用户名: 密码: 验证码:
梯级水库群多目标优化调度与决策方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源短缺、节能减排的大背景下,我国流域水电能源开发的力度增强,步伐加快,大型流域水库群规模越来越大,其联合运行调度问题也越来越复杂。一方面,梯级水库上下游之间存在复杂的水力和电力联系(约束复杂),以及受入库径流的不确定性的影响,水库群优化调度的理论研究与实际应用存在一定的差距;另一方面,随着人类生活水平以及认识的提高,对大型水利枢纽的综合利用需求也日益增强,而不同调度目标之间又存在一定的竞争与冲突关系,传统的水库优化调度理论与方法应用于新时期水库群优化调度问题求解时存在一定的局限性,无法适应水库群多目标调度、综合效益最大化发挥的新需求,亟需研究水库群优化调度的新的理论与方法。围绕水电能源大开发下梯级水库群多目标联合调度运行以及不同调度目标非劣解方案决策问题,以水库群长期综合效益最大为目标,结合系统工程理论、智能优化方法、多目标优化与决策理论,从中长期入库径流预报、单目标优化调度、水沙多目标优化调度与决策等多方面对梯级水库群联合运行调度问题展开了深入研究,并取得了一些具有理论意义和工程应用价值的研究成果。全文取得了如下的主要研究成果:
     (1)水电站水库中长期组合入库径流预报方法研究。首先以自回归滑动平均模型、最近邻抽样回归模型、人工神经网络模型为基础构建了水电站水库入库径流预报模型,在相关模型参数率定之后,以相关指标验证了所建模型的合理性与可靠性;以之为基础,并结合月入库径流的周期性、年内不均匀性特征建立了基于支持向量机的月径流分月组合预报模型,继而以平均相对误差、确定性系数为评价指标搭建入库径流预报精度评价模型;以龙盘水电站水库月入库径流预报的应用效果表明组合预报模型在降低了单一预报模型不确定的同时,取得了更高的预报精度,验证了所构建模型的合理性与优越性。
     (2)梯级水库群优化调度方法研究。结合混合蛙跳算法良好的全局寻优性能以及免疫克隆选择算法较好的局部搜索能力两方面的优势,提出了免疫蛙跳算法并给出了相应的求解流程;同时针对梯级水库群之间的水力、电力联系,为提高智能优化方法在求解水库群优化调度问题时的寻优效率,给出了水库群优化调度问题的可行域构建方法以及初始解生成方法。分别以梯级水库群中长期优化调度、短期优化调度为例,结合相应常规优化方法,验证了免疫蛙跳算法在求解梯级水库群优化调度问题上的可行性、优越性。
     (3)基于数据挖掘的梯级水库群优化调度研究。以梯级水库群确定性优化调度最优运行过程为计算资料,首先构建了由时间因子、空间因子、能量因子、决策变量组成的运行样本集,继而选用粗糙集方法筛选出各月调度函数决策变量及影响因子,最后选用支持向量机方法为拟合调度函数,并结合调度函数长系列模拟运行中关键问题的分析给出了数据挖掘方法在梯级水库群隐随机优化调度的应用流程,以金沙江中游梯级水库调度函数提取为例验证了方法的合理性与优越性,为梯级水库群寻找调度规律、拟定联合调度规则提供了新的思路。
     (4)梯级水库水沙多目标优化调度研究。针对多沙河流梯级水库长期兴利与排沙减淤之间的矛盾,以一维泥沙冲淤计算模型为基础,首先构建了梯级水库群水沙多目标优化调度模型;考虑到传统水沙联合调度问题通常采用水库调度和泥沙冲淤计算松耦合计算思路的不足,结合多目标动态规划迭代算法,提出了逐次逼近动态规划和多目标动态规划迭代算法相结合的梯级水库水沙联合调度降维求解算法;针对水沙冲淤计算不满足动态规划无后效性且计算时间较长的特点,转换求解思路,以泥沙淤积量为基本目标,发电量为约束目标,并给出了相应的求解流程。最后以三峡水库为例,给出了基于多目标动态规划迭代算法的水沙非劣解集,验证了求解方法的合理性和有效性。
     (5)水库水沙多目标优化调度方案决策方法研究。针对传统TOPSIS决策方法未考虑指标间相关性以及赋权方法单一的不足,首先构建了基于马氏距离的TOPSIS多属性决策方法,并给出了主客观组合赋权方法;继而建立了水库水沙联合调度方案评价指标体系,并分析了相关指标的计算方法以及指标间的相关性;最后以三峡水库水沙调度非劣解集方案优劣排序为例,得到了待评价方案集的方案排序结果以及最优均衡解方案,实例对比验证了所建立水沙调度方案评价模型及求解方法的合理性。
Under the background of energy shortage, energy conservation and emissions reduction, strength of hydropower endevelopment in China enhances and pace speeds up, meanwhile the scale of reservoir groups gets bigger and bigger, and the joint operation problem is becoming more and more complicated. On the one hand, there are complex hydraulic and electrical connections between upstream and downstream for cascaded reservoirs(complex constraints), and as well as the influence of incoming runoff uncertainty there is certain gap between theoretical research and practical application of reservoirs optimal operation; on the other hand, with the improvement of human living standards and knowledge, the comprehensive utilization demand of large water control peojects is growing and a certain competition and conflict relationship exists in different operation goals, thus there is certain limitation to use the traditional theories and methods of reservoir optimal operation to solve problems of reservoirs optimal operation in the new period, unable to meet the requirements of comprehensive benefits for reservoirs multi-objective operation, and new theories and methods of reservoirs joint operation are necessitated in present. Around multi-objective joint operation of cascade reservoirs and and programs decision problem between different targets under the the background of rapid development of hypowerelectric energy, aiming at maximizing reservoirs long-period comprehensive benefits, combined with theory of systems engineering, intelligent optimization methods, and multi-objective optimization and decision theory, we deeply study the joint operation problem of cascade reservoir from several aspects, as mid-long term runoff forecast, single objective optimal operation, water-sediment multi-objective optimal operation and decision joint operation and a series of research results with theoretical and practical value are achieved. The main research results in this paper are listed as follows:
     (1)Mid-long term inflow runoff forecast method of reservoir has been researched. Firstly autoregressive moving average model, nearest neighbor bootstrapping regressive model, artificial neural network model are introduced as reservoir runoff forecast models, the related model parameters are calibrated, and the rationality and reliability of those models are verified by relevant indexes; Based on those models, combined with the cyclical and years non-uniformity characteristics of month inflow runoff, monthly combination forecast model based on support vector machine (SVM) is established, then indicators of the average relative error and determination coefficient are adopted to set up runoff forecast precision-evaluation model; Take inflow runoff forecast of Longpan hypdropower station for example, results show that combination forecast model can reduce the uncertainty of single forecast model and obtain higher forecast accuracy, thus the rationality and superiority of the proposed model are verified.
     (2)Optimal operation methods of cascade reservoirs have been researched. Combined with good global optimization performance of shuffled frog leaping algorithm and good local search ability of immune clonal selection algorithm, this paper immune leapfrog algorithm is proposed in this paper and the corresponding process is given; Meanwhile for hydraulic and electrical link between cascaded reservoirs, in order to improve optimization efficiency of intelligent optimization algoriths while solving reservoirs optimal operation problems, methods of building the feasible region of reservoirs optimal operation problems and generating initial solutions are raised. Taking mid-long term optimal operation and short-term optimal operation of cascade reservoirs as an example respectively, together with corresponding conventional optimization methods, the feasibility and superiority of proposed shuffled frog leaping algorithm in solving optimal operation problems of cascaded reservoirs are verified.
     (3)Optimal operation of cascade reservoirs based on data mining has been researched. Taking optimal operation process obtained by deterministic optimal operation of cascade reservoirs as basic data, operation sample sets including time factors, space factors, energy factors and decision variables is firstly built, then rough set method is introduced to select decision variables and influence factors of monthly operation function, finally, support vector machine (SVM) is employed as fitting method of operation function, and combined the analysis of key problems in long-series operation operation simulation the application process of implicit stochastic optimization operation of cascade reservoirs based on data mining is given. Taking the operation function extracting of cascaded reservoirs located in Yangtze river middle reaches for an example, the rationality and superiority of the proposed method is validated, which provides new ideas to look for scheduling rule and extract joint scheduling rules of cascaded reservoirs.
     (4)Water-sediment multi-objective optimal operation of cascaded reservoirs has been researched. Aiming at contradictions between long-term benefits and sand sedimentation reduction for cascaded reservoirs on alluvial rivers with heavy sediment load, based on one dimension model of sediment deposition calculation, multi-objective optimal operation model for water-sediment of cascaded reservoirs is firstly bulit; And considered that traditional water-sediment joint operation usually adopt loose coupling calculation method (reservoir operation and sediment deposition calculation seperately), combined with multi-objective dynamic programming iterative algorithm, the dimension reduction algorithm combined with dynamic programming successive approximation and multi-objective dynamic programming iteration algorithm is put forward and used to solve the problem of water-sediment joint operation for cascaded reservoirs, and then considered that water-sediment calculation does not meet no aftereffect of dynamic planning and its calculation need a long time, thought transformation that takes sand sediment as basic goal and electricity as constraints respectively is adopted, and the corresponding solving process is presented. Finally taking Three Gorges reservoir as an example, based on multi-objective dynamic programming iteration algorithm water-sediment non inferior solution set is obtained, so the rationality and validity of the proposed method is verified.
     (5)Scheme evaluation of water-sediment multi-objective optimal operation for the reservoir has been researched. Considered that traditional TOPSIS decision-making method doesn't take the correlation between indicators into count and only adopt subjective weight, advanced TOPSIS multiple attribute decision-making method based on markov distance is introduced; Then evaluation system of water-sediment coordinative operation program for the reservoir is set up, and the calculation method of relevant indexes and the correlation between indicators are analyzed; Finally takeing scheme sorting of water sand dispatching non inferior solution set in Three Gorges reservoir for an example, evaluation schemes ranking results and the equilibrium solution are obtained, so the rationality of the proposed evaluation system model of water-sediment coordinative operation program and decision-making method is verified.
引文
[1]郎一环,王礼茂,李红强.中国能源地缘政治的战略定位与对策[J].中国能源,2012(08):24-30.
    [2]夏义善.论中国的能源安全战略[J].中外能源,2006(01):1-5.
    [3]江泽民.对中国能源问题的思考[J].中国核电,2008(02):98-113.
    [4]潘家铮.水电与中国[J].水力发电,2004(12):17-21.
    [5]电力工业“十二五”规划研究报告[R].中国电力企业联合会,2011.
    [6]汤成友,官学文,张世明.现代中长期水文预报方法及应用[M].北京:中国水利水电出版社,2008.
    [7]杨旭,栾继虹,冯国章.中长期水文预报研究评述与展望[J].西北农业大学学报.2000,28(6):203-207.
    [8]李红波,夏潮军,王淑英.中长期径流预报研究进展及发展趋势[J].人民黄河,2012(08):36-38,40.
    [9]Eltahir EAB. El Nino and the natural variability in the flow of the Nile River. Water Resources Research,1996,32(1):131-137.
    [10]Simpson HJ, Cane MA, Herczeg AL, Zebiak SE, Simpson JH. Annual river discharge in outheastern Australia related to El Nino-Southern Oscillation forecasts of sea surface temperatures. Water Resources Research,1993,29(11):3671-3680.
    [11]Wang GL, Eltahir EAB. Use of ENSO information in medium and long-range forecasting of the Nile floods[J]. Journal of Climate,1999,12(6):1726-1737.
    [12]王富强,许士国.东北区早涝灾害特征分析及趋势预测[J].大连理工大学学报,2007,47(5):735-739.
    [13]章淹.致洪暴雨中期预报进展[J].水科学进展,1995,6(2):162-168.
    [14]张俊.中长期水文预报及调度技术研究与应用[D].大连:大连理工大学,2009.
    [15]BOX G E P, JENKINS G. Time Series Analysis, Forecasting and Control(3rd Edition) [M]. Holden-Day, Incorporated,1990.
    [16]Maha Tawfik. Linearity versus non-linearity in forecasting Nile river flows [J]. Advanees in Engineering Software,2003,34(8):515-524.
    [17]Heung Wong, Wai-cheung Ip, Riquan Zhang, Jun Xia. Non-parametric time series models for hydrological forecasting [J]. Journal of Hydrology,2007,332(3): 337-347.
    [18]孟明星,王金文,黄真.季节性AR模型在葛洲坝月径流预报中的应用[J].吉林水利,2005,(1):26-27,30.
    [19]李崇浩,纪昌明,陈森林,等.水文周期迭加预报模型的改进及应用[J].长江科学院院报,2006,23(2):17-20.
    [20]许士国,王富强,李红段,等.洮儿河镇西站径流长期预报研究[J].水文,2007,27(5):86-89.
    [21]陈守煜.模糊水文学[J].大连理工大学学报,1988(1):93-97.
    [22]陈守煜,周惠成.径流长期预报的模糊推理模式[J].大连理工大学学报,1985,1(1):109-114.
    [23]陈守煜.中长期水文预报综合分析理论模式与方法[J].水利学报,1997,(8):15-21
    [24]朱之葵,王峨生,李慰如.模糊数学法在水库长期径流预报中的应用[J].水力发电,1993,228(04):15-19.
    [25]白子岩.模糊模式识别法在中长期预报中的应用[J].水利水电技术,1999,30(2):50-51.
    [26]惠军,温华洋.模糊时间序列方法在中长期年径流量预报中的应用[J].统计与决策,2007,253(15):34-35.
    [27]夏军.中长期径流预估的一种灰关联模式与预测方法[J].水科学进展.1993,4(3):190-197.
    [28]冯平,杨鹏,李润苗.枯水期径流量的中长期预报模式[J].水利水电技术,1992,(2):6-9.
    [29]黄克明.灰色系统的拓扑预测方法在水文中长期预报中的应用[J].数学杂志,1998,18(s1):98-102.
    [30]Karunanithi N, Grenney W, Whitley D, et al. Neural networks for river flow prediction[J]. Journal of Computing in Civil Engineering,1994,8(2):201-220.
    [31]Hikmet Kerem Cigizoglu. Generalized regression neural network in monthly flow forecasting [J]. Civil Engineering and Environmental Systems,2005,22(2):71-84.
    [32]胡铁松,袁鹏,丁晶.人工神经网络在水文水资源中的应用[J].水科学进展.1995,6(1):76-82.
    [33]丁晶,邓育仁,安雪松.人工神经前馈(BP)网络模型用作过渡期径流预测的探索[J].水电站设计.1997,13(2):69-74.
    [34]邱林,陈守煜,聂相田.模糊模式识别神经网络预测模型及其应用[J].水科学进展.1998,9(3):258-264.
    [35]徐留兴,梁川,秦远清.改进的Elman模型在紫坪铺月径流预测中的应用[J].四川大学学报(工程科学版).2006,38(3):38-42.
    [36]屈亚玲,周建中,刘芳,等.基于改进的Elman神经网络的径流中长期预报[J].水文,2006,26(1):45-50.
    [37]Vapnik V. The Nature of Statistical Learning Theory [M]. New York, Springer, 1995.
    [38]Michaela Bray and Dawei Han. Identification of support vector machines for runoff modeling [J]. Journal of Hydroinformatics,2004,6(4):265-280.
    [39]Mohammad Sajjad Khan, Paulin Coulibaly. Application of support vector machine in lake water level prediction [J]. Journal of Hydrologic Engineering.2006,11(3): 199-205.
    [40]Jian-Yi Lin, Chun-Tian Cheng, Kwok-Wing Chau. Using support vector machines for long-term discharge prediction [J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2006,51(4):599-612.
    [41]林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686.
    [42]卢敏,张展羽.径流预测的支持向量机应用研究[J].中国农村水利水电,2006,(2):47-49.
    [43]王景雷,吴景社,孙景生,等.支持向量机在地下水位预报中的应用研究[J].水利学报.2003(5):122-128.
    [44]李亚伟,陈守煜,韩小军,基于支持向量机SVR的黄河凌汛预报方法[J].大连理工大学学报,2006,46(2):272-275.
    [45]Liangyue Cao, Yiguang Hong, Haiping Fang, et al. Predicting chaotic time series with wavelet network [J]. Physica D:Nonlinear Phenomena,1995,85(1):225-238.
    [46]Tae-Woong Kim, Juan B, Valdes, F. ASCE. Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks [J]. Journal of Hydrologic Engineering,2003,8(6):319-328.
    [47]Barbara Cannas, Alessandra Fanni, Linda See, et al. Data preprocessing for river flow forecasting using neural networks:Wavelet transforms and data partitioning [J]. Physics and Chemistry of the Earth, Parts A/B/C,2006,31(18):1164-1171.
    [48]王文圣,袁鹏,丁晶.小波分析及其在日流量过程随机模拟中的应用[J].水利学报,2000,(11):43-48.
    [49]欧阳永保,丁红瑞.小波分析在水文预报中的应用[J].海河水利,2006(6): 44-46.
    [50]Huicheng Zhou, Li Wu, Yu Guo. Mid-and long term hydrologic forecasting for drainage area based on WNN and FRM [C].6th International Conference on intelligent Systems Design and Applications(ISDA 2006), Jinan, Peoples R China: IEEE Computer Soc,2006:7-12.
    [51]王文圣,丁晶,向红莲.小波分析在水文学中的应用研究及展望[J].水科学进展,2002,13(4):515-520.
    [52]谢景新.非线性多步预测与优化方法及其在水文预报中的应用[D].大连:大连理工大学,2006.
    [53]Bradford P. Wilcox, Mark S. Seyfried, Thor H. Matison. Searching for chaotic dynamic in snowmelt runoff [J]. Water Resources Research,1991,27(6):1005-1010.
    [54]Bellie Sivakumar, Ronny Berndtsson, Magnus Persson. Monthly runoff prediction using phase-space reconstruction[J]. Hydrological Sciences Journal.2001,46(3): 377-388.
    [55]张利平,王德智,夏军,等.混沌相空间相似模型在中长期水文预报中的应用[J].水力发电,2004,30(11):5-7,11.
    [56]李红霞,许士国.月径流序列的混沌特征识别及Volterra自适应预测法的应用[J].水利学报,2007,38(6):760-766.
    [57]丁涛,周惠成,黄健辉.混沌水文时间序列区间预测研究[J].水利学报,2004,12:15-20.
    [58]Asaad Y. Shamseldin, Kieran M. O'Connor, G. C. Liang. Methods for combining the outputs ofdifferent rainfall-runoff models [J]. Journal of Hydrology,1997(197): 203-229.
    [59]Newsha K. Ajami, Qingyun Duan, Xiaogang Gao, et al. Multimodel combination techniques for analysis of hydrological simulations:Application to Distributed Model Intercomparison Project results[J]. Journal of Hydrometeorology,2006,7(4): 755-768.
    [60]Qingyun Duan, Newsha K. Ajami, Xiaogang Gao, et al. Multi-model ensemble hydrologic prediction using Bayesian model averaging[J]. Advances in Water Resources,2007,30(5):1371-1386.
    [61]马细霞,穆浩泽.基于混沌分析的月径流序列耦合预测模型及其应用[J].水力发电学报,2010,29(6):41-46.
    [62]冉笃奎,李敏,武晟,等.丹江口水库中长期径流量的多模型预报结果分析及 综合研究[J].水利学报,2010,41(9):1069-1073.
    [63]杨正祥,康玲.丹江口水库径流预测方法与趋势分析[J].水电能源科学,2011,29(2):1-3.
    [64]张勇传.水电站经济运行原理[M].北京:中国水利水电出版社,1998.
    [65]Masse P. B. P. Les Reserves et La Regulation de L'Avenir dans L'a Vic Economique [D]. Hermann and Cie Paris,1946.
    [66]Little J. D. C. The Use of Storage Water in a Hydroelectric System [J]. Oper. Res., 1955, (3):187-197.
    [67]Becker, L., Yeh, W. W-G. Optimization of real time operation of a multiple reservoir system[J]. Water Resources Research,1974,10(6):1107-1112.
    [68]Can, E. K., Houck, M.. Real-time Reservoir Operations by Goal Programming[J]. Water Resour. Plan. Manage.1984,110(3):297-309.
    [69]Barros M., Tsai F., et al. Optimization of Large-scale hydropower system operations [J]. Journal of Water Resource Planning.& Management,2003,129(3):178-188.
    [70]Bellman, Richard, Emest. Dynamic Programming [M], Princeton, N. J:Princeton University Press,1957
    [71]Roefs, T. G, L. D. Bodin. Multireservoir Operation Studies[J]. Water Resour. Res., 1970,6(2):410-420.
    [72]Larson, R. E.. State Increment Dynamic Programming [M]. New York:Elsevier, 1968.
    [73]Hedari, M., V. T. Chow, et al. Discrete Differential Dynamic Programming Approach to Water Resources Systems Optimization [J]. Water Resour. Res.,1971, 7(2):273-282.
    [74]Trott, WilliamJ., YehWilliam, W. G. Optimization of multiple reservoir system[J]. ASCE J Hydraul Div,1973,99(10):1865-1884.
    [75]Howson H. R, Sancho N. G. F. A new algorithm for the solution of multi state dynamic programming problems [J]. Math Programm,1975,8(1):104-116.
    [76]Mesarovic, MD, Maeko D, et al. Theory of Hierarchical Multilevel Systems[M]. New York:Academic Press,1970
    [77]Esat, V., Hall, M. J.. Water Resources System Optimization Using Genetic Algorithms. Hydroinformatics'94, Proc.,1st Int. Conf. on Hydroinformatics, Balkema, Rotterdam, The Netherlands,1994:225-233.
    [78]Kennedy J, Eberhart R C. Particle swarm optimization [R]. Perth, Australia: Proceeding of the 1995 IEEE international conference on Neural Network,1995,4: 1942-1948.
    [79]Dorigo M, Gambardella L M. Ant algorithms for discrete ptimization [J]. Artificial Life,1999,5(2):137-172.
    [80]Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing [J]. Science,1983,220:671-680.
    [81]吴沧浦.年调节水库的最优运用[J].科学记录,1960,4(2):81-85.
    [82]谭维炎,黄守信,刘建民,等.初期运行水电站的最优年运行计划—动态规划方法的应用[J].水利水电技术,1963,(2):21-26.
    [83]张勇传,熊斯毅,等.拓溪水电站水库优化调度.见:优化理论在水库调度中的应用[M].长沙:湖南科学技术出版社,1985.
    [84]董子敖,闰建生,尚忠昌,等.改变约束法和国民经济效益最大准则在水电站水库优化调度中的应用[J].水力发电学报,1983,(2):1-11.
    [85]张勇传,李福生,熊斯毅,等.水电站水库群优化调度方法的研究.水力发电,1981,(11):48-52.
    [86]胡振棚.大系统多目标分解聚合算法及应用[D].武汉:武汉水利电力大学,1985
    [87]黄强,沈晋.水库联合调度的多目标多模型及分解协调算法[J].系统工程理论与实践,1997,(1):75-82.
    [88]纪昌明,冯尚友.混联式水电站群动能指标和长期调度最优化[J].武汉水利电力学院学报,1984(3):88-95.
    [89]梅亚东,熊莹,陈立华.梯级水库综合利用调度的动态规划方法研究[J].水力发电学报,2007,26(2):1-4.
    [90]李亮,黄强,肖燕,等.DPSA和大系统分解协调在梯级水电站短期优化调度中的应用研究[J].西北农林科技大学学报(自然科学版),2005,33(10):125-129.
    [91]张勇传,邴凤山.水库优化调度的模糊数学方法,优化理论在水库调度的应用M].湖南科学技术出版社,1985:130-140.
    [92]吴信益.模糊数学在水库调度中的应用[J].水力发电,1983,(5):13-17.
    [93]工本德,周惠成,程春田.梯级水库群防洪系统的多目标洪水调度决策的模糊优选[J].水利学报,1994,(2):31-39,45.
    [94]程春田,王本德,陈守煜,等.长江中上游防洪系统模糊优化调度模型研究[J]。水利学报,1997,(2):58-62.
    [95]谢新民,陈守煜,王本德,等.水电站水库群模糊优化调度模型与目标协调-模糊规划法[J]。水科学进展,6(3):189-197.
    [96]马光文,王黎.遗传算法在水电站优化调度中的应用[J].水科学进展,1997,8(3):275-280.
    [97]王黎,马光文.基于遗传算法的水电站厂内经济运行新算法[J].中国电机工程学报,1998,18(1):64-66
    [98]徐刚,马光文,梁武湖,等.蚁群算法在水库优化调度中的应用[J].水科学进展,2005,16(3):397-400
    [99]徐刚,马光文,涂扬举.蚁群算法求解梯级水电厂日竞价优化调度问题[J].水利学报,2005,36(8):978-981.
    [100]李崇浩,纪昌明,李文武.微粒群算法在水电站厂内经济运行中的应用研究[J].水利水电技术,2006,37(1):88-91.
    [101]李崇浩,纪昌明,缪益平.基于微粒群算法的梯级水电厂短期优化调度研究[J].水力发电学报,2006,25(2):94-98.
    [102]李安强,王丽萍,缪益平,等.基于免疫粒子群算法的梯级水电短期经济运行[J].水利学报,2008,39(4):28-34.
    [103]吴月秋,纪昌明,王丽萍,等.基于混沌粒子群算法的水电站水库优化调度[J].人民黄河,2008,30(11):96-99.
    [104]谢维,纪昌明,吴月秋,等.基于文化粒子群算法的水库防洪优化调度[J].水利学报,2010,41(4):452-457,463
    [105]纪昌明,刘方,喻杉,等.基于鲶鱼效应粒子群算法的梯级水库群优化调度[J].电力系统保护与控制,2011(19):63-68.
    [106]Yinghai Li, Jianzhong Zhou, Yongchuan Zhang, et al. Multiobjective Shuffled Frog Leaping Algorithm with Application to Reservoir Flood Control Operation [J]. Journal of Water Resources Planning and Management,2010,136(2),217-226.
    [107]Hui Qin, Jianzhong Zhou, et al. Mufti-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation. Water Resources Management,2010,24(11):2611-2632.
    [108]黄强,张洪波,原文林,等.基于模拟差分演化算法的梯级水库优化调度图研究[J].水力发电学报,2008,27(6):13-17.
    [109]林剑艺,程春田,顾妍平,等.水库优化调度的Pareto强度值SCE-UA算法[J].中国工程科学,2007,9(10):80-82,87.
    [110]施熙灿,林翔岳,梁青福,等.考虑保证率约束的马氏决策规划在水电站优化调度中的应用[J].水力发电学报,1983(2):11-21.
    [111]王金文,王仁权,张勇传,等.逐次逼近随机动态规划及库群优化调度研究[J].人 民长江,2002,33(11):45-47,54.
    [112]李钰心.水资源系统运行调度[M].北京:中国水利水电出版社,1996.
    [113]Young G. K. Finding reservoir operating rules [J]. Journal of Hydraulics Division, 1967,93(6):297-321.
    [114]Mohammad Karamouz, Mark H. Houck. Annual and monthly reservoir operating rules generated by deterministic optimization [J]. Water Resources Research,1982, 18(5):1337-1344.
    [115]张勇传,刘鑫卿,王麦力,等.水库群优化调度函数[J].水电能源科学,1988,6(1):69-79.
    [116]张勇传.水库群优化调度理论研究SEPOA方法[J].水电能源科学,1987,5(3):234-244.
    [117]黄强,王世定.水库的线性和非线性调度规则的研究[J].水资源与水工程学报,1992,(3):10-16.
    [118]任德记,陈洋波.水库群隐随机优化调度最优决策规律研究[J].水力发电,2002,(01):57-60,68.
    [119]周研来,郭生练,刘德地.混联水库群的双量调度函数研究[J].水力发电学报,2013,32(03);55-61,
    [120]吴佰杰,李承军,查大伟.基于改进BP神经网络的水库调度函数研究[J].人民长江,2010,41(10):59-63
    [121]左吉昌,李承军,樊荣.水库优化调度函数的SVM方法研究[J].人民长江,2007,38(1):8-9,104.
    [122]张玉新,冯尚友.TG水利枢纽发电-排沙联合运用及其方案评价[J].系统工程,1991(1):61-67.
    [123]杜殿勖,朱厚生.三门峡水库水沙综合调节优化调度运用的研究[J].水力发电学报,1992(2):12-23.
    [124]彭杨,李义天,张红武.三峡水库汛末蓄水时间与目标决策研究[J].水科学进展,2003(6):682-689.
    [125]吴巍,周孝德,工新宏,等.多泥沙河流供水水库水沙联合优化调度的研究与应用[J].西北农林科技大学学报(自然科学版),2010(12):221-229.
    [126]包为民,万新宇,荆艳东.多沙水库水沙联合调度模型研究[J].水力发电学报,2007(6):101-105.
    [127]彭杨,李义天,张红武.水库水沙联合调度多目标决策模型[J].水利学报,2004(4):1-7.
    [128]练继建,胡明罡,刘媛媛.多沙河流水库水沙联调多目标规划研究[J].水力发电学报,2004,(02):12-16.
    [129]甘富万,李义天,邓金运,等.水库排沙调度优化模型[J].水科学进展,2009(06):863-868.
    [130]向波,纪昌明,彭杨,等.基于免疫粒子群算法的水沙调度模型研究[J].水力发电学报,2010(01):97-101.
    [131]LI Hui, LIAN Jijian. Multi-objective optimization of water-sedimentation-power in reservoir based on pareto-optimal solution [J].Transactions of Tianjin University, 2008,14(4):282-288.
    [132]刘方,纪昌明,向腾飞,等.基于鲶鱼效应多目标粒子群算法的水库水沙联合优化调度[J].中国农村水利水电,2012(11):4-8.
    [133]田刚,向波,朱登军.理想点法在水库水沙优化调度中的应用[J].华北水利水电学院学报,2009(02):15-17.
    [134]白晓华,李旭东,周宏伟,等.汾河流域梯级水库群水沙联合调节计算[J].水电能源科学,2002(03):51-53,85.
    [135]陶春华,杨忠伟,贺玉彬,等.大渡河瀑布沟以下梯级水库水沙联合调度研究[J].水力发电,2012(10):73-75,80.
    [136]黄仁勇,谈广鸣,范北林.长江上游梯级水库联合调度泥沙数学模型研究[J].水力发电学报,2012(06):143-148.
    [137]李国英.黄河中下游水沙的时空调度理论与实践[J].水利学报,2004,(8):1-7.
    [138]李国英.基于水库群联合调度和人工扰动的黄河调水调沙[J].水利学报,2006(12):1439-1446.
    [139]胡明罡.多沙河流水库电站优化调度研究[D].天津:天津大学,2004.
    [140]张金良.黄河水库水沙联合调度问题研究[D].天津:天津大学,2004.
    [141]张金良,索二峰.黄河中游水库群水沙联合调度方式及相关技术[J].人民黄河,2005(07):7-9,63.
    [142]王文川.水电系统中预报与调度的混合智能方法研究及应用[D].大连:大连理工大学,2008.
    [143]商勇,丁咏梅.最优组合预测方法评述[J].统计与决策,2005(9):122-123.
    [144]刘冀,王本德,周惠成等.基于分期组合预报模型的水电站优化调度及其模糊风险分析[J].水力发电学报,2009,28(6):140-145
    [145]黎育红,陈玥,周建中,等.熵权法并联组合建模在径流预测中的应用[J].水 电能源科学,2012(02):13-16.
    [146]曾鸣,冯义,刘达,等.基于证据理论的多模型组合电价预测[J].中国电机工程学报,2008(16):84-89.
    [147]王文圣,丁晶,金菊良.随机水文学[M].北京:中国水利水电出版社,2008.
    [148]王文圣,向红莲,丁晶.最近邻抽样回归模型在水文水资源预报中的应用[J].水电能源科学,2001,19(2):9-14.
    [149]李宗坤,郑晶星,周晶.误差反向传播神经网络模型的改进及其应用[J].水利学报,2003,(7):111-114.
    [150]Hsu K, Cupta H V, Sorroshians. Artificial neural net workmodling of the rainfall runoff process[J]. Water Resources Research,1995,31(10):2517-2530.
    [151]董长虹.Matlab与神经网络与应用[J].北京:国防工业出版社,2005.
    [152]林剑艺.水电站_群_中长期预报及调度的智能方法研究[D].大连:大连理工大学,2006.
    [153]丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.
    [154]张国云.支持向量机算法及其应用研究[D].长沙:湖南大学,2006.
    [155]彭勇.中长期水文预报与水库群优化调度方法及其系统集成研究[D].大连:大连理工大学,2007.
    [156]刘宇,钟平安,张梦然,等.水库优化调度ANN模型隐层节点数经验公式比较[J].水力发电,2013,39(5):65-68.
    [157]刘瑞兰,牟盛静,苏宏业,等.基于支持向量机和粒了群算法的软测量建模[J].控制理论与应用,2006,23(6):895-899,906.
    [158]张俊,程春田,申建建,等.基于蚁群算法的支持向量机中长期水文预报模型[J].水力发电学报,2010,29(6):34-40.
    [159]于国荣,夏自强.混沌时间序列支持向量机模型及其在径流预测中应用[J].水科学进展,2008,19(1):116-122.
    [160]李英海,周建中,杨俊杰,等.一种基于阈值选择策略的改进混合蛙跳算法[J].计算机工程与应用,2007,43(35):19-21.
    [161]Yinghai Li, Jianzhong Zhou, Hui Qin, et al. The Chaos-based Shuffled Frog Leaping Algorithm and Its Application [J]. The 4th International Conference on Natural Computation (ICNC'08),2008, V1:418-422.
    [162]李英海,莫莉,左建等.基于混合差分进化算法的梯级水电站调度研究[J].计算机工程与应用,2012,48(4):228-231.
    [163]李英海.梯级水电站群联合优化调度及其决策方法[D].武汉:华中科技大学,2009.
    [164]郑慧涛,梅亚东,胡挺,等.双层交互混合差分进化算法在水库群优化调度中的应用[J].水力发电学报,2013,32(1):54-61.
    [165]倪长健,丁晶,李祚泳.免疫进化算法[J].西安交通大学学报,2003,38(1):87-91.
    [166]Leandro N de Castro. Fernando J Von Zuben. Learning andOptimization Using the Clonal Selection Principle[J]. IEEETransactions on Evolutionary Computation(S1089-778X), SpecialIssue on Artificial Immune Systems, 2002,6(3): 239-251.
    [167]牛群,周台金,王小海,等.基于改进克隆选择算法的含调整时间并行机调度[J].东南大学学报(自然科学版),2012,42(I):163-167.
    [168]EMAD E, TAREK H, DONALD G. A modified shuffled frog-leaping optimization algorithm:applications to project management. Structure and Infrastructure Engineering,2007,3(1),53-60.
    [169]谢维.水电站_群_优化调度与运行规则研究[D].北京:华北电力大学,2012.
    [170]彭勇,唐国磊,薛志春.基于改进人工鱼群算法的梯级水库群优化调度[J].系统工程理论与实践,2011,31(6):1118-1125.
    [171]尹正杰,王小林,胡铁松,等.基于数据挖掘的水库供水调度规则提取[J].系统工程理论与实践,2006(08):129-135.
    [172]李承军,陈毕胜,张高峰.水电站双线性调度规则研究[J].水力发电学报,2005,24(1):12-14.
    [173]舒卫民,马光文,黄炜斌,等.基于人工神经网络的梯级水电站群调度规则研究[J].水力发电学报,2011,30(2):11-14,25.
    [174]纪昌明,苏学灵,周婷,等.梯级水电站群调度函数的模型与评价[J].电力系统自动化,2010,34(4):33-37.
    [175]纪昌明,喻杉,周婷,等.蚁群算法在水电站调度函数优化中的应用[J].电力系统自动化,2011,35(20):103-107.
    [176]周婷,纪昌明,朱艳霞.基于支持向量机的梯级水电站群中长期调度计划制定及评价[J].电力系统自动化,2012,36(18):1-6.
    [177]谭建豪,章兢,黄耀,等。数据挖掘技术[M].北京:中国水利水电出版社,2009.
    [178]许惠君,李彩林,刘晓安.数据挖掘技术在水库调度中的研究与应用[J].计算 机与数字工程,2006(09):61-63.
    [179]张孝远.融合支持向量机的水电机组混合智能故障诊断研究[D].武汉:华中科技大学,2012.
    [180]刘招,黄强,燕爱玲等.粗糙集理论在水科学中的应用[J].应用科学学报,2007,25(6):645-650.
    [181]丁杰华.水电站水库群长期运行规律研究[D].武汉:武汉大学,2005.
    [182]周婷.梯级水电站凋度函数以及期货电鼙分解研究[D].北京:华北电力大学,2008.
    [183]张永永.复杂梯级水库群联合优化调度理论与应用研究—以乌江梯级水库群为例[D].西安:西安理工大学,2011.
    [184]黄小锋.梯级水电站群联合优化调度及其自动化系统建设[D].北京:华北电力大学,2010.
    [185]朱永英.水库中长期径流预报及兴利调度方式研究[D].大连:大连理工大学,2008.
    [186]陈建,李义天,邓金运,等.水沙条件变化对三峡水库泥沙淤积的影响[J].水力发电学报,2008(02):97-102.
    [187]谈广鸣.加快水电发展开展水沙综合调度[J].中国水利,2011,12:13.
    [188]韩其为.水库淤积[M].北京:科学出版社,2003,8.
    [189]刘方.水库水沙联合调度优化方法与应用研究[D].北京:华北电力大学,2013.
    [190]肖杨,彭杨,工太伟.基于遗传算法与神经网络的水库水沙联合优化调度模型[J].水利水电科技进展,2013,33(2):9-13.
    [191]王丽萍,傅湘.洪灾风险及经济分析[M],武汉:武汉水利电力大学出版社,1999,8.
    [192]Zhang Yuxin, Feng Shangyou. An Iterative Algorithm for the Solution of Multi-objective Dynamic programming Problem[C]. Proceedings of International Conference on Systems Science and Engineering, Beijing, China,1988.6.
    [193]彭杨,张红武.三峡库区非恒定一维水沙数值模拟[J].水动力学研究与进展(A辑),2006(03):285-292.
    [194]刘媛媛.多沙河流水库多目标优化调度研究[D].天津:天津大学,2005.
    [195]华小义,谭景信.基于“垂直”距离的TOPSIS法—正交投影法[J].系统工程理论与实践,2004(1):114-119
    [196]朱惠倩.聚类分析的一种改进方法[J].湖南文理学院学报(自然科学版),2005,17(3):7-9
    [197]王正新,党耀国,杨虎.改进的多目标灰靶决策方法[J].系统工程与电子技术,2009,31(11):2634-2636
    [198]龙艳红,肖飞鹏,左江林.基于TOPSIS的农村电网现代化综合评价研究[J].中国农村水利水电,2012(2):83-89
    [199]胡永宏.对TOPSIS法用于综合评价的改进[J].数学的实践与认识,2002,32(4):573-575.
    [200]刘树林,邱菀华.多属性决策的TOPSIS夹角度量法[J].系统工程理论与实线,1996,(7):12-17.
    [201]于洋,李一军.基于多策略评价的绩效指标权重确定方法研究[J].系统工程理论与实践,2003,23(8):8-15.
    [202]赵萌,邱菀华,刘北上.基于相对熵的多属性决策排序方法[J].控制与决策,2010(07):1098-1100.
    [203]王绍玉,刘佳.城市洪水灾害易损性多属性动态评价[J].水科学进展,2012(03):334-340.
    [204]李晓峰,刘宗鑫,彭清娥.TOPSIS模型的改进算法及其在河流健康评价中的应用[J].四川大学学报(工程科学版),2011(02):14-21.
    [205]陈华友.多属性决策中基于离差最大化的组合赋权方法[J].系统工程与电子技术,2004,26(2):194-197.
    [206]樊治平,赵萱.多属性决策中权重确定的主客观赋权法[J].决策与决策支持系统,1997,7(4):87-91.
    [207]刘善建,关于三峡防洪经济评价的讨论[J],水利经济,1988(4):4-11.
    [208]向波.水库水沙优化调度基本理论及应用研究[D].武汉:武汉大学,2008.|

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700