用户名: 密码: 验证码:
深埋洞室劈裂破坏形成机理的试验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下洞室群在开挖时,洞室之间的岩柱往往会出现纵向的劈裂裂缝现象,这种裂缝对于洞室的稳定性造成威胁。尤其对于处于大埋深、高地应力的脆性围岩中的地下洞室,开挖时更容易发生这种裂纹,且通常会有更为剧烈的脆性变形破坏发生,如岩爆等。少有学者针对这种现象展开深入研究。本文以该现象为研究对象,通过实验室模拟试验,能量耗散理论分析以及数值计算分析等手段,深入地研究和探讨了劈裂裂缝的形成条件与机理,取得了一系列有意义的研究成果。
     试验方面,首先对取自工程现场的真实岩石进行了室内单轴压缩、常规三轴试验以及用体积应变作为损伤变量的加卸载试验,测得了脆性岩石力学参数,并分析其强度特性。基于这些参数,选定了一定配比的水泥砂浆材料作为模拟脆性岩石的类岩石材料来模拟地下工程开挖时岩柱的加载—卸载过程。试验采用自行研制的真三轴加卸载装置,该装置可有效的实现对试件的三向加载和卸载,较好的模拟了地下洞室因开挖出现劈裂裂缝的过程。得出卸载使得岩柱内应力场发生重分布,部分区域出现应力集中。开挖面附近近似单轴受压的受力特点使得试件出现了劈裂裂纹。
     基于试验结果,从能量耗散理论出发,认为卸荷引起弹性能释放用于克服裂纹的表面能,引起裂纹开裂。分别推导得出了拉伸和压缩应力作用下,裂纹扩展所需的能量的表达式。结合试验室加卸载试验分析,得出脆性岩石中裂纹扩展受到颗粒粒径的影响的结论,并据此建立了沿颗粒粒径扩展形成劈裂破坏的细观能量模型。
     通过压缩试验获得的脆性岩石的全应力应变曲线,利用体积变量和裂纹体积变量等损伤变量分析得出裂纹发展的五个阶段即:压密、弹性、微裂纹稳定扩展、裂纹非稳定扩展和峰后失稳等。并得出随着加载的进行,脆性岩石内部会同时引起粘聚力和摩擦力的改变。
     基于断裂力学理论,采用简化的直线型滑移裂纹组进行分析,得出了微小裂纹扩展贯通形成纵向劈裂裂缝的临界长度、间距和应力。劈裂裂缝将岩柱分割成为多个厚度很小的岩板,在轴向压缩荷载的作用下,其受力状态类似于弹性力学理论中的薄板压曲问题。借鉴薄板压曲的相关理论,结合能量耗散分析方法,研究了出现宏观劈裂裂缝之后,岩柱失稳破坏的机理,得到了岩板发生压曲破坏的临界荷载,并且推导得出了劈裂裂缝条数的计算公式。
     根据前述工作,提出了劈裂破坏的稳定性判据、经验裂纹密度公式和围岩位移的预测分析方法。
     基于本文所提出的能量方法,结合数值软件FLAC,通过记录单元发生脆性破坏前后的弹性能密度差,得到单位体积岩体突然释放的弹性能量,最终获得整个洞室围岩的总能量耗散值。据此,可以有效判断围岩的破坏区域,为洞室稳定性提供判别依据。并利用本文提出的劈裂破坏判据和位移预测方法,针对二滩工程进行了对比分析取得较好的一致性效果。
     利用可以描述脆性岩石非均匀性的三维有限元程序RFPA~(3D),模拟了二滩地下工程洞间岩柱的破坏过程,证实了在高地应力作用下,劈裂裂缝这种脆性破坏形式是造成洞室失稳的重要因素,同时也对物理力学试验的结果进行了验证。
While the underground openings are being excavated, the rock pillars between the caverns are apt to appear longitudinal splitting cracks, which constitute a threat to the stability of the caverns. Especially the deeply embedded caverns under high in situ stresses, they are more readily to appear this kind of cracks and even intense brittle deformation failure, like rock blast etc. Only a few scholars are interested in further studying these phenomena. This paper mainly studies these phenomena by means of the tools like experimental model tests, energy dissipation theory analysis, and numerical simulation and so on. This paper further studies and probes into the shape conditions and mechanism of the splitting cracks, consequently attains a series of meaningful research achievements.
     From the experiments aspect, we first use the in-situ rock specimens to do uniaxial compressive test, triaxial compressive test and load-unload test with the volumetric strains as damage parameter, so we got the physical mechanical parameters of the brittle rock and analyzed the characteristics of the strength. According to the parameters, we chose a type of mortar as a rock-like material to model the load-unload process of rock pillars when excavating the underground openings. We have developed a triaxial load-unload apparatus by ourselves, which can effectively realize the triaxial load-unload test perfectly model the process of splitting cracks owing to excavating underground openings. The experimental results are as follows: unload can cause the stress redistribution in the rock pillars and stress concentration in part of them. The splitting cracks emerge in the excavation plane which is similar to the characteristics of uniaxial compression.
     Based on the experimentation result and the energy dissipation theory, the elastic energy change is absorbed by cracks for growth. The energy expressions are obtained under tension and compression conditions respectively. According to the load-unload experimental data analysis, the growth of crack is considered to be influenced by grain scale. As a result, the microcosmic energy model is founded.
     According to the stress-strain complete process curve, the total volumetric strains and crack induced 1 volumetric strains is adopted as damage parameters for analyzing the five phases during the crack growth (crack closure , linear elastic, stable crack growth, unstable crack growth and post failure). The cohesion and friction is mobilized in the brittle rock.
     Based on the fracture mechanics, the linear-sliding cracks groups are adopted for analyzing the critical length, interval and stress. Splitting cracks divide the rock pillars into a few thin slabs, whose stress state is similar to the buckling of slabs. According to the corresponding theories on slab buckling and energy dissipation analysis, failure mechanism of rock pillars is studied after appearing the splitting cracks. The critical buckling failure load of slabs is achieved and the predictive formulas about the numbers of splitting cracks are deduced.
     According to the above result, the criterion of splitting failure, crack density formula and displacement forecasting method are put forward.
     Based on the energy method in this article and numerical procedure FLAC3D, the total dissipation energy is obtained through tracing the variety of elastic energy density of each element and recording the maximal fluctuation when brittle failure happens during numerical calculation. According to this method, the intension of rockburst and the position and extent of failure zone can be predicted during rockmass excavation under high in situ stress. The criterion of splitting failure and displacement forecasting method is used for contrastive analysis of Er'tan project. The result is accord with in-suit data.
     Making use of the RFPA~(3D) which can simulate the heterogeneous of brittle rocks, the failure process of rock pillars between the caverns in Er'tan project is simulated. It is proved that the brittle failure forms of splitting cracks under high in situ stress is the key factor which causes instability of caverns. In the meantime, the physical model test result is testified.
引文
[1] Hibino S, Motojma M. Characteristic behavior of rock mass during excavation of large cavems, Proc. Of 8th Int. Congress. on Rock Mech, Tokoyo, Japan, 1995: 583-586.
    [2] Ashby M F, Hallam S D. The Failure of Brittle Solids Containing Small Cracks under Compressive Stress, Acta Metall, No.3, 1986.
    [3] Horii H, Nemat-Nasser S. Brittle failure in Compression: splitting and brittle-ductile transition[J], Philosophical Transactions of the Royal Society of London, Series A, 319, 337-374, 1986.
    [4] Nemat-Nasser S, Obata M M. A microcrack model of dilatancy in brittle material[J], Journal of ailed mechanics, 1988, 55(2):24-35.
    [5] Brace W F, Paulding B M. Dilatancy in the fracture of crystalline rocks[J]. J. Geophys. Res., 1966, 71(16):3939-3953.
    [6] Brace W F, Bombolakis E G. A note on brittle crack growth in compression[J]. J. Geophys. Res., 1963, 680312):3709-3713.
    [7] Hoek E, Biertiawski Z T. Brittle fracture propagation in rock under compression[J]. Int. J. Frac., 1965, 1:137-155
    [8] 陈卫忠,李术才,朱维申,邱祥波.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2003,22(1):18-23.
    [9] 戴永浩.非饱和板岩细观试验与本构模型研究[D].武汉:中国科学院博士学位论文.2006.
    [10] Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation and rockburst[J]. J Geophys Res, 1982, 87038): 6805-6821
    [11] Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure[J]. J Geophys Res, 1985, 90(B4): 3105-3125
    [12] Ingraffea A R, Heuze F E. Finite element models for rock fracture mechanics[J]. Int J Numer Anal Meth Geomech, 1980, 4(4): 25-43.
    [13] Huang J F, Chen G L, Zhao Y H, et al. An experimental study of the sWain field development prior to failure of a marble plate under compression[J]. Tectonophysics, 1990, 175: 269-284.
    [14] Reyes O, Einstein H H. Failure mechanisms of fractured rock - A fracture coalescence model[C]. Proceedings of 7th International Congress on Rock Mechanics, Aachen, Germany, 1991,333-340.
    [15] Shen B. The mechanism of fracture coalescence in compression- experimental study and numerical simulation[J]. Engng Frac Mech, 1995, 51 (1):73-85.
    [16] Shen B, Stephansson O, Einstein H H, et al. Coalescence of fractures under shear stresses in experiments[J]. J Geophys Res, 1995, 100034):5975-5990.
    [17] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. Int J Rock Mech Min Sci, 1998, 35(7):863-888.
    [18] 任伟中,白世伟,丰定祥.平面应力条件下闭合断续节理岩体力学特性试验研究[J].实验力学,1999,14(4):520-527.
    [19] 白世伟,任伟中,丰定祥,周少怀.共面闭合断续节理岩体强度特性直剪试验研究[J].岩土力学,1999,20(2):10-16.
    [20] 任伟中,王庚荪等.共面闭合断续节理岩体的直剪强度研究[J].岩石力学与工程学报,2003,22(10):1667-1672.
    [21] Wong R H C, Wang S W. Experimental and numerical study on the effect of material property, normal stress and the position of joint on the progressive failure under direct shear[C]. NARMS-TAC2002, Mining and Tunnelling Innovation and Opportunity, Toronto, Canada, 2002, 1009-1016.
    [22] 蒋爵光.铁路岩石边坡坡度的确及稳定性分析[J].西南交通大学学报,1991,2:1-7.
    [23] Ayatollahi M R, Aliha M R M, Hassani M M. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens [J]. Materials Science and Engineering, 2006, 417(1-2):348-356.
    [24] Naser A. Al-Shayea. Crack propagation trajectories for rocks under mixed mode Ⅰ-Ⅱ fracture. Engineering Geology [J], 2005, 81:84-97.
    [25] Nara Y, Kaneko K. Sub-critical crack growth in anisotropic rock [J], International Journal of Rock Mechanics and Mining Sciences, 2006, 43(3):437-453.
    [26] Germanovich L N, Dyskin A V. Fracture mechanisms and instability of openings in compression. International Journal of Rock Mechanics and Mining Sciences, Volume 2000, 37(1-2):263-284.
    [27] Sellers E J, Klerck P. Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J]. Tunneling and Underground Space Technology. 2000, 15(4):463-469.
    [28] Tang C A, Lin P, Wong R H C, Chau K T. Analysis of crack coalescence in rock-like materials containing three flaws-Part Ⅱ: numerical approach. International Journal of Rock Mechanics and Mining Sciences, 2004, 38(7):925-939.
    [29] Sahouryeh E, Dyskin A V, Germanovich L N. Crock growth under biaxial compression[J]. Engineering Fracture Mechanics, 2002, 69(18):2187-2198.
    [30] Wong R H C, Chau K T, et al. Analysis of crack coalescence in rock-like materials containing three flaws - Part Ⅰ: Experimental approach, International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7):909-924.
    [31] Dyskin A V, Germanovich L N. Model of crack growth in microcracked rock [J], International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1993, 30(7):813-820.
    [32] Dyskin A V. Effective characteristics and stress concentrations in materials with self-similar rnicrostructure [J], International Journal of Solids and Structures, 2005, 42 (2):477-502.
    [33] Dyskin A V, Sahouryeh E, Jewell R J, et al. Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(15):2115-2136.
    [34] Wong R H C, Law C M, Chau K T, Zhu W S. Crack propagation 3-D surface fractures in PMMA and marble specimens under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3):37-42.
    [35] Heyder M, Kuhn G. 3D fatigue crack propagation: Experimental studies [J]. International Journal of Fatigue, 2006, 28(5-6):627-634.
    [36] 李世愚,滕春凯,刘绮亮等.三维破裂及其在地震和断层研究中的应用.地震地磁观测与研究.1998,19(1):11-25.
    [37] 王裕仓,尹祥础,王海涛.地震预测的加卸载响应比岩石实验模拟.中国地震,1998,14(2):126-130.
    [38] 李术才,李廷春,王刚,白世伟.单轴压缩荷载作用下内置裂隙扩展的CT扫描试验[J].岩石力学与工程学报,2007,26(3):484-492.
    [39] Wong R H C, Guo Y S H, Zhu W S, et al.. The Crack Growth Mechanism from 3-D Surface Flaw with Strain and Acoustic Emission Measurement under Axial Compression[C]. Proceedings of Asian Pacific Conference for Fracture and Strength, Sanya, 2006.
    [40] Guo Y S H, Zhu W S, Li S C, et al. Growth Pattern Study of Closed Surface Flaw under Compression[C]. Proceedings of Asian Pacific Conference for Fracture and Strength, Sanya, 2006.
    [41] 郭彦双,朱维申,李术才等.不同荷载作用下拉破裂的声发射特征研究.岩土力学,2006,27(Supp.):1055-1058.
    [42] 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [43] 何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [44] 何满潮,钱七虎.深部岩体力学研究进展[C].第九届全国岩石力学与工程学术大会论文集.北京:科学出版社,2006.
    [45] Karrnan T von. Festigkeitsversuche unter allseitigem Druck. Zeit dver Deutscher Ing, 1911, 55:1749-1757.
    [46] Paterson M S. Experimental deformation and faulting in Wombeyan marble[J]. Bull Geol Soc Am, 1958, 69:465-467.
    [47] Paterson M S. Experimental Rock Deformation-the Brittle Field[J]. Berlin: Springer, 1978.
    [48] Mogi K. Deformation and fracture of rocks under confining pressure: elasticity and plasticity of some rocks. Bull Earthquake Res[J]. Inst Tokyo Univ, 1965, 43:349-379.
    [49] Mogi K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow[J]. Bull Earthquake Res Lust Tokyo Univ, 1966, 44:216-232.
    [50] Heard H C. Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure[J]. In: Griggs D, Handin J eds. Rock Deformation, 1960,193-226.
    [51] Singh J. Strength of rocks at depth. In: Maury V, Fourmaintrax D, eds. Rock at Great Depth[J]. Rotterdam: A. A. Balkema, 1989. 37-44.
    [52] Meissner R, Kusznir N J. Crystal viscosity and the reflectivity of the lower crust[J]. Annuals Geophysics, 1987, 58:365-373.
    [53] Ranalli G, Murphy D C. Rheological stratification of the lithosphere[J]. Tectonophysics, 1987, 132:281-295.
    [54] Sibson R H. Fault rock sand fault mechanism[J]. J Geol Soc London, 1977,133:191-213.
    [55] Hucka V, Das B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mech Min Sci & Geomech Abstr,1974,11:389-392.
    [56] Chinnasane D R. Brittle rock rating for stability assessment of underground excavations[D]. M. A. Sc. Thesis, Laurentian University, Canada, 2004.
    [57] Andreev G E. Brittle failure of rock materials: Test results and constitutive models[J]. Rotterdam/Brookfield: A. A. Balkema, 1995.
    [58] Bieniawski Z T. Mechanism of brittle fracture of rock. CSIR[J], South Africa, MEG580, 1967.
    [59] Martin C D. The strength of massive Lac Du Bonnet granite around underground openings[D]. Ph. D. Thesis, Department of Civil & Geological Engineering, University of Manitoba, Winnipeg, Manitoba, 1993.
    [60] Eberhardt E. Brittle rock fracture and progressive damage in uniaxial compression[D]. Ph. D. Thesis, Department of Geological Sciences, University of Saskatchewan, Saskatoon, 1998.
    [61] Kaiser P K, Suorineni F T, Henning J, et al.. Guidelines on support selection for safe rapid drift development[J]. Report submitted to Canadian Mining Industry Research Organization, 2003.
    [62] Griffith A. A. The Phenomena of Rupture and Flow in Solids[J]. Phil. Trans. Roy. Soc., London: 1921, A221: 163~198.
    [63] Griffith A. A. Theory of Rupture [A]. Proc. First Int. Congress Appl. Mech. [C], 1924, Delft: 55~63.
    [64] Suorineni F T, Kaiser P K. Determination of damage stress thresholds by acoustic emission[R]. Internal Report, Geomechanics Research Centre, Laurentian University, Sudbury, ON, Canada, 2000.
    [65] Price N J. The compressive strength of coal measure rocks[J]. Colliery Engineering, 1960, 37(437):283-292.
    [66] Read R S. Interpreting excavation-induced displacements around a tunnel in highly stressed granite[D]. Ph. D. Thesis, Department of Civil and Geological Engineering, University of Manitoba, Winnipeg, 1994.
    [67] Tullis J, Yund R A. Experimental deformation of dry Westerly granite[J]. Journal of Geophysical Research, 1977, 82:5705-5718.
    [68] Skinner W J. Experiments on the compressive strength of anhydrite[J]. Engineer, 1959, 207:225-259.
    [69] Brace W F. Brittle fracture of rocks. In State of Stress in the Earth's Crust, Proc. of Syrup[J]. on Rock Mech., New York: Elsevier, 1964.
    [70] Brace W F. Dependence of fracture strength of rocks on grain size[D]. 4th Proc. of Syrup. on Rock Mech., 1961.
    [71] Hock E. Rock fracture and static stress conditions[R]. Rep. of South Africa Council for Scientific and Industrial Research, Report No. Meg 383.
    [72] Brady B. T. A Mechanical Equation of State for Brittle Rock[A]. Part Ⅰ The Prefailure Behavior of Brittle Rock[C]. Int. J. RockMech. Min. Sci. &Geomech. Abstr., 1970, 7:385~421.
    [73] Brady B. T. A Mechanical Equation of State for Brittle Rock[A]. Part Ⅱ The Prefailure Initiation Behavior of Brittle Rock[C]. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., 1973, 10:291~307.
    [74] Lajtai E. Z. A Mechanistic View of Some Aspects of Jointing in Rocks[J]. Tectonphysics, 1977, 38:327~388.
    [75] Hajiabdolmajid V, Kaiser P K, Martin C D. Modeling brittle failure of rock. [J] Int J Rock Mech Mining Sci. 2002, 39 (6):739-741.
    [76] 朱焕春,李浩,O'Conner C.脆性岩体的高应力破坏与数值模拟[D].第九届全国岩石力学与工程学术大会论文集.北京:科学出版社,2006.
    [77] 谢和平,左建平.岩石断裂破坏的声发射机理初探[J].深部资源开采基础理论研究与工程实践,2005:66-73.
    [78] 李伟,谢和平,王启智.大理岩动态拉伸强度及弹性模量的SHPB实验研究[J].实验力学,2005,20(2):200-206.
    [79] 赵伏军,李夕兵.动静载荷耦合作用下岩石破碎理论及试验研究[J].岩石力学与工程学报,2005,24(8):1315-1320.
    [80] 左宇军,李夕兵.动静组合载荷作用下岩石失稳破坏的突变理论及模型与试验研究[J].岩石力学与工程学报,2005,24(5):741-746.
    [81] 凌同华,李夕兵.多段微差爆破振动信号能量分布特征的小波包分析[J].岩石力学与工程学报,2005,24(7):1117-1122.
    [82] 周子龙,李夕兵.石类SHPB实验理想加载波形的三维数值分析[J].矿冶工程,2005,25(3):18-20.
    [83] 李夕兵,周子龙,王卫华.运用有限元和神经网络为SHPB装置构造理想冲头[J].岩石力学与工程学报,2005,24(23):4215-4219.
    [84] 周子龙,李夕兵,龙八军.岩石SHPB试验信号的小波包去噪[J].岩石力学与工程学报,2005,24(S1):4779-4784.
    [85] 潘一山,赵扬锋,马瑾.中国矿震受区域应力场影响的探讨[J].岩石力学与工程学报,2005,24(16):2847-2853.
    [86] 李忠华,潘一山.断层冲击地压的影响因素与震级分析[J].岩石力学与工程学报,2005,24(S1):5206-5210.
    [87] 李世平,贺永年,吴振业等.岩石力学简明教程[M].北京:煤炭工业出版社,1966.
    [88] Hoek E, Brown E. Empirical strength criterion for rock mass[J]. J. Geotech. Eng., ASCE, 1980, 106:1013-1035.
    [89] Ramamurthy T. Stability of rock mass[J]. Indn Geotech J, 1986, 16:1-73.
    [90] Wagner H. Support requirements for rockburst conditions. In. Gay N C and Wainwright E H, eds[C]. Proceedings of 1st International Congress on Rockbursts and Seismicity, Johannesburg, 1984, 209-218.
    [91] Gibowicz S J, Kijko A. An Introduction to Mining Seismology[J]. San Diego: Academic Press, 1994.
    [92] Salamon M D G. Some applications of geomechanical modeling in rockburst and related research[J]. In: Yang C., ed, Rockbursts and Seismicity in Mines, Rotterdam: A. A. Balkema, 1993,297-309.
    [93] 赵自强,王学潮等.南水北调西线工程深埋隧道岩爆与地应力研究岩[J].华北水利水电学院学报,2002,23(1):48-50.
    [94] 华安增,孔园波,李世平等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-392.
    [95] 李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321~327.
    [96] 吴刚.完整岩体卸荷破坏的模型试验研究[J].实验力学,1997,12(4):549~555.
    [97] 吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615~621.
    [98] 吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13~16.
    [99] 尤明庆,华安增.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24~29.
    [100] Aglawe, Jay Prataprao. Unstable and violent failure around underground openings in highly stressed ground[D]. Ph. D. Thesis, Queen's University at Kingston, Ontario, 1999.
    [101] Chinnasane, Damodara Reddy. Brittle rock rating for stability assessment of underground excavations. [D]. Ph. D. Thesis, Laurentian University of Sudbury, Canada, 2004.
    [102] Aglawe, Jay Prataprao. Unstable and violent failure around underground openings in highly stressed ground. [D]. Ph. D. Thesis, Queen's University at Kingston, Canada, 1999.
    [103] 谢和平.雁形断裂的分形模型和能量耗散[J].岩土工程学报,1994,16(1):1-7.
    [104] 朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定性分析中的应用.岩石力学与工程学报,2000,19(3):261-264.
    [105] 温进涛.裂隙岩体能量分析损伤本构模型及其强度研究[D].武汉:中国科学院博士学位论文,2002.
    [106] 高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散.岩石力学与工程学报,2003,22(11):1777-1780.
    [107] 李宁,张平,段庆伟,等.裂隙岩体的细观动力损伤模型[J].岩石力学与工程学报,2002,21(11):1579-1584.
    [108] 李海波,赵坚,李俊如等.基于裂纹扩展能量平衡的花岗岩动态本构模型研究[J].岩石力学与工程学报,2003,22(10):1683-1688.
    [109] 左宇军,李夕兵,张义平,等.动-静组合加载诱发岩爆时岩块弹射速度的计算[J].中南大学学报(自然科学版),2006,37(4):815-819.
    [110] 刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报,1997,16(2):140-147.
    [111] 华安增.地下工程周围岩体能量分析[J].岩石力学与工程学报,2003,22(7):1054-1059.
    [112] 王学滨,潘一山,海龙.基于剪切应变梯度塑性理论的断层岩爆失稳判据[J].岩石力学与工程学报,2004,23(4):588-591.
    [113] 蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42.
    [114] 李庶林,唐海燕.岩爆倾向性评价的弹性应变能指标法[J].矿业研究与开发,2005,25(5):16-18.
    [115] 潘岳,张勇,于广明.岩体失稳前兆阶段准静态形变平衡方程和加载参数—能量输入率[J].岩石力学与工程学报,2005,24(22):4080-4087.
    [116] 徐林生,王兰生.岩爆形成机制研究[J].重庆大学院学报(自然科学版),2001,24(2):115-117.
    [117] 吴刚.工程岩体卸荷破坏机制的研究现状及展望[J].工程地质学报,2001,9(2):174-181.
    [118] 王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    [119] 徐松林,吴文,王广印,等.大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程试验[J].岩石力学与工程学报,2001,20(6):763-767.
    [120] 徐林生.卸荷状态下岩爆岩石力学试验[J].重庆交通学院学报,2003,22(1):1-4.
    [121] 许东俊,章光,李廷芥等.岩爆应力状态研究[J].岩石力学与工程学报,2003,19(2):169-172.
    [122] 陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究,岩石力学与工程学报[J],2006,25(8):1537-1543.
    [123] 李江腾,曹平.硬岩矿柱纵向劈裂失稳突变理论分析[J].中南大学学报(自然科学版),2006,37(2):371-375.
    [124] Zhang Z X, Kou S Q, Jiang L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning[J]. International Journal of Rock Mechanics and Mining Sciences, 2000,37(5):745-762.
    [125] Cook N G W. The design of underground excavations[C]. In Proe: 8th U. S. Symposium on Rock Mechanics, Univ. of Mirmesota, Edited by: C. Fairhurst, pp.167-193. Am. Inst. Min. Metall., Petrol. Engins., New York,1967.
    [126] Jay P A. Unstable and Violent Failure around Underground Openings in Highly Stressed Ground[D]. Ph. D. Thesis, Queen's University at Kingston, Kingston, Ontario,1999.
    [127] Cook N G W, Hock E, Pretorius J P G, et al.. Rock mechanics applied to the study of rockbursts: A synthesis of the results of rockburst research in South Africa up to 1965[R]. J. South African Institute of Mining and Metallurgy,1966, pp.436-528.
    [128] Salamon M D G. Energy Considerations in Rock Mechanics: Fundamental Results[J]. J. South Afr. Inst. Min. Metall., 1984, 84:233-246.
    [129] Itasca Consulting Group, Inc. UDEC-Universal Distinct Element code, Version 3.0[M]. Minneapolis, Minnesota,1992.
    [130] Vardoulakis I, Muhlhaus H B. Local rock surface instabilities[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1986, 23(5):379-383.
    [131] Vardoulakis I. Rockbursting as a surface instability phenomena[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1984, 21(3): 137-144.
    [132] Vardoulakis I, Sulem J, Guenot A. Borehole instabilities as bifurcation phenomena[J]. Int J Rock Mech Min Sci & Geomech Abstr, 1988, 25:159-170.
    [133] Zheng Z, Kemeny J, Cook N G W. Analysis of borehole breakouts. J Geophys Res, 1989, 94(B6):7171-7182.
    [134] Jaeger J C, Cook N G W. Fundamentals of Rock Mechanics. Chapman and Hall, London, third edition, 1979.
    [135] Bazant Z P, Lin F B, Lippmann H. Fracture energy release and size effect in borehole breakout. International Journal for Numerical and Analytical Methods in Geomechanics, 1993,17:1-14.
    [136] Rashid K, Abu Al-Rub George, Voyiadjis Z. On the coupling of anisotropic damage and plasticity models for ductile materials[J]. International Journals of Solids and Structures. 2003.
    [137] 尤明庆.岩石试样的强度及变形破坏过程[M].北京:地质出版社,2000.37-51.
    [138] 尤明庆.复杂路径下岩样的强度和变形特性[J].岩石力学与工程学报,2002,21(1):23-28.
    [139] 姜永东,鲜学福.单一岩石变形特性和本构关系的研究[J].岩土力学,2006,26(6):941-944.
    [140] 蔡美峰等.岩石力学与工程[M].北京:科学出版社 2002:57-60
    [141] 谢和平.岩石混凝土损伤力学[M].徐州:中国矿业出版社,1990:253-257
    [142] 王战鹏.锦屏二级水电站引水隧洞围岩卸荷力学特性试验研究与应用[D].南京:河海大学硕士学位论文,2006.
    [143] 李天斌,王兰生.卸荷应力状态下正长岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [144] 杨卫.细观力学和损伤力学[J].力学进展,1992,22(1):1-9.
    [145] Bieniawsld, Z. T. Mechansim of brittle fracture of rock, Parts Ⅰ, Ⅱ and Ⅲ. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1967, 4(4), 395-430.
    [146] Brace, W. F. and Byerlee, J. D. Recent experimental studies of brittle fracture of rocks. In Proc. 8th U. S. Sump. On Rock Mechanics Minneapolis, Edited by: C. Fairhurst, 1968, pp. 58,81.
    [147] Hallbauer, H., Wagner, H., and Cook, N. G. W. Some observations concerning the microscopic and mechanics behavior of quartzite specimens in stiff, triaxial compression tests[J]. Int. J. Rock Mech. Min. Sci. Geornech. Abstr., 1973,10: 713-917.
    [148] A. A. Griffith. The phenomena of rupture and flow in solids[J]. Phil. Trans. Royal Soc. London. 1921, 221A:163-198.
    [149] 谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,(17):3003-3010.
    [150] A. T. Starr. Slip in a crystal and rupture in a solid due to shear[C]. Proc. Combridge Philosophical Society, 1928, 24:489-500.
    [151] K. Bhattacharya, M. Ortiz and G. Ravichandran. Energy based model of compressive splitting in heterogeneous brittle solids[J]. J. Mech [Phys. Solids. 1998, Vol. 46. No10. pp2171-2181.
    [152] C. D. Martin, N. Chandler N. The progressive fracture of Lac du Bonnet granite[J]. Int. J Rock Mech. & Min. Sci. 31(6) 643-659, 1994.
    [153] 朱焕春,王思敬.深切河谷岩石力学问题与分析方法[J].第九届全国岩石力学与工程学术大会论文集,2006:123-134.
    [154] Myer LR, Kemeny JM, Zheng Z, Suarez R, Ewy RT, CookNGW. Extensile cracking in porous rock under di. erential compressive stress[J]. Applied Mechanics Review 1992, 45(8):263-280.
    [155] Dyskin AV, Germanovich LN. Model of rockbrust caused by cracks growing near free surface[J]. In: Young P, editor. Rockbursts and seismicity in mines 93. Rotterdam: Balkema, 1993. p.169-175.
    [156] 徐芝纶.弹性力学[M].高等教育出版社.1990:132-144.
    [157] 缪协兴,安里千.岩壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,28(2):113-117.
    [158] W. D. Ortlepp. W. D., N. C. Gray. Performance of an experimental tunnel subjected to stresses ranging from 50 MPa to 230 MPa[A]. In Proceedings of the ISRM Symposium: Design and Performance of Underground Excavations[C]. Edited by E. T. Brown, and J. Hudson. British Geotechnical Society, London, 337-346, 1984.
    [159] S. Sakhurai Back Analysis in Rock Engineering. Comprehensive Rock Engineering-Excavation, Support, and Monitoring[R]. Vol. 4. Edited by J. A. Hudson. Pergamon Press, 543-569, 1993.
    [160] C. D Martin, P. K. Kaiser, D. R. McCreath. Hoek-Brown Parameters for Predicting the Depth of Brittle Failure around Tunnels[J].1999, 36:136-151.
    [161] W. D. Ortlepp, R. C. O. Ferral and J. W. Wilson. Support methods in tunnels. Assoc. Mine Managers of South Africa. Papers and Discussion, 1972: 167-195.
    [162] H. Wagner. Design and support of underground excavations in highly stressed rock[C]. In G. Herget & S. Vongpasial, editor, Proc. 6th ISRM Int. Congress on Rock Mechanics, Montreal, volume 3, pages 1443-1457. A. A. Balkema, Netherlands, 1987.
    [163] Stacey T. R. A simple extension strain criterion for fracture of brittle rock[J]. Int. J. Rock Mech. Min. Sci. Geomech Abst., 1981, 18:469-474.
    [164] B. J. Carter, E. J. S. Duncan, and E. Z. Lajtai. Fitting strength criteria to intact rock[J]. Geological and Geotechnical Engineering, 1991, 9:73-81.
    [165] E. Z. Lajtai, B. J. Carter, and E. J. S. Duncan. Mapping the state of fracture around cavities[J]. Engineering Geology, 1991, 31:277-289.
    [166] E. Hoek and E. T. Brown. Underground excavations in rock[M]. The Institution of Mining and Metallurgy, London, 1980.
    [167] Lajtai, E. Z., Carter, B. J., Duncan, S. Mapping the state of fracture around cavities. Engineering Geology, 1991, 31:277-289.
    [168] Kemeny, J. M. A model for nonlinear rock deformation under compression due to subcritical crack growth. Int. J. Rock Mech. Min. Sci., 1991, 28: 459-467.
    [169] 朱维中,孙爱花,隋斌.以二滩工程为背景的洞群开挖系统分析[J].地下空间与工程学报,2005,1,1-5
    [170] 孙钧.岩石力学的若干进展[A].中国岩石力学与工程学会第四次学术大会论文集[C].1996.
    [171] 苏国韶,冯夏庭,江权.高地应力下地下工程稳定性分析与优化的局部能量释放率新指标研究[J].岩石力学与工程学报.2006,25(12):2453-2460.
    [172] 刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京.人民交通出版社.2005.
    [173] 苏国韶,冯夏庭.基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J].岩石力学与工程学报.2005,(17):3029-3034.
    [174] 李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [175] 梁正召,唐春安,张永彬,马天辉,张亚芳.岩石三维破裂过程的数值模拟研究[J].岩石力学与工程学报,2006,25(05):931-936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700