MEP. Environmental quality standard for soils. From: http://kjs.mep.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/199603/t19960301-82028.htm. 1996.
    [136]周新祥.噪声控制技术及其新进展.北京:冶金工业出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700