用户名: 密码: 验证码:
高应力软岩隧道施工过程力学效应规律及围岩控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高应力作用下软岩的力学响应更为迅速和强烈,研究软岩工程应从施工过程就开始关注工程的力学效应,探讨力学影响与围岩损伤规律,以指导工程施工设计和方案优化。隧道开挖后,围岩应力重新分布,在高二次应力作用下软岩不可避免的要发生破坏,所以围岩大多数情况处于峰后状态。以往研究多关注围岩的峰值强度,选择合适的支护方案保证围岩及锚固系统处于峰前而不发生破坏,因而多采用弹塑性模型作为岩石强度判别准则,而实际上岩石尤其是软岩峰后会有明显的应变软化现象,即弹性模量为负值。因此,结合具体工程实践开展大变形机理和灾害预测研究,以及在此基础上进一步研究大变形的防治措施和综合治理技术,对解决工程实际问题,促进软岩大变形研究的进展,具有十分重要的意义。
     本文依托兰渝铁路木寨岭隧道工程的实际条件,利用室内岩石力学实验,理论分析,数值模拟以及现场试验等手段,研究了不同围压下软岩峰后力学特性,以及锚固对围岩的强化作用;分析了软弱围岩变形破坏规律和不同支护技术条件下围岩应力-裂隙场演化机理。利用弹塑性力学理论,以Mohr-Coulumn强度准则和应变软化模型为判别方法,对高应力软岩的塑性区进行理论分析,提出了判别塑性区破坏程度和范围的理论公式,并针对木寨岭隧道进行了支护方案的设计。得到主要结论如下:
     (1)对木寨岭隧道软弱围岩的物理力学参数进行了详细测试,并对其进行了分类,砂岩岩体属于Ⅳ级岩体,泥岩属于Ⅴ级岩体。
     (2)岩体强度一定时,随着预紧力的提高,锚固岩体的E、c和φ值都有一定程度的提高。锚固岩体峰前变形主要表现为弹性,垂直方向(加载方向)的变形大于横向变形,峰后出现主破裂面,变形以该面的剪胀变形为主,即自由面方向的横向变形。因而,预紧力锚杆对峰后岩体的加固作用更为显著。
     (3)试样锚固后的应力-应变全程曲线与锚杆受力存在着对应关系,锚固岩体屈服之前,锚杆受力增加缓慢;屈服点之后,锚杆受力急剧增加;峰后软化阶段锚杆受力逐渐增加,流动阶段锚杆受力处在不断的调整下降中。相同预紧力作用下,岩体强度越高,锚杆受力增加幅度越小;相同岩体条件下,高预紧力锚杆受力增幅较小;软弱岩层破坏后,预紧力损失比坚硬岩层大,而预紧力锚杆对软弱岩层的作用比坚硬岩层明显。
     (4)讨论了岩石材料的应力-应变峰后曲线的变化特征,依据测试的围岩力学响应特征(应力-应变曲线),运用FLAC软件的应变软化模型功能,对弹塑性模型和应变软化模型对岩石的力学响应特征的表征进行了对比。应变软化模型计算的现场施工和支护过程中岩石的力学响应更加符合实际情况。
     (5)分析了锚固作用及锚杆预紧力对试样力学特性的影响。加锚杆后试样强度增加幅度大,是原来没有锚杆时的3~4倍。使用弹塑性模型进行计算时,试样不但最大强度增加,残余强度也相应增加,实际上锚杆的锚固作用只是增加了试样在破坏前的整体强度,当试样破坏后,锚固作用失效,试样也就恢复了原有的力学特性。
     (6)锚杆增加预紧力后,强度比不施加预紧力有所提高,但提高幅度不明显。由于数值计算的预紧力是使用的应力加载,在整个加载的计算过程中预紧力一直存在,所以在试样母体单元被破坏后,由于预紧力的约束作用,使破坏后的试样仍具有一定的承载能力和变形余地。此结果表明,在使用锚杆为主的主动支护方式维护隧道时,给锚杆施加一定的预紧力非常必要的,但在高应力软岩条件下,隧道的变形往往不可避免,在巷道变形一定程度后,要继续重新给锚杆施加一定的预紧力,这样可以有效地对已经有变形损伤的围岩施加约束,防止变形继续扩展,同时还能增加整个围岩-锚杆系统的强度,以承担更大的应力载荷。
     (7)对木寨岭隧道在无支护和锚喷支护两种情况的相似模拟实验表明,锚喷支护能够提高围岩承载的应力水平,比无支护时增加了1.7倍。锚喷支护情况下,破坏裂隙从锚固范围以外开始,破坏后锚固范围内岩体仍较完整,呈整体环状锚固带,锚固带内岩体变形不明显。
     (8)依据Mohr-Coulmn应变软化模型对软岩隧道围岩应力场及塑性区进行了理论分析,提出了软岩隧道在高应力作用下围岩的各分区范围确定方法,并以此为基础提出了围岩变形控制方法。
Due to the high stress area of soft rock mechanics influence was more rapid and intense,study of soft rock engineering from the construction process began to concern the mechanicaleffect, influence and rock damage regular, to guide the engineering design and constructionscheme optimization. After the excavation of tunnel, the redistribution of surrounding rockstress, soft rock was inevitably destroyed under the effect of secondary stress, so in most casessurrounding rock in the state of after peak. Previous studies focus on the surrounding rockpeak strength, selection of proper support scheme to keep the rock and anchorage system inthe pre peak and is not destroyed, and the majority of rock strength criterion for elastic andplastic model, but especially the soft rock post-peak have evident strain softening, modulus ofelasticity is negative. Therefore, combined with the specific project practice to carry out largedeformation mechanism and disaster prediction research, as well as the basis for further studyof large deformation control measures and comprehensive management of technology, tosolve the actual problems of the project, to promote the study of large deformation progress,have very important significance.
     According to Muzhailing tunnel of Lanyu railway, use methods of Laboratory rockmechanics experiment, theoretical analysis, numerical simulation and field tests, studied softpost-peak mechanical propertiesunder different confining pressure,as well as anchor on thesurrounding rock reinforcement; Analysis of soft surrounding rock deformation failureregularity and surrounding rock stress fracture field evolution mechanism under theconditions of different supporting technology. Using the elastic-plastic mechanics theory, withMohr-Coulumn strength criterion and strain softening model for distinguishing method, inhigh stress soft rock plastic zone analysis, is proposed to distinguish the degree and range ofthe plastic zone destruction of theoretical formula, and the Muzhailing tunnel the supportingdesign. The main conclusions are as follows:
     (1) Weak rock’s physical mechanics parameters of the Muzhailing tunnel were tested indetail, and has carried on the classification, sandstone rock belongs to surrounding rock of Ⅴgrade and sandy mudstone belongs to surrounding rock of Ⅳgrade.
     (2) When the strength of the rock mass is given, the E, C andφof before peak and afterpeak both improved to some extent along with the pretightening force of anchoring rock massincrease. Anchoring rock mass to the loading direction deformation mainly before peak, afterpeak performance for the free surface of lateral deformation and main rupture surface, andthen to the face dilatancy deformation mainly.
     (3) The stress-strain full curve of the sample after anchoring and the anchorage force ofbolt there exists a corresponding relation, yield before anchoring body, bolt stress increasesslowly; the yield point, the stress increased dramatically; post-peak softening stage anchorforce increased gradually, flow stage bolt force in the constant adjustment of fall. The samepretightening force, the higher the strength of rock, stress ring stress increased amplitudesmaller; the same rock conditions, high pretightening force of bolt stress amplitude is smaller;weak strata, preload loss than the hard rock, preload bolt in soft rock role than hard rock isobvious.
     (4) Discussed the change characteristics of stress-strain curve after the rock materialpeak, according to the test, mechanical response characteristics (stress-strain curve), usingthe software of FLAC strain softening model function, the elastoplastic model and strainsoftening model of rock mechanics characteristic characterization are compared. Strainsoftening model for the calculation of the construction site and supporting in rock in theprocess of the mechanical response is more real.
     (5) Analysis of anchoring effect and anchor pretightening force to the specimen on themechanical properties of. Anchor bolt strength increase3~4times than no anchor. Usingelastic-plastic model to calculate sample,not only maximum intensity increased, residualstrength was increased correspondingly, in fact the anchoring effect has only increased theoverall strength of samples before failure, when the specimen is destroyed, the anchoringfunction failure, the specimen will resume the original mechanical properties.
     (6) Anchor add intensity is increased than no pretightening force, but the increase is notobvious. The result of numerical calculations pretightening force is using stress loading, theloading calculation process of pretightening force exists all the time, so in the sample matrixunit is destroyed, the pretightening force is still work, so that after the destruction of the specimen still has a certain bearing capacity and deformation. The results show that, in the useof anchor rod mainly active supporting way to maintain the tunnel, anchor applied to certainpretightening force is necessary, but in high stress soft rock conditions, tunnel deformation isoften unavoidable, but in the roadway deformation after certain level, want to continue toexert a certain pretightening force of bolt, this can effectively to already have the deformationdamage of surrounding rock deformation constraint, to prevent continued to expand, but alsoincrease the strength of rock-bolt system, assume greater stress.
     (7) On the basis of Mohr-Coulmn strain softening model of soft rock tunnel surroundingrock stress field and plastic zone of theoretical analysis, put forward each partition rangedetermination methods of the soft rock tunnel surrounding rock under high stress, and on thisbasis put forward the control method of deformation of the surrounding rock.
引文
[1]曾培炎.西部大开发决策回顾[M].北京:新华出版社,2010.3
    [2]姜云,李永林,李天斌等.隧道工程围岩大变形类型与机制研究.地质灾害与环境保护,2004,15(4):46-51
    [3]何满潮,景海河,孙晓明.软岩工程力学.北京:科学出版社,2002
    [4] Tazawa Y. Effect of rock bolts and thin linings as tunnel supports in soft rock.Proceedings of the International Symposium on Weak Rock. A.A.Balkema. Rotterdam,Netherland.1981:757-762
    [5] Lovat R. Soft rock TBMs. Annual Meeting-Association of Engineering Geologists.Association of Engineering Geologists, USA.1985,(28):69-76
    [6]董方庭.软岩巷道支护基础理论的研究.建井技术,1991,(Z1):40-44
    [7]鹿守敏.软岩巷道锚喷网支护机理研究.建井技术,1991,(Z1):45-49
    [8]赵国堂,刘亮.软岩巷道围岩变形形态与适时支护.阜新矿业学院学报,1994,13(4):6-9
    [9]薛琳.直墙拱形隧道围岩粘弹性位移解析解.岩土工程学报,1996,18(6):96-101
    [10]杨新安,陆士良.软岩巷道锚注支护理论与技术的研究.煤炭学报,1997,22(l):32-36
    [11]何满潮,邹正盛,彭涛.论高应力软岩巷道支护对策.水文地质工程地质,1994,(4):4-11
    [12]何满潮.煤矿软岩变形力学机制与支护对策.水文地质工程地质,1997,(2):12-16
    [13]杨新安,陆士良,葛家良.软岩巷道锚注支护技术及其工程实践.岩石力学与工程学报,1997,16(2):171-177
    [14]何满潮,高尔新.软岩巷道耦合支护力学原理及其应用.水文地质工程地质,1998,(2):1-4
    [15] Bhasi R, Barton N, Grimstad E, et al. Engineering geological characterization of lowstrength anisotropic rock in the Himalayan region for assessment of tunnel support.Engineering Geology,1995,40:169-193
    [16] Goel R K, Jethwa J L, Paithabkar A G. Tunnelling through the young Himalayas; a casehistory of the Maneri-Uttarkashi power tunnel. Engineering Geology,1995,39(1-2):31-44
    [17]张金富.膨胀性软岩隧道的施工处理与定量判别指标的初步探讨.工程勘察,1987,(2):56-60
    [18] Einstein Herbert H, Bisehoff N. Design of tunnels in swelling rocks. Proceedings ofDesign Methods in Rock Mechanics16th Symposium. Minneapolis, USA.2000:897-899
    [19] Saini G S, Dube A K, Swarup A. Underground excavations in expansive strata.Proceedings of the6th International Conference on Expansive Soil. Indio,1988:477-481
    [20]孙广忠.岩体结构力学.北京:科学出版社,1988
    [21]陈宗基.地下巷道长期稳定性的力学问题.岩石力学与工程学报,1982,1(1):1-19
    [22] Aydan O, Akagi T, Kawamoto T. The squeezing potential of rocks around tunnels:theory and prediction. Rock Mechanics and Rock Engineering,1993,(26):137-163
    [23] Muirwood A M. Tunnels for roads and motorways. Quarterly Journal of EngineeringGeology,1972,(5):119-120
    [24]张广祥,张志强.地下工程设计与施工中的岩石力学问题.铁道工程学报,1998,增刊:360-364
    [25]陈宗基,闻萱梅.膨胀岩与隧道稳定.岩石力学与工程学报,1983,2(4):7-11
    [26]何满潮,彭涛,陈宜金.软岩工程中的大变形及研究方法.水文地质工程地质,1994,(5):5-8
    [27]周维垣.高等岩石力学.北京:水利电力出版社,1990
    [28]陆家梁.软岩巷道支护技术.长春:吉林科学技术出版社,1995
    [29]久武胜保,樱井春辅.软岩隧道的非线性弹塑性状态.隧道译丛,1992(l):11-18
    [30] Kaise P K, Maloney S, Morgenstem N R. Time-dependent properties of tunnelinhighly stressed rock. Proceedings of the5th Congress ISRM (D). A.A.Balkema,1983:329-535
    [31] Wittke W, Pierau B.膨胀岩石中隧道的修建和设计原理.第四届国际岩石力学会议文集.北京:冶金工业出版社,1985
    [32]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念.岩石力学与工程学报,2002,21(8):1215-1224
    [33]徐则民,黄润秋.深埋特长隧道及其施工地质灾害.成都:西南交通大学出版社,2000
    [34]何满潮,景海河,孙晓明.软岩工程力学.北京:科学出版社,2002
    [35]卞国忠.浅谈隧道围岩大变形的判据及处理措施.科学技术通讯,1998,(2):15-17
    [36]李天斌,王兰生.高地应力条件下隧道大变形的机制预测及防治研究科研报告,2005
    [37] Anagnostou G. A model for swelling rock in tunneling. Rock Mechanics and RockEngineering,1993,26(4):307-331
    [38]中华人民共和国交通部.《铁路隧道施工规范》(TBJ204-86).北京:中国铁道出版社,1998
    [39]陆家粱.软岩巷道支护技术[蝴.长春:吉林科学技术出版杜,1995
    [40]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994.1:21—25
    [41]何满潮主编.软岩巷道工程概论[M].中国矿业大学出版社,1993
    [42]方祖烈.中国煤矿软岩巷道支护推广理论与实践[M].徐州:中国矿业大学出版社,1996
    [43]李庶林,桑玉发.应力控制技术及应用综述[J].岩土力学,1997.1:90-96
    [44]何唐镛.煤矿软岩巷道支护研究现状与发展方向[M].岩土工程论文集.陕西科学技术出版社,1995
    [45]庞建勇,剃松玉.高应力巷道局部弱支护杌理分析[J].岩石力学与工程学报,2004,23(12):2001—2004
    [46]喻渝.挤压性围岩支护大变形的机理及判定方法.世界隧道,1998,2(1):46-51
    [47]郑颖人,董飞云.地下工锚喷支护设计指南.北京:中国铁道出版社,1988
    [48]重庆建筑工程学院、同济大学编.岩体力学.北京:中国建筑工业出版社,1981
    [49]高磊.矿山岩体力学.北京:机械工业出版社,1988
    [50] Hoek E, Brown E T. Underground Excavation in Rock. The Institution of Mining andMetallurgy,1980
    [51]韩瑞庚.地下工程新奥法.北京:科学出版社,1987
    [52]于学馥,乔瑞.轴变论和围岩稳定轴比三规律.有色金属,1981,33(3):8-15
    [53]何满潮.软岩巷道工程概论.徐州:中国矿业大学出版社,1993
    [54]董方庭.巷道围岩松动圈支护理论.锚喷支护,1997(1):7-10
    [55]方祖烈.拉压域特征及主次承载区的维护理论.世纪之交软岩工程技术现状与展望.北京:煤炭工业出版,1999
    [56]郑雨天.岩石力学的弹粘塑性理论基础[M].北京:煤炭工业出版社,1988.
    [57]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [58]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [59]勾攀峰.锚固体强度强化的试验研究[J].重庆大学学报,2000,23(5):35-39.
    [60]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006
    [61]何思明,李新坡.预紧力锚杆作用机制研究[J].岩石力学与工程学报,2006,25(9):1876-1880.
    [62]钟新谷,徐虎.全长锚固锚杆的横向作用研究[J].岩土工程学报,1997,19(1):94-98.
    [63]郑雨天.岩石力学的弹粘塑性理论基础[M].北京:煤炭工业出版社,1988.
    [64]钱建固,黄茂松.土体应变局部化判别准则与峰值后的力学性状闭.同济大学学报,2005,33(1):11-15.
    [65]卢允德,葛修润,蒋宇,任建喜.大理岩常规三轴压缩全过程试验和本构方程的研究啊.岩石力学与工程学抿2004,23(i5):2489-2493.
    [66]赵启林,牛海清,卓家寿.应变软化材料的几个基本问题研究进展[J].水利水运工程学报,2001,(3):73-77.
    [67] ZHENG H, LIU D F, LEE C F, et al. Principle of analysis of brittle-plastic rock mass[J].International Journal of Solids&Structures,2005,42(1):139-158.
    [68] BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering,1983,109:15-39.
    [69] CARRANZA TORRES C. Self-similarity analysis of the elastoplastic response ofunderground openings in rock and effects of practical variables[D].[S. l.]: University ofMinnesota,1998.
    [70] PANET M. Understanding deformations in tunnels[C]//Comprehensive RockEngineering (1). Oxford: Pergamon,1993:663-90.
    [71] GUAN Z, JIANG Y, TANABASI Y. Ground reaction analyses in conventional tunnelingexcavation [J]. Tunnelling and Underground Space Technology,2007,(22):230-237.
    [72] ALONSO E, ALEJANO L R, VARAS F, et al. Ground response curves for rock massesexhibiting strain-softening behavior [J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2003,(27):1153-1185.
    [73] LEE Y K, PIETRUSZCZAK S. A new numerical procedure for elasto-plastic analysisof a circular opening excavated in a strain-softening rock mass [J]. Tunnelling andUnderground Space Technology,2008,(23):588-599.
    [74]蒋明镜,沈珠江.考虑剪胀的线性软化柱形孔扩张问题[J].岩石力学与工程学报,1997,16(6):550-557.
    [75]范文,俞茂宏,陈立伟,等.考虑剪胀及软化的洞室围岩弹塑性分析的统一解[J].岩石力学与工程学报,2004,23(19):3213-3220.
    [76] WANG SHUILIN, YIN XIAOTAO, TANG HUA, et al. A new approach for analyzingcircular tunnel instrain-softening rock masses[J]. International Journal of RockMechanics and Mining Sciences,2010,47(1):170-178.
    [77]梁发云,陈龙珠.应变软化Tresca材料中扩孔问题解答及其应用[J].岩土力学,2004,25(2):261-265.
    [78]王晓鸿,王家来,梁发云.应变软化岩土材料内扩孔问题解析解[J].工程力学,1999,16(5):71-76.
    [79]胡士兵,王金昌,朱向荣.线性软化土体中球孔扩张问题的解析解[J].浙江大学学报(工学版),2007,41(9):1503-1507.
    [80]沈新普,岑章志,徐秉业.弹脆塑性软化本构理论及其数值计算[J].清华大学学报(自然科学版),1995,35(2):22-27.
    [81] ZIENKIEWICZ O C, TAYLOR R L. The finite element method[M].[S. l.]:McGraw-Hill Book Company,1991.
    [82]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [83]赵锡宏,张启辉.土的剪切带试验与数值分析[M].北京:机械工业出版社,2002.9.
    [84] Finno R J,Harris W W,Mooney M A et a1.Shear bands in plane strain compression ofloose send[J],G60technique,1997,47(1):149-165.
    [85] Cundall P A. Distinct element models of rock and soil structure. Analytical andComputational Methods in Engineering Rock Mechanics,1987:129-163
    [86] Owen D R J, Hinton E. Finite Elements in Plasticity; Theory and Practice. Swansea,
    [87] Pine Ridge Press Limited,1980
    [88] Kumar P. Infinite elements for numerical analysis of underground excavations.Tunnelling and Underground Technology,2000,15:117-124
    [89] Shou K J. A three-dimensional hybrid boundary element method for non-linear analysisof a weak plane near an underground excavation. Tunnelling and Underground SpaceTechnology,2000,15:215-226
    [90] Charles F, Pei J M. A comparison between the distinct element method and the finiteelement method for analysis of the stability of an excavation in jointed rock. Tunnellingand Underground Space Technology,1990,5(1):111-117
    [91] Pan X D, Hudson J A. Plane strain analysis in modeling three-dimensional tunnelexcavations. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1988,25(5):331-337
    [92] Swoboda G, Mertz W, Schmid A. Three-dimensional numerical model to simulate tunnelexcavation. Niagara Falls: Proceedings of the3rd International Conference on NumericalModels in Geomechanics.1989,25(5):331-337
    [93] Swoboda G, Krisha A. A three-dimensional numerical modelling for TBM tunneling inconsolidated clay. Tunnelling and Underground Space Technology,1999,14(3):327-333
    [94] Galli G, Grimaldi A, Leonardi A. Three-dimensional modeling of excavation and lining.Computers and Geotechnics,2004,(31):171-183
    [95] Unl T, Gercek H. Effect of poisson’s ratio on the normalized radial displacementsoccurring around the face of a circular tunnel. Tunnelling and Underground SpaceTeehnology,2003,(18):547-553
    [96] Eberhardt E. Numerical modeling of three-dimension stress rotation ahead of an dvancetunnel face. International Journal Rock Mechanics&Mining Sciences,001,(38):499-518
    [97]王梦恕.隧道工程近期需要研究的问题.隧道建设,2000,(2):1-5
    [98]蔡美峰,何满潮,刘东燕.岩石力学与工程.北京:科学出版社,2002
    [99] Madsen F T, Fluckider A, Hauber L, et al. New investigation on swelling rocks in heBelchen Tunnel, Switzerland. Proceedings of the8th ISRM Congress. A.A.Balkema,1995:263-267
    [100] Anagnostou G, Kovari K. Quantitative interpretation of floor heaves in a tunnelthrough Marl. Proceedings of the8th ISRM Congress. A.A.Balkema,1995:509-512
    [101] Einstein H H. Tunneling in swelling rock. Underground Space,1979,4(1):51-61
    [102] Steiner W. Swelling rock in tunnels: rock characterization, effect of horizontal tressesand construction procedures. International Journal of Rock Mechanics and iningSciences&Geomechanics Abstracts.1986,30(4):361-380
    [103] Grob H. Swelling and heave in Swiss tunnels. Bulletin of IAEG, Krefeld,1975,(13):55-60
    [104] Suleyman D. Tunneling in squeezing rock, the Bolu tunnel, anatolian motoway,urkey. Engineering Geology,2002,(67):73-96
    [105] Kolybas D, Fellin W, Kirsch A. Squeezing due to relaxation in foliated rock.nternational Journal for Numerical Analytical Methods in Geomechanics,2006,(30):1357-1367
    [106] Yassaghi A, Salari R H. Squeezing rock conditions at an igneous contact zone in thealoun tunnels, Tehran-Shomal freeway, Iran: a case study. International Journal of ockMechanics&Mining Sciences,2004,(42):95-108
    [107] Wittke W. New design concept for underground openings in rocks. Aachen: in initeElements in Geomechanics,1977:414-419
    [108] Wang C, Wang Y, Lu S. Deformation behaviour of roadway in soft rocks innderground coal mine and principle for stability control. International Journal of ockMechanics&Mining Sciences,2000,(37):937-946
    [109] Barla G. Squeezing rocks in tunnels. International Society for Rock Mechanics ewsJournal,1995,2(3/4):44-49
    [110]刘青松.挤压性软弱围岩隧道大变形控制技术的研究[硕士学位论文].成都:西南交通大学,2004
    [111]张洋.隧道工程软弱围岩大变形控制体系研究[硕士学位论文].成都:西南交通大学,2006
    [112]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例.北京:中国水利水电出版社,2008
    [113]王学滨,潘一山,丁秀丽,盛谦.平面应变状态下岩石剪切带网络数值模拟研究[J].岩土力学,2002,23(6):717-720.
    [114] Terzaghik Stability of slopes of nataral clay[A].In:proc IstConf.Soil.mech.Found.Eng [C] Harvad,1936,1:161-165.
    [115]李月.不排水剪切条件下饱和砂土变形特性及其本构模型的试验研究[M].大连,大连理工大学2004.6.
    [116]许成顺.复杂应力条件下饱和砂土剪切特性及本构模型的试验研究时.大连,大连理工大学,2006.3.
    [117]李顺群.非饱和土的吸力与强度理论研究及其试验验证[D].大连:大连理工大学,2006.3.
    [118]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [119] Rice J R.Some basic stress diffusion solutions for fluidsamrated elastic porousmedia with compressible eontonts[J].RevGeophys Space Phys,1976,14:227-241.
    [120] Rice J&The localization ofplastic deformation[M].In:Koiter WTed.Theoretical andApplied Mechanics.In:14th IUTAM Congress.NorthHolland,Amsterdam,1976.207-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700