用户名: 密码: 验证码:
葛根素治疗糖尿病的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是21世纪危害人类健康的主要疾病之一。中药葛根数千年来一直用于糖尿病即消渴症的治疗,其主要的异黄酮活性成分-葛根素近年来用于治疗2型糖尿病及其综合征,证实确有降低血糖、提高胰岛素受体敏感性的疗效。葛根素的药理机制非常复杂,目前研究多集中在整体动物或器官水平,关于细胞特别是胰岛细胞以及分子机制的研究很少。
     胰岛β细胞功能紊乱是2型糖尿病发生发展的主要原因之一,导致其发生的中心机制是氧化应激。体内外研究均表明葛根素具有清除自由基、提高抗氧化酶活性、抑制蛋白质非酶糖基化的作用,然而尚不清楚其抗氧化作用是否在保护胰岛细胞功能方面发挥作用。以过氧化氢(500μM)为刺激物诱导急性分离的大鼠胰岛细胞氧化损伤,采用MTT、流式细胞术、AO/EB荧光双染、Rhodamine 123、DCFH-DA荧光探针、酶分析及放射免疫法检测了葛根素(10-100μM)对胰岛细胞的凋亡、线粒体膜电位、自由基水平、抗氧化酶活性及胰岛素分泌功能的影响。结果表明葛根素能明显抑制胰岛细胞特别是β细胞凋亡,恢复胰岛细胞的基础和葡萄糖刺激分泌功能,其机制可能是清除活性氧,保护线粒体功能以及提高细胞在氧化应激下的抗氧化酶(CAT, SOD)活性。
     同时依赖于电压和钙的大电导钾通道(BK_(Ca))在维持血管张力,调节血管舒张中起重要作用,研究表明其功能异常是糖尿病血管舒张功能弱化的重要原因。葛根素具有明显的舒血管作用,而且结构与某些BK_(Ca)通道开放剂相似。用膜片钳技术直接检测了葛根素与克隆的BK-α+β1和BK-α通道的相互作用,并考察了葛根素对BK_(Ca)通道的激活作用与其舒张大鼠胸主动脉的关系。结果表明纳摩尔浓度的葛根素能明显激活BK-α+β1通道宏观电流,使通道的GV曲线向负向移动20 mV左右。葛根素呈浓度依赖性的迅速、部分可逆的激活BK-α+β1通道电流,其EC50在10μM Ca~(2+)和0μM Ca~(2+)条件下分别为0.8 nM和12.6 nM。葛根素对通道电流的激活与膜电位成反比,即膜电位越高激活效应越弱,10μM Ca~(2+)时葛根素对ΒΚ?α+β1通道电流的激活主要在负电压下发生。单通道实验表明葛根素主要增加通道的开放几率而不改变单通道电导。在没有β1亚基和0μM Ca~(2+)条件下葛根素也能激活通道电流,但EC50是有β1亚基时的13倍,说明β1亚基能提高通道对葛根素的敏感性。葛根素的脱糖基类似物大豆素也能激活BK-α通道,但其效用弱于葛根素,说明糖基在葛根素对通道的激活中发挥重要作用。微摩尔浓度的葛根素(0.1-1000μM)呈浓度依赖性的舒张由去甲肾上腺素预收缩的大鼠胸主动脉,50 nM IbTX能明显抑制葛根素的舒张效应,说明BK_(Ca)通道的激活是葛根素舒张血管的机制之一。
     进一步考察了葛根素对BK_(Ca)通道α亚基(mslo)的作用,并结合分子生物学技术对葛根素与BK_(Ca)通道的结合位点进行了初步研究。结果表明,在10μM Ca~(2+)下,葛根素对mslo电流有阻断作用,使通道的GV曲线向右移动。葛根素在10μM Ca~(2+)下阻断mslo电流的EC50为6.2 nM。葛根素对mslo的阻断作用随钙浓度降低而减弱,但随膜电位的降低而增强。葛根素对dslo没有作用,且将mslo和dslo的S0-S1 Linker交换后,葛根素对mslo的作用消失,说明葛根素与BK_(Ca)通道的结合位点在S0-S1 Linker上。
     综上所述,葛根素对胰岛细胞在氧化应激下的功能紊乱及凋亡的抑制以及对表达于血管平滑肌的BK_(Ca)通道的激活可能是其治疗糖尿病及糖尿病血管并发症的重要机制。
Diabetes mellitus is one of the main threats to human health in the 21st century. Ge-gen (also known as“kudzu”) is used in Chinese traditional medicine for the therapy of diabetes for over two thousands years. Puerarin (7– Hydroxy– 3 - ( 4– hydroxyphenyl )– 1– benzopyran– 4– one 8-(β-D-glucopyranoside)) is the main isoflavone glycoside derived from ge-gen. Modern pharmacological researches have demonstrated that puerarin has antihyperglycemic effects and can improve insulin resistance, which has been used to treat diabetes mellitus and its complications. Previous studies about the pharmacological mechanisms of puerarin focused on animal and organ levels. However, the cellular and molecular mechanisms involved in its antidiabetic actions remain unclear.
     The pancreaticβcell dysfunction is one of the main causes in diabetes etiology, and the oxidative stress under diabetic conditions is the leading cause ofβcell dysfunction. Puerarin has been shown to possess anti-oxidant properties such as scavenging reactive oxygen species, increasing superoxide dismutase (SOD) activity and inhibiting protein nonenzymatic glycation. This study was designed to investigate the protective effect against hydrogen peroxide (H2O2)-induced pancreatic islets damage by puerarin. Exposure of islets to 500μM H2O2 could cause a significant viability loss by MTT assay and an increase in apoptotic rate by flow cytometry and AO/EB double staining. Pre-treatment of islets with puerarin for 48 h resulted in a reduction in viability loss and apoptotic rate. 100μM puerarin significantly inhibited the apoptosis of islets induced by H2O2. In addition, preincubation with puerarin could improve the H2O2-induced decrease in glucose-induced insulin secretion in pancreatic islets by radioimmunoassay. Puerarin was also found to inhibit the free radicals production and the loss of mitochondrial membrane potential induced by H2O2 using DCFH-DA and Rhodamine123 as the fluorescent probes, respectively and to increase catalase (CAT) and superoxide dismutase (SOD) activities by enzyme assays in the isolated pancreatic islets. These results suggest that puerarin can protect islets against oxidative stress probably partially due to its antioxidative activity. Puerarin may be effective in preventing islet cells from the toxic action of reactive oxygen species (ROS) in diabetes.
     The BK_(Ca) channel, the large-conductance voltage- and Ca~(2+)-activated potassium channel, abundantly expressed in vascular smooth muscle cells, plays a critical role in controlling vascular tone. The dysfunction of BK_(Ca) channels in diabetes mellitus has been reported to lead to diminished vascular relaxation. Puerarin has positive vasodilation effect and the structure of which is similar to some BK_(Ca) channel openers. We investigated the direct effects of puerarin on cloned pore forming subunit (α) of BK_(Ca) channel, with or withoutβ1 subunits and on rat thoracic aortas. BK_(Ca) channels encoded with eitherα(BK-α) orα/β1 subunits (BK-α+β1) were heterologously expressed in Xenopus oocytes or HEK293 cells. The activities of BK_(Ca) channels were measured using excised patch-clamp recordings. Puerarin intracellularly activated BK-α+β1 currents with a half-maximal concentration (EC50) of 0.8 nM and a Hill coefficient of 1.11 at 10μM Ca~(2+), and with EC50 of 12.6 nM and a Hill coefficient of 1.08 at 0μM Ca~(2+). Puerarin (1 nM) induced a 16 mV leftward shift in the conductance-voltage curve for BK-α+β1 currents at 10μM Ca~(2+), and at 100 nM induced a 26 mV leftward shift at 0μM Ca~(2+). Puerarin mainly increased the BK-α+β1 channel open probability without changing the unitary conductance. Activation was also detected in the absence of theβ1 subunit. A deglycosylated analog of puerarin, daidzein, also activated BK_(Ca) channels with weaker potency. In addition, puerarin (0.1 to 1000μM) caused concentration-dependent relaxations of rat thoracic aortic rings contracted with 1μM noradrenaline bitartrate (NA) (EC50 = 1.1μM). These were significantly inhibited by 50 nM iberiotoxin, a specific blocker of BK_(Ca) channels, indicating that the activation of the BK_(Ca) channel probably contributes to the puerarin-mediated vasodilation action.
     Further, we explored the effect of puerarin on mslo currents in the presence of Ca~(2+) and the binding sites of puerarin on BK_(Ca) channel protein. Puerarin blocked mslo currents with an EC50 of 6.2 nM and a Hill coefficient of 0.86 at 10μM Ca~(2+). Puerarin inhibited mslo currents in a Ca~(2+) and voltage-dependent manners, higher Ca~(2+) concentration, higher inhibition while higher voltage, lower inhibition. The chimera construct with dslo S0-S1 Linker to mslo diminished the effect of puerarin on mslo channels, indicated that the sites for puerarin binding may be located at the region of S0-S1 Linker.
     In summary, the present study provides evidences that puerarin could protect islet cells from oxidative damage and stimulate BK_(Ca) channel activity. These beneficial effects of puerarin may contribute to the underlying mechanisms by which it acts as an anti-diabetes compound.
引文
[1] Amos A., McCarthy D., Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet. Med., 1997, 14: S1–S85
    [2] Brownlee M. A radical explanation for glucose-inducedβcell dysfunction. J. Clin. Invest., 2003, 112 (12): 1788-1790
    [3] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(13): 813-820
    [4] Brownlee M. The pathobiology of diabetic complication a unifying mechanism. Diabetes, 2005, 54: 1615-1625
    [5] Barja G. Endogenous oxidative stress: relationship to aging, longecity and caloric restriction. Aging Res. Rev., 2002, 11: 397-4l1
    [6] Korshunov S. S., Skulachev V. P., Starkov A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett., 416:15–18, 1997
    [7] Bouwens L., Rooman I. Regulation of Pancreatic Beta-Cell Mass. Physiol. Rev., 2005,85:1255-70
    [8] Matthews D. R., Clark A. B-cell defects and pancreatic abnormalities in non-insulin-dependent diabetes mellitus. In Textbook of diabetes. J.C. Pickup and G. Williams, editors. Blackwell Science. Oxford, United Kingdom, 1997, 21: 21–16
    [9] Poitout V., Robertson R. P. Secondary beta-cell failure in type 2 diabetes: a convergence of glucotoxicity and lipotoxicity. Endocrinology, 2002, 143: 339–342
    [10] Robertson R. P., et al. Glucose toxicity of the beta cell: cellular and molecular mechanisms. In Diabetes mellitus. A fundamental and clinical text. D. Le Roith, S. Taylor, and J.M. Olefsky, editors. Lippincott Williams & Wilkins. Philadelphia, Pennsylvania, USA. 2000, 125–132
    [11] Evans J. L., Goldfine I. D., Maddux B. A., et a1. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes.Endocr. Rev., 2002, 23: 599-622
    [12] Robertson R. P., Harmon J., Tran P. O., et a1. Glucose toxicity inβ-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes, 2003, 52: 581-587
    [13] Sakuraba H., Mizukami H., Yagihashi N., et a1. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients.Diabetologia, 2002, 45: 85-89
    [14] Mandrup-Poulsen T. Apoptotic signal transduction pathways in diabetes. Biochem. Pharmacol., 2003, 66: 1433-1440
    [15] Hotta M., Yamato E., Miyazaki J. I. Oxidative stress and pancreaticβ-cell destruction in insulin-dependent diabetes mellitus.In: Packer L, Rosen P, Tritshler H, Eds. Antioxidants and Diabetes Management. New York: Marcel Dekker, 2000. 265-274
    [16] Donath M. Y., Storling J., Maedler K., et al. Inflammatory mediators and islet beta-cell failure: a link between type1 and type2 diabetes. J. Mol. Med., 2003, 81: 455-470
    [17] Ceriello A., Piconi L., Quagliaro L., et a1. Effects of pramlintide on postprandial glucose excursions and measures of oxidative stress in patients with type 1 diabetes. Diabetes Care, 2005, 28: 632-637
    [18] Goldstein B. J., Mahadev K., Wu X. Redox Paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes, 2005, 54: 311-321
    [19] Fariss M. W., Chan C. B., Patel M., et a1. Role of mitochondria in toxic oxidative stress. Mol. Interv., 2005, 5: 94-111
    [20] Olson L. K., Redmon J. B., Towle H. C., et al. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J. Clin. Invest., 1993,92: 514–519
    [21] Olson L. K., Sharma A., Peshavaria M., et al. Reduction of Insulin Gene Transcription in HIT-T15β? Cells Chronically Exposed to a Supraphysiologic Glucose Concentration isAssociated with Loss of STF-1 Transcription Factor Expression. Proc. Natl. Acad. Sci. U. S. A., 1995, 92: 9127–9131
    [22] Sharma A., Olson L. K., Robertson R. P., et al. The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 trascription factor expression. Mol. Endocrinol., 1995, 9(9): 1127–1134
    [23] Poitout V., Olson L. K., Robertson R. P. Chronic Exposure ofβTC-6 Cells to Supraphysiologic Concentrations of Glucose Decreases Binding of the RIPE3b1 Insulin Gene Transcription Activator. J. Clin. Invest., 1996, 97: 1041–1046
    [24] Olbrot M., Rud J., Moss L. G., et al. Identification ofβ-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 6737–6742
    [25] Kataoka K., Han S. I., Shioda S., et al. MafA Is a Glucose-regulated and Pancreaticβ-Cell-specific Transcriptional Activator for the Insulin Gene. J. Biol. Chem., 2002, 277: 49903–49910
    [26] Matsuoka T. A., Zhao L., Artner I., et al. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol. Cell. Biol., 2003, 23: 6049–6062
    [27] McKinnon C., Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia, 2001, 44: 1203-1214
    [28] Watada H., Kajimoto Y., Miyagawa J., et a1. PDX-1 induces insulin and glucokinase gene expressions in alphaTC1 clone 6 cells in the presence of betacellulin. Diabetes, 1996, 45: 1826-1831
    [29] Moran A., Zhang H. J., Olson L. K., et a1. Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line HIT-T1 5. J. Clin. Inves., 1997, 99: 534-539
    [30] Harmon J. S., Gleason C. E., Tanaka Y., et al. In vivo prevention of hyperglycemia also prevents glucotoxic effects on PDX-1 and insulin gene expression. Diabetes, 1999, 48: 1995–2000
    [31] Harmon J. S., Tanaka Y., Olson L. K., et al. Reconstitution of glucotoxic HIT-T15 cells with somatostatin transcription factor-1 partially restores insulin promoter activity. Diabetes, 1998, 47: 900–904
    [32] Zhang C. Y., Baffy G., Perret P., et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, b-cell dysfunction, and type 2 diabetes. Cell, 2001, 105: 745–755
    [33] Krauss S., Zhang C. Y., Scorrano L., et al. Superoxide-mediated activation of uncoupling protein 2 causes pancreaticβcell dysfunction. J. Clin. Invest., 2003,112: 1831–1842
    [34] Chan C. B., DeLeo D., Joseph J. W., el a1. Increased uncoupling protein levels in beta cells are associated with impaired glucose stimulated insulin secretion: mechanism of action. Diabetes, 2001, 50(6): 1302-1310
    [35] Kassis N., Bernard C., Pusterla A., et a1. Correlation between pancreatic islet uncoupling protein 2 (UCP2) mRNA concentration and insulin status in rats. Int. J. Exp. Diabetes Res., 2000, l(3): 185-193
    [36] Hjentnes N., Fernstrom M., Zierath J. R., et a1. Regulation of UCP2 and UCP3 by muscle disuse and physical activity in subjects. Diabetologia, 1999, 42(5): 826-830
    [37] Maedler K., Sergeev P., Ris F., et al. Glucose-inducedβ? cell production of IL-1βc?ontributes to glucotoxicity in human pancreatic islets. J. Clin. Invest., 2002, 110: 851–860
    [38] Bloch-Damti A., Bashan N. Proposed Mechanisms for the Induction of Insulin Resistance by Oxidative Stress. Antioxidants & Redox Signaling, 2005, 7(11-12): 1553-1567
    [39] Ogihara T., Asano T., Katagiri H., et al. Oxidative stress induces insulin resistance by activating the nuclear factor-kappaB pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia, 2004, 47: 794–805
    [40] Potashnik R., Bloch-Damti A., Bashan N., et al. IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistanceinduced by oxidative stress. Diabetologia, 2003, 46: 639–648
    [41] Kozlovsky N., Rudich A., Potashnik R., et al. Transcriptional activation of the Glut1 gene in response to oxidative stress in L6 myotubes. J. Biol. Chem., 1997, 272: 33367–33372
    [42] Rosen P., Nawroth P. P., King G., et al. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev., 2001, 17: 189–212
    [43] Lee A. Y., Chung S. S. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J., 1999,13: 23–30
    [44] Stevens M. J., Lattimer S. A., Kamijo M., et al. Osmotically-induced nerve taurine depletion and the compatible osmolyte hypothesis in experimental diabetic neuropathy in the rat. Diabetologia, 1993, 36(7): 608-614
    [45] Giardino I., Edelstein D., Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity: a model for intracellular glycosylation in diabetes. J. Clin. Invest., 1994, 94:110–117
    [46] Shinohara M., Thornalley P. J., Giardino I., et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest., 1998, 101: 1142–1147
    [47] Li Y. M., Mitsuhashi T., Wojciechowicz D., et al. Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc. Natl. Acad. Sci. USA., 1996, 93 (20): 11047-11052
    [48] Doi T., Vlassara H., Kirstein M., et al. Receptorspecific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via plateletderived growth factor. Proc. Natl. Acad. Sci. USA., 1992, 89: 2873–2877
    [49] Kirstein M., Aston C., Hintz R., et al. Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation endproduct-modified proteins. J. Clin. Invest., 1992, 90: 439–446
    [50] Schmidt A. M., Hori O., Chen J. X., et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice: a potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest., 1995, 96: 1395–1403
    [51] Koya D., King G. L. Protein kinase C activation and the development of diabetic complications. Diabetes, 1998, 47: 859–866
    [52] DeRubertis F. R., Craven P. A. Activation of protein kinase C in glomerular cells in diabetes: mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes, 1994, 43: 1– 8
    [53] Xia P., Inoguchi T., Kern T. S., et al. Characterization of the mechanism for the chronic activation of diacylglycerolprotein kinase C pathway in diabetes and hypergalactosemia. Diabetes, 1994, 43: 1122–1129
    [54] Ishii H., Jirousek M. R., Koya D., et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science, 1996, 272: 728–731
    [55] Kuboki K., Jiang Z. Y., Takahara N., et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation, 2000, 101: 676–681
    [56] Studer R. K., Craven P. A., Derubertis F. R. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes, 1993, 42: 118–126
    [57] Feener E. P., Xia P., Inoguchi T., et al. Role of protein kinase C in glucose- and angiotensin II-induced plasminogen activator inhibitor expression. Contrib. Nephrol., 1996, 118: 180–187
    [58] Kolm-Litty V., Sauer U., Nerlich A., et al. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest., 1998, 101: 160–169
    [59] Sayeski P. P., Kudlow J. E. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription. J. Biol.Chem., 1996, 271: 15237–15243
    [60] Wells L., Hart G. O-GlcNAc turns twenty: functional implications for posttranslational modification of nuclear and cytosolic protein with a sugar. FEBS Lett., 2003, 546: 154–158
    [61] Du X., Matsumura T., Edelstein D., et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Invest., 2003, 112: 1049–1057
    [62] Ho E., Quan N., Tsai Y. H., et al. Dietary zinc supplementation inhibits NF-κB activation and protects against chemically induced diabetes in CD1 mice. Exp. Biol. Med., 2001, 226: 103-111
    [63] Porras A., Zuluaga S., Valladares A., et a1. Long-term treatment with insulin induces apoptosis in brown adipocytes: role of oxidative stress. Endocrinology, 2003, 144: 5390-5401
    [64] Bottino R., Balamurugan A. N., Tse H., et al. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes, 2004, 53: 2559-2568
    [65] Da Ros R., Assaloni R., Ceriello A. Molecular targets of diahetic vascular complications and potential new drugs. Curr. Drug Targets, 2005, 6: 503-509
    [66] Ceriello A., Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol., 2004, 24: 816-823
    [67] Knaus H. G., Schwarzer C., Koch R. O., et al. Distribution of high conductance Ca2+-activated K+ channels in rat brain: targeting to axons and nerve terminals. J. Neurosci., 1996, 16(3): 955-963
    [68] Kaczorowski G. J., Knaus H. G., Leonard R. J., et al. High-conductance calcium-activated potassium channels: structure, pharmacology and function. J. Bioenerg. Biomembr., 1996, 28(3): 255-267
    [69] Ramanathan K., Michael T. H., Jiang G. J., et al. A molecular mechanism for electrical tuning of cochlear hair cells. Science, 1999, 283(5399): 215-7
    [70] Brenner R., Perez G. J., Bonev A. D., et al. Vasoregulation by the beta1 subunit ofthe calcium-activated potassium channel. Nature, 2000, 407(6806): 870-6
    [71] Pluger S., Faulhaber J., Furstenau M., et al. Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure.Circ Res., 2000, 87(11): E53-60
    [72] Vergara C., Latorre R., Marrion N., et al. Calcium-activated potassium channels. Curr. Opin. Neurobiol., 1998, 8(3): 321-329
    [73] Lingle C. J., Solaro C. R., Prakriya M., et al. Calcium-activated potassium channels in adrenal chromaffin cells. Ion Channels, 1996, 4: 261-301
    [74] Brenner R., Jegla T. J., Wichenden A., et al. Cloning and functional characterization of novel large conductance calcium-activated potassium channel b subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem., 2000, 275(9): 6453-6461
    [75] Liu Y., Pleyte K., Knaus H. G., et al. Increased expression of Ca2+-sensitive K+ channels in aorta of hypertensive rats. Hypertension, 1997, 30: 1403-1409
    [76] Lohn M., Lauterbath B., Haller H., et al.β1-subnit of BK channels regulated arterial wall [Ca2+] and diameter in mouse cerebral arteries. J. Appl. Physiol., 2001, 91: 1350-1354
    [77] Amberg G. C., Bonev A. D., Rossow C. F., et al. Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension. J. Clin. Invest., 2003, 112: 717-724
    [78] Lawson K. Is there a role for potassium channel openers in neuronal ion channel disorders. Expert. Opin. Investig. Drugs, 2000, 9: 2269-2280
    [79] Levitan I. B. Modulation of ion channels by protein phosphorylation and Dephosphorylation. Annu. Rev. Physiol., 1994, 56: 193-212
    [80] Dichiara T. J., Reinhart P. H. Redox Modulation of hslo Ca2+-activated K+ channels. J. Neurosci., 1997, 17(13): 4942-4955
    [81] Tang X. D., Daggett H., Hanner M., et a1. Oxidative regulation of large conductance calcium-activated potassium channel. J. Gen. Physiol., 2001, l17: 253-273
    [82] Soto M. A., Gonzalez C., Lissi E., et a1. Ca2+-activated K+ channel inhibition byoxygen species. Am. J. Physiol. Cell Physiol., 2002, 282(3): C461-471
    [83] Wang Z. W., Nara M., Wang Y. X., et a1. Redox regulation of large conductance Ca2+-activated K+ channels in smooth muscle cells. J. Gen. Physiol., 1997, l10: 35- 44
    [84] Jan L. Y., Jan N. Y. Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci., 1997, 20: 91-123
    [85] Wallner M., Meera P., Toro L. Determinant forβ-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc. Natl. Acad. Sci. USA., 1996, 93: 14922-14927
    [86] Nimigean C. M., Magleby K. L. Theβsubunit increases the Ca2+-activated potassium channels by retaining the gating in the bursting states. J. Gen. Physiol., 1999, 113: 425-439
    [87] Meera P., Wallner M., Song M., et al. Large conductance voltage and calcium-dependent K+ channels, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl. Acad. Sci. USA., 1997, 94: 14066-14071
    [88] Butler A., Tsunoda S., McCobb D. P., et al. mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science, 1993, 261(5118): 221-4
    [89] Schreiber M., Wei A., Yuan A., et al. Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J. Biol. Chem., 1998, 273: 3509-3516
    [90] Yuan A., Dourado M., Butler A., et al. SLO-2, a K+ channel with an unusual Cl- dependence. Nat. Neurosci., 2000, 3: 771-779
    [91] Siemen D., Loupatatzis C., Borecky J., et al: Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun., 1999, 13;257(2):549-54
    [92] McManus O. B., Helms L. M., Pallanck L., et al. Functional role of the betasubunit of high conductance calcium-activated potassium channels. Neuron, 1995, 14(3): 645-650
    [93] Xia X. M., Ding J. P., Lingle C. J. Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J. Neurosci., 1999, 19(13): 5255-5264
    [94] Xia X. M., Ding J. P., Zeng X. H., et al. Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J. Neurosci., 2000, 20(13): 4890-4903
    [95] Meera P., Wallner M., Toro L. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc. Natl. Acad. Sci. USA., 2000, 97(10): 5562-5567
    [96] Meera P., Wallner M., Song M., et al. A neuronalβ?subunit (KCNBM4) makes the large conductance, voltage- and Ca2+-activation of Maxi-K channels (hslo) by estradiol biding to theβsubunit. Science, 1999, 285: 1929-1931
    [97] Wang Y. W., Ding J. P., Xia X. M., et al. Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J. Neurosci., 2002, 22(5):1550-61
    [98] Erd?s B., Miller A. W., Busija D. W. Alterations in KATP and KCa channel function in cerebral arteries of insulin-resistant rats. Am. J. Physiol. Heart. Circ. Physiol., 2002, 283: H2472–H2477
    [99] Dimitropoulou C., Han G., Miller A. W., et al. Potassium (BKCa) currents are reduced in microvascular smooth muscle cells from insulin-resistant rats. Am. J. Physiol. Heart. Circ. Physiol., 2002, 282: H908–H917
    [100] Ye C., Shen B., Ren X., et al. An increase in opening of BKCa channels in smooth muscle cells in streptozotocin-induced diabetic mice. Acta Pharmacol. Sin., 2004, 25 (6): 744-750
    [101] Miller A. W., Dimitropoulou C., Han G., et al. Epoxyeicosatrienoic acid-induced relaxation is impaired in insulin resistance. Am. J. Physiol. Heart Circ. Physiol.,2001, 281: H1524–H1531
    [102] Lu T., Wang X. L., He T., et al. Impaired arachidonic acid–mediated activation of large-conductance Ca2+-activated K+ channels in coronary arterial smooth muscle cells in Zucker Diabetic Fatty rats. Diabetes, 2005, 54: 2155–2163
    [103] Wang R., Wang Z., Wu L., et al. Reduced vasorelaxant effect of carbon monoxide in diabetes and the underlying mechanisms. Diabetes, 2001, 50: 166–174
    [104] Georgescu A., Popov D., Simionescu M. Mechanisms of decreased bradykinin induced vasodilation in experimental hyperlipemia-hyperglycemia: contribution of nitric oxide and Ca2+-activated K+ channels. Fundamental & Clinical Pharmacology, 2001, 15 (5): 335-342
    [105] Erd?s B., Simandle S. A., Snipes J. A., et al. Potassium channel dysfunction in cerebral arteries of insulin-resistant rats is mediated by reactive oxygen species. Stroke, 2004, 35: 964-969
    [106] Liu Y., Gutterman D. D. The coronary circulation in diabetes: Influence of reactive oxygen species on K+ channel-mediated vasodilation. Vascular Pharmacol., 2002, 38: 43– 49
    [107] Miller A. W., Tulbert C. D., Busija D. W. Rosuvastatin treatment reverses impaired coronary artery vasodilation in fructose-fed, insulin-resistant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 287: R157–R160
    [108]李小鹰.葛根素对急性心肌梗塞患者梗塞范围的影响.中华心血管病杂志, 1985, 13(3) : 175
    [109]方起程.葛根黄酮的研究.中华医学杂志, 1974, 54(4) : 271
    [110]周远鹏.葛根的药理作用和临床应用研究.中西医结合杂志, 1984, 4(11) : 699
    [111]陶凯忠.高血糖与糖尿病血管病变及机制.中国糖尿病杂志, 2001, 9(5) : 306-308
    [112]钟飞,王晓春,林丽.葛根体外清除氧自由基作用的研究.湖南中医学院学报, 2004, 24(2) : 17-18
    [113]朱庆磊,何爱霞,吕欣然.葛根素对氧自由基的清除和抗氧化性损伤作用.解放军药学学报, 2001, 17(1) : 1-4
    [114]韩超,庆方,潘竟锵等.葛根素对胰岛素抵抗-高血压大鼠的自由基损伤的拮抗作用.中国临床康复, 2006, 10(11) : 71-73
    [115]玉从容,吕俊华,王丹.葛根素抗氧化作用与改善胰岛素抵抗综合症模型大鼠胰岛素敏感性、血压和血脂作用的实验研究.上海中医药杂志, 2006, 40(4) : 53-55
    [116]陶树高,谭海荣,潘甜美等.葛根素增强2型糖尿病-胰岛素抵抗大鼠胰岛素敏感性和抗氧化作用,医药世界, 2006, 7: 61-64
    [117]曾明,陶凯忠,郑水庆等.葛根提取物抗糖尿病大鼠燕化应急的实验研究.华北国防医药, 2006, 18(6) : 393-395
    [118]李红红,吴秀美.葛根素注射液抗糖尿病合并缺血性中风氧自由基的临床研究.新中医, 2003, 35(7) : 36-37
    [119]段有全,王韶颖,三轮一智等.五种中药对蛋白质非酶糖基化的抑制作用.中国糖尿病杂志, 1998, 6(4) : 227-229
    [120]刘乃丰,孟丹.银杏叶提取物等5种药物抑制蛋白质体外糖基化作用的比较.中国新药与临床杂志, 2002, 21(12) : 705-708
    [121]张世平,方文娟,吕俊华等.葛根素抑制D-半乳糖致大鼠蛋白糖基化的实验研究.中药材, 2006, 29(3) : 266-268
    [122]郭妍,周传伟,许健.葛根素对糖尿病大鼠肾脏非酶糖基化和氧化应激的抑制作用.江苏医药杂志, 2003, 29(9) : 669-671
    [123]李长天,陈雁飞.葛根素对糖尿病大鼠肾脏糖基化终产物和转化生长因子-β1表达的影响.中国中医药信息杂志, 2006, 13(3) : 36-38
    [124]毛彩萍,顾振纶.葛根素对糖尿病大鼠主动脉糖基化终产物的形成及其受体表达的影响.中国药理学通报, 2004, 20(4) : 393-397
    [125]曹月新,徐标,王建安等.葛根素对糖基化终产物干预eNOS活性及MDA生成的实验研究.南京中医药大学学报, 2005, 21(5) : 302-303
    [126] Ren P., Hu H., Zhang R. Observation on efficacy of puerarin in treating diabeticretinopathy. Chin. J. Iintergrated. Tradit. Chin. West Med., 2000, 20 (8) : 574-576
    [127]石昌顺.中药葛根的研究进展.中草药, 1994, 25(9) : 496
    [128] Chen W. C., Hayakawa S., Yamamoto T., et al. Mediation of beta-endorphin by the isoflavone puerarin to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med., 2004, 70(2) : 113-116
    [129] Hsu H. H., Chang C. K., Su H. C., et al. Stimulatory effect of puerarin on alpha1A-adrenoceptor to increase glucose uptake into cultured C2C12 cells of mice. Planta Med., 2002, 68(11) : 999-1003
    [130] Hsu F. L., Liu I. M., Kuo D. H., et al. Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats. J. Nat. Prod., 2003, 66: 788-792
    [131] Meezan E., Meezan E. M., Jones K., et al. Contrasting effects of puerarin and daidzin on glucose homeostasis in mice. J. Agric. Food Chem., 2005, 53: 8760-8767
    [132]刘蕴玲,陈少华,陈秀彬.葛根素对II型糖尿病人胰岛素敏感性的影响.辽宁实用糖尿病杂志, 2000, 8(1) : 26-28
    [133]于健,苏珂.葛根素对2型糖尿病病人胰岛素抵抗的影响.中国新药与临床杂志, 2002, 21(10) : 585-587
    [134]李建辉,毕会民,甘佩珍等.葛根素对胰岛素抵抗大鼠脂肪组织中蛋白激酶B表达的影响.中国临床药理学与治疗学, 2004, 9(7) : 770-773
    [135]张妍,毕会民,甘佩珍.葛根素对胰岛素抵抗大鼠骨骼肌中蛋白激酶B表达影响.中国药理学通报, 2004, 20(3) : 307-310
    [136]洪畋,毕会民,毕欣.葛根素对胰岛素抵抗大鼠肝脏中GSK-3表达的影响.中国临床药理学与治疗学, 2006, 11(2) : 207-210
    [137]宋春宇,毕会民.葛根素对大鼠胰岛素刺激下骨骼肌细胞膜GLUT4蛋白含量的影响.中国中药杂志, 2004, 19(2) : 173-175
    [138]李娟娟,毕会民.葛根素对胰岛素抵抗大鼠脂肪细胞葡萄糖转运蛋白4的影响.中国临床药理学与治疗学, 2004, 9(8) : 885-888
    [139]丁继军,章同华,沈茜等.葛根素对培养人主动脉内皮细胞脂质过氧化的保护作用.第二军医大学学报, 1999, 19(11) : 240-242
    [140]黄兆宏,金之谨,何耕兴.葛根素对牛动脉内皮细胞的作用.老年学杂志1992, 12(6) : 350
    [141]茅彩萍,顾振纶,许夕慧等.葛根素对糖尿病大鼠主动脉内皮形态功能的影响.中草药, 2005, 36(3) : 402-405
    [142]康铁朵,吕树铮,王绿娅等.葛根素诱导血管平滑肌细胞凋亡的实验研究.中西医结合心脑血管病杂志, 2003, 1(12) : 703-705
    [143]许轶洲,王宁夫,李佩璋等.葛根素对凝血酶诱导的血管平滑肌细胞增殖的影响.中华医学杂志, 2006, 86(7) : 476-480
    [144]许轶洲,高炎,李佩璋等.葛根素抑制大鼠血管平滑肌细胞增殖及c-fos和bcl-2蛋白表达.中国中药杂志, 2006, 31(6) : 490-493
    [145]吕宝璋,高尔,单京瑞等.葛根素对β-肾上腺素受体结合作用和腺苷酸环化酶活性的影响.解放军医学杂志, 1985, 10(2) : 97-100
    [146]刘强,詹丽芬,李智等.葛根素对大鼠豚鼠主动脉肺动脉血管平滑肌的作用.中国医科大学学报, 2002, 31(6) : 401-403
    [147]孙云翔,栗锦迁.葛根素扩血管作用及其机制初探.中草药, 2002, 33(8) : 733-734
    [148]董侃,陶谦民,夏强等.葛根素的非内皮依赖性血管舒张作用机制.中国中药杂志, 2004, 29(10) : 981-984
    [149] Yeung D. K. Y., Leung S. W. S., Xu Y. C., et al. Puerarin, an isoflavonoid derived from radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery. Eur. J. Pharmacol., 2006, 552: 105-111
    [150]韩瑚.葛根素注射液治疗糖尿病36例.广州医学院学报, 2000, 28(3) : 75-76
    [151]杨沛群,许少辉,陈朝俊.葛根素注射液治疗2型糖尿病41例临床观察.中医药导报, 2006, 12(7) : 16-17
    [152]余建新.葛根素注射液对早期糖尿病肾病的治疗分析.赣南医学院学报, 2005, 3: 373-374
    [153]郭妍,王晓莲,董海荣等.糖尿病肾病IV型胶原水平变化的临床意义及葛根素的治疗作用.南京医科大学学报, 2000, 20(1) : 45-47
    [154]刘淑霞,段惠军,张玉军等.葛根素对糖尿病大鼠肾功能及肾组织MMP-3、TIMP-1表达的影响.天然产物研究与开发, 2003, 15(6) : 531-535
    [155]刘淑霞,陈志强,何宁等.葛根素对糖尿病大鼠肾功能及肾组织MMP-10与TIMP-1表达的影响.中草药, 2004, 35(2) : 170-174
    [156]段惠军,刘淑霞,张玉军等.葛根素对糖尿病大鼠肾功能及肾组织MMP-2与TIMP-2表达的影响.药学学报, 2004, 39(7) : 481-485
    [157]林甲宜.葛根素注射液治疗糖尿病周围神经病变的疗效观察.中国糖尿病杂志, 2000, 8(5) : 269
    [158]王翼华,杨庆平,张国平.葛根素、弥可保联合治疗糖尿病周围神经病变临床观察.医学信息, 2005, 18(11) : 1534-1535
    [159]胡卫芬.葛根素治疗糖尿病周围神经病变40例分析.中国中医药科技2000, 7(5) : 329
    [160]刘鹏,邝锦波.葛根素对非胰岛素依赖型糖尿病患者全血TXB2、6-keto-PGF1a的影响.广西医科大学学报, 1999, 16(5) : 614-642
    [161]宋慧玲.葛根素加脉安定防治糖尿病并发急性心肌梗死时再灌注损伤的研究.山东医药, 2002, 4(1) : 13
    [162]叶穂林.葛根素注射液治疗2型糖尿病合并冠心病17例临床观察.广东医学院学报, 1999, 15(1) : 53
    [163]俞钟明,孙平.葛根素治疗糖尿病合并冠心病心绞痛30例临床分析.现代中西医结合杂志, 2000, 9(4) : 312
    [164]史卫国.葛根素干预冠心病患者胰岛素抵抗的研究.中国中西医结合杂志, 2002, 22(1) : 21
    [165]孙晓静,逢曙光,郑霞.葛根素治疗糖尿病视网膜病变的疗效观察.护理学杂志, 2005, 20(18) : 68-69
    [166] Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes, 1967, 16: 35-39
    [167] Shen H. M., Ong C. N., Shi C. Y. Involvement of reactive oxygen species in aflatoxin B1-induced cell injury in cultured rat hepatocytes. Toxicol., 1995, 99 (1-2) : 115-123
    [168] Kalvelyte A., Imbrasaite A., Bukauskiene A., et al. Connexins and apoptotic transformation. Biochem. Pharmacol., 2003, 66: 1661-1672
    [169] Guo Q., Christakos S., Robinsen N., et al. Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl. Acad. Sci. USA., 1998, 95 (6) : 3227-3232
    [170] Chiou T. J., Tzeng W. F. The roles of glutathione and antioxidant enzymes in menadione-induced oxidative stress. Toxicol., 2000, 154 (1-3) : 75-84
    [171] Lowry O. H., Rosebrough N. J., Farr A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193 (1) : 265-275
    [172] Aebi H. Catalase in vitro. Methods Enzymol., 1984, 105: 121-126
    [173] Tiedge M., Lortz S., Drinkgen J., et al. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes, 1997, 46: 1733-1742
    [174] Sigurd L., Jens D., Markus T. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free. Radical. Bio. Med., 1996, 20: 463-466
    [175] Tanaka Y., Tran P. O., Harmon J., et al. A role for glutathione peroxidase in protecting pancreaticβcells against oxidative stress in a model of glucose toxicity. Proc. Natl. Acad. Sci. USA., 2002, 99: 12363-12368
    [176] Tanaka H., Gleason C. E., Tran P. O., et al. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc. Natl. Acad. Sci. USA., 1999, 96: 10857-10862
    [177] Rasilainen S., Nieminen J. M., Levonen A. L, et al. Dose-dependent cystein-mediated protection of insulin-producing cells from damage by hydrogen peroxide. Biochem. Pharmacol., 2002, 63: 1297-1304
    [178] Szkudelski T. The mechanism of alloxan and streptozotocin action in B Cells of the rat pancreas. Physiol. Res., 2001, 50: 536-546
    [179] Krippeit D.P., Lang F., Haussinger D., et al. H2O2 induced hyperpolarization of pancreatic B-cells. Pflugers Arch., 1994, 426: 552-554
    [180] Maechler P., Jornot L., Wollheim C.B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J. Biol. Chem., 1999, 274: 27905-27913
    [181] Peter K.D., Claudia K., Susanne W., et al. Interference of H2O2 with stimulus-secretion coupling in mouse pancreaticβ-cells. J. Physiol., 1999, 514: 471-481
    [182] Tang J.P., Zhang J.H. Mechanisms of [Ca2+]i elevation by H2O2 in islets of rats. Life. Sci., 2000, 68: 475-481
    [183]陈晋先,许彩民,潘华珍.线粒体与细胞凋亡.解剖学报, 2000, 31(3) : 285-287
    [184] Thévenod F., Friedmann J. M., Katsen A. D., et al. Up-regulation of Multidrug Resistance P-glycoprotein via Nuclear Factor-B Activation Protects Kidney Proximal Tubule Cells from Cadmium- and Reactive Oxygen Species-induced Apoptosis. J. Biol. Chem., 2000, 275 (3) : 1887-1896
    [185] Rita, B., Balamurugan, A. N., Suzanne, B., et al. Preservation of human islet cell functional mass by anti-oxidative action of a novel SOD mimic compound. Diabetes, 2002, 51: 2561-2567
    [186] Markus T., Stephan L., Rex M., et al. Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes, 1998, 47: 1578-1585
    [187] Wang L. Y., Zhao A. P., Cai X. S. Effects of puerarin on cat vascular smooth muscle in vitro. Acta Pharmacol. Sin., 1994, 15: 180-2
    [188] Ma J. J., Ma H., Wang Y. M., et al. Vasodilation effect of puerarin on abdominal aortic artery in the rat and the underlying mechanism. J. Fourth. Mil. Med. Univ., 2003, 24: 2231-4
    [189] Miao W. N., Shen Y. J., Zeng X. R. Effect of puerarin on K+ channel of isolatedventricular myocytes in guinea pig. Chin. J. Appl. Physiol., 1998, 18: 155-8
    [190] Qian Y., Li Z., Huang L., et al. Blocking effect of puerarin on calcium channel in isolated guinea pig ventricular myocytes. Chin. Med. J., 1999, 112: 787-9
    [191] Zhang G. Q., Hao X. M., Ma Y. P., et al. Characteristics of the delayed rectifier K+ current in guinea pig hypertrophied ventricular myocytes induced by thyroxine. Chin. Pharmacol. Bull., 2001, l17: 174-7
    [192] Zhang G. Q., Hao X. M., Dai D. Z., et al. Puerarin blocks Na+ current in rat ventricular myocytes. Acta Pharmacol. Sin., 2003, 24: 1212-6
    [193] Sausbier M., Arntz C., Bucurenciu I., et al. Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel–deficient mice. Circulation, 2005, 112: 60-68
    [194] Gribkoff V. K., Starrett J. E., Dworetzky S. I., et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat. Med., 2001, 7: 471–477
    [195] Giangiacomo K. M., Kamassah A., Harris G., et al. Mechanism of maxi-K channel activation by dehydrosoyasaponin-I. J. Gen. Physiol., 1998, 112: 485-501
    [196] Zakharov S. I., Morrow J. P., Liu G., et al. Activation of the BK (SLO1) Potassium Channel by Mallotoxin. J. Biol. Chem., 2005, 280: 30882-30887
    [197] Sakamoto K., Nonomura, T., Ohya S., et al. Molecular mechanisms for large conductance Ca2+-activated K+ channel activation by a novel opener,12,14-dichlorodehydroabietic acid. J. Pharmacol. Exp. Ther., 2006, 316: 144-53
    [198] Knaus H. G., Eberhart A., Kaczorowski G. J., et al. Covalent attachment of charybdotoxin to theβ-subunit of the high-conductance Ca2+-activated K+ channel. J. Biol. Chem., 1994, 269: 23336–41
    [199] Zhang X., Aman K., Hokfelt T. Secretory pathways of neuropeptides in rat lumbar dorsal root ganglion neurons and effects of peripheral axotomy. J. Comp. Neurol., 1995, 352: 481-500
    [200] Gillis K. D., M??ner R., Neher E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretorygranules. Neuron, 1996, 16: 1209-20
    [201] Deng X. G., Hu S. X., Zhang Q. J., et al. Pharmacokinetic study of puerarin in retinal tissue of rabbits by intraperitoneal injection. Chinese Trad. Herb Drugs, 2004, 35: 1382-4
    [202] Jin X. L., Cheng G. F., Zhu X. Y. Pharmacokinetics of puerarin in healthy volunteers. Chin. J. Clin. Pharmacol., 1991, 7: 115-8
    [203] Wu Y. H., Su Z., Lai X. P., et al. Studies on pharmacokinetics and bioavailability of puerarin in Yufeng Ningxin tablet in mice. Trad. Chinese Drug Res. Clin. Pharmacol., 2004, 15: 259-61
    [204] Orio P., Rojas P., Ferreira G., et al. New disguises for an old channel: MaxiK channel beta-subunits. News Physiol. Sci., 2002, 17: 156-61
    [205] Lu R., Alioua A., Kumar Y., et al. MaxiK channel partners: physiological impact. J. Physiol., 2006, 570: 65-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700