用户名: 密码: 验证码:
小麦多胺和乙烯合成对水分亏缺的响应及其与籽粒灌浆特性的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦籽粒灌浆期是小麦籽粒形成的一个重要阶段。灌浆期间,小麦茎、叶等器官光合作用产生的糖类和转化的蛋白质通过同化作用贮存在小麦种子内。灌浆期干旱,不利于籽粒灌浆,导致减产。因此,研究小麦籽粒灌浆对水分亏缺的响应机制及调节途径,对提高小麦粒重有着重要的意义。研究表明,乙烯和多胺在作物的生长发育中发挥重要作用。然而,水分亏缺条件下,(1)小麦籽粒中多胺、1-氨基环丙烷-1-羧酸(ACC)浓度变化及其与小麦籽粒灌浆特性和旗叶光合特性的关系,外源调节物质调节籽粒灌浆的生理生化机制等尚不明确。(2)小麦籽粒腹部韧皮部的发育和结构及筛管伴胞(SE-CCs)复合体质膜ATPase活性,籽粒中蔗糖运输蛋白基因TaSUT1的表达与籽粒光合物质储存的关系等仍需进一步研究。明确以上问题对于丰富水分亏缺条件下的小麦栽培理论具有重要意义,并为外源化学物质的应用提供理论依据与技术支持。
     1粒重对水分亏缺响应的品种和粒位效应及原因分析
     粒重对水分亏缺的响应依品种类型及籽粒粒位而异。水分亏缺条件下,水浇地类型品种济麦22强势粒和弱势粒的粒重分别降低7.38%和23.5%,旱地类型品种山农16强势粒和弱势粒的粒重分别降低13.8%和2.2%。未分粒位,则济麦22粒重降低16.2%,而山农16粒重降低7.6%。利用Richards模型分析产生品种和粒位效应的原因,结果表明,水分亏缺条件下,济麦22强势粒和弱势粒的活跃灌浆期分别降低10%和6.1%,山农16强势粒和弱势粒的活跃灌浆期分别降低6.7%和6.7%;济麦22强势粒和弱势粒的平均灌浆速率分别降低15.8%和9.9%,山农16强势粒和弱势粒的平均灌浆速率分别降低0.5%和12.3%。总而言之,活跃灌浆持续期及平均灌浆速率的变化幅度可以解释水分亏缺条件造成粒重降低的品种效应,但是无法对水分亏缺造成粒重降低的粒位效应做出解释。喷施外源亚精胺(Spd)或胺基乙氧基乙烯甘氨酸(AVG)均显著提高籽粒在水分亏缺条件下的粒重,而喷施外源丙脒腙(MGBG)或乙烯利则造成相反的影响。水分亏缺条件下,综合分析了籽粒TaSUT1表达量和籽粒蔗糖含量随灌浆持续期的变化趋势,表明:灌浆前期,蔗糖运输能力较弱可能是限制灌浆的重要因素;灌浆中期,淀粉合成相关酶活性低是限制灌浆的重要因素;灌浆后期,淀粉合成相关酶活性低和蔗糖运输能力低共同成为限制籽粒灌浆的重要因素。
     2小麦籽粒多胺和乙烯合成对水分亏缺响应的品种和粒位效应及其与籽粒灌浆的关系
     水分亏缺显著提高籽粒中ACC浓度,进而提高籽粒的乙烯释放速率。水分亏缺显著提高籽粒中腐胺(Put)的含量。Put和乙烯合成对水分亏缺的响应依品种类型和籽粒粒位而异,以花后21天为例,水分亏缺条件下,济麦22强势粒和弱势粒中ACC浓度分别上升90%和164%,山农16强势粒和弱势粒中ACC浓度分别上升65%和13.2%;济麦22强势粒和弱势粒中Put浓度分别上升1.04%和7.9%,山农16强势粒和弱势粒中Put浓度分别上升34.4%和10.3%;济麦22强势粒和弱势粒中Spd浓度下降幅度差异不显著,Spd浓度分别下降33.7%和43.5%,山农16强势粒和弱势粒中Spd浓度分别下降15.1%和8.9%。在基因表达水平上分析表明,水分亏缺显著提高籽粒ACC和Put合成相关酶基因(ACS、ADC1、ADC2、ODC、AGM)的表达量,而降低亚精氨合成相关酶基因(Spd1、Spd2、SAMDC)表达量。相关分析表明,籽粒灌浆速率与Spd、Spm浓度及Spd/ACC、Spm/ACC的值存在显著正相关关系,与Put浓度在一定范围内存在正相关关系,与乙烯释放速率及ACC浓度存在显著负相关关系。另有相关分析表明,ACC和Put浓度与SuSase和AGPase存在显著负相关关系,而Spd及Spd/ACC的值分别与SuSase和AGPase存在显著正相关关系。因此,可以得出多胺和乙烯释放是通过影响淀粉合成相关酶活性进而影响籽粒灌浆速率的结论。研究还表明,小麦籽粒淀粉粒的体积和表面积分布呈双峰曲线,而数量分布呈单峰曲线。水分亏缺导致淀粉积累量的降低,同时,导致B-型淀粉颗粒的体积和表面积百分数下降,而提高A-型淀粉颗粒体积和表面积百分数。喷施外源Spd或AVG均可显著提高水分亏缺条件下的B-型淀粉颗粒的体积和表面积百分数。相关分析表明,乙烯和Spd在B-型淀粉颗粒形成的过程中呈现相互拮抗的关系,因此,水分亏缺条件下,提高Spd的含量、降低ACC浓度及乙烯释放速率有利于B-型淀粉颗粒的形成。
     3小麦籽粒腹部韧皮部SE-CCs复合体超微结构特征、其质膜ATPase酶活性对水分亏缺的响应及其与籽粒灌浆的关系
     针对济麦22弱势粒粒重对水分亏缺的响应较强势粒敏感的特征,本试验研究了水分亏缺条件下的济麦22籽粒腹部韧皮部SE-CCs复合体超微结构特征、其质膜ATPase酶活性及其与籽粒灌浆的关系,结果表明,正常供水条件下,花后15~20天的强势粒中,韧皮部SEs趋于成熟,呈现出清晰的细胞结构,且CCs有突出的细胞核位于细胞质的中央。随着水分亏缺处理时间的延长,ICs开始出现,且在花后15或20天,强势粒和弱势粒中CCs较少。花后25天,在正常供水条件下的强势粒中只观察有少量CCs。正常供水条件下的强势粒、水分亏缺条件下的强势粒和弱势粒中几乎观察不到CCs。花后25天,水分亏缺处理下的弱势粒韧皮部PPC出现质壁分离及细胞核浓缩现象,且SEs出现膜降解的现象。正常供水条件下,SE-CCs复合体、ICs和PPC细胞质膜及ICs和PPC细胞之间的胞间连丝呈现较强的ATPase活性(铅颗粒呈连续的带状分布),而水分亏缺条件下,SEs和ICs质膜及ICs与ICs之间的胞间连丝呈现较弱的ATPase活性(铅颗粒呈间断的点状分布),且CCs和PPC细胞质膜未发现有ATPase酶存在。以上结果表明,水分亏缺条件下,ICs较早的出现以弥补SEs纵向运输能力的不足,灌浆后期,弱势粒的韧皮部SE-CCs复合体的运输蔗糖的能力减弱,进而影响籽粒灌浆。
     4小麦旗叶乙烯合成对水分亏缺的响应及其与旗叶光合特性的关系
     针对济麦22粒重对水分亏缺的响应较山农16敏感的特征,本试验系统分析了济麦22旗叶光合特性对水分亏缺的响应及其与旗叶乙烯释放的关系。远红外成像分析表明,水分亏缺显著提高济麦22旗叶的温度,可能与水分亏缺条件下旗叶的蒸腾速率降低有关,而喷施外源Spd或AVG均可显著降低旗叶的温度。水分亏缺显著降低灌浆前期济麦22旗叶的胞间CO2浓度(Ci)、气孔导度(gs)及灌浆中后期的电子传递速率(ETR)和光系统II实际光化学效率(ΦPSII),从而降低旗叶的光合速率,而喷施外源Spd或AVG均可显著提高旗叶的光合速率。研究还表明,灌浆前期气孔因素是导致水分亏缺条件下旗叶光合速率降低的主要原因。随着灌浆时间的持续,除了气孔因素之外,非气孔因素也成为造成旗叶光合速率降低的重要因素。水分亏缺显著提高旗叶ACC浓度和乙烯释放速率,喷施外源Spd或AVG均可降低水分亏缺条件下的乙烯释放速率。相关分析表明,旗叶ACC浓度及乙烯释放速率与PN、ΦPSII及ETR存在显著负相关关系,而ACC浓度与非光化学猝灭(NPQ)呈显著正相关关系。因此,水分胁迫条件下光合速率的降低与乙烯释放速率的增加密切相关。
The stage of grain filling plays an important role in the grain formation. During grain filling,the sugars and proteins produced by leaves or stems of wheat are stored in the seed by theassimilaton function. Water deficit during grain filling had a negative effect on grain fillingand wheat production, and it indicated that the response mechanism of grain filling to waterdeficit and regulation pathway play important roles in improving grain weight. It proved thatethylene and polyamines play key roles in the responses of crops growth to abiotic stress.However, the relationship of polyamines and ethylene biosynthesis to grain filling and flagleaves photosynthetic characteristics as well as the regulatory mechanism of exogenouschemicals were unclear. The relationships of the ultrastructure of the abdominal phloemtissues characters, the ATPase activity on abdominal phloem tissues and the TaSUT1geneexpression to photoassimilate storage of grains under water deficit need to be furtherinvestigation. It can rich the theory of wheat cultivation under water deficit conditions, andsupply theoretical basis and technical support for the application of exogenous substances.The main results were as follows.
     1Grain weight of different variety and grain-bit in response to water deficit
     The responses of grain weight to water deficit differed with the varieties and grain types.SD reduced the weight of superior and inferior grains, by6.2and23.54%in JM22,13.8and2.2%in SN16, respectively. SD reduced the total grain weight of SN16and JM22by7.6and16.2%respectively. The analysis by using the Richards model indicated that SD reduced the active grain filling stage of superior and inferior grains, by10%and6.1%in JM22,6.7%and6.7%in SN16, respectively. It also suggested that SD educed the average grain-filling rate ofsuperior and inferior grains, by15.8%and9.9%in JM22,0.5%and12.3%in SN16,respectively. Application of exogenous Spd or AVG significantly increased the grain weightunder water deficit, while MGBG or ethephon showed the opposite effects. Changes ofTaSUT1expression levels and sucrose content with the grain filing showed that sucrosetransport capacity may be a major factor limiting grain filling at initial and later grain fillingstage, while the key enzymes involved in the sucrose-to-starch conversation becomes a majorfactor limiting grain filling at middle filling stage.
     2The responses of polyamines and ethylene biosynthesis to water deficit in wheat and itsrelations to grain filling
     Higher Spd and Spm concentration and Put concentration, EER and ACC concentrationwere found in superior grains than those in inferior ones. Opposite to the variations of Spdand Spm concentration, ACC, Put concentration and EER were significantly increased underSD. The percentage variations of PAs and ACC differed with cultivars and grain types. ACCconcentration of superior and inferior grains under SD increased significantly at21DPA, by90%and164%in JM22,65%and13.2%in SN16, respectively. The equivalent value of Putconcentration was1.04%and7.9%in JM22,34.4%and10.3%in SN16. Spd concentrationof superior grains showed a higher decrease than that of inferior ones in both cultivars, whileSpm exhibited an opposite trend between both grain types. These percentage variations werehighly consistent with the differed responses of weight of both grain types to SD in JM22andSN16. SD apparently increased the ACC and Put concentration as well their biosynthesisrelated genes expression, while degraded the Spd biosynthesis. Grain filling rate wasnegatively correlated with EER and ACC concentration, while positively correlated with Spdand Spm concentration as well as the ratio of Spd or Spm to ACC. Exogenous Spd oraminoethoxyvinylglycine obviously reduced ACC concentration and EER and increased Spdand Spm concentration, while exogenous ethephon or methylglyoxal-bis showed the oppositeeffects. SuSase, AGPase and SSSase negatively correlated with ACC and Put concentrations,but positively correlated with Spd concentration and Spd/ACC, indicated that ACC and Spdinteract in mediating the influence of SD on filling. The volume and surface area distribution of starch granules showed a bimodal curve, while the number distribution exhibited aunimodal curve. SD caused a marked drop in grain weight, grain number and starch content,also led to a significant reduction in the proportion (both by volume and by surface area) ofB-type starch granules (<10μm), with an increase in those of A-type starch granules (>10μm). Application of Spd or AVG increased the proportion (both by volume and by surfacearea) of B-type starch granules under SD. Correlation analysis suggested that ethylene andSpd showed an antagonism relation in the formation of B-type granules. These resultssuggested that it would be good for the formation of B-type starch granules to have thephysiological traits of higher Spd and lower ACC concentration and ethylene emission underSD.
     3Abdominal phloem tissues characters of wheat caryopsis in the responses of grainfilling to water deficit
     Most of the SEs of the phloem are associated with CCs and have walls contiguous withthose of the PPC. The superior grains under WW at15or20DPA, of which SEs of abdominalphloem were structurally mature, and exhibited a clear lumen and plasma membrane, and CCshad prominent nuclei distributed in dense cytoplasm. At15and20DPA, ICs were found toreside predominantly in SE-CCs complexes. Whereas CCs were hardly observed in inferiorgrains under WW, superior grains under SD and inferior grains under SD. As a consequence,ICs played the functions of long-distance assimilate transport to compensate the decreasedassimilate transport functions of SEs with the development of grain and the extension of waterdeficit. A few CCs was showed in superior grains under WW, while it was hardly observed ininferior ones under WW, superior and inferior grains under SD at25DPA. It is noteworthythat the PPC in inferior grains under SD showed the phenomenon of plasmolysis and nuclearchromatin condensation, and the SEs exhibited the characters of membrane degradation atlater filling stage, suggested that the characters of PPC and SEs in inferior grains was moresensitive to SD than the superior ones. Under WW, ATPase activity on plasma membrane ofSE-CCs complexes and ICs and PPC visualized by particles of lead phosphate precipitate wasconsiderably increased when compared with the control. The band of lead phosphateprecipitate on the plasma membrane was intensified, widened and became continuous asconsequence of the precipitate increase. Also the plasmodesm between ICs and PPC showed a high density of lead phosphate precipitate. Under SD, the plasma membrane of SEs and ICsand the plasmodesm between ICs and ICs showed a lower density of lead phosphateprecipitate. Unlike SEs and ICs, ATPase activity was hardly observed on the plasmamembrane of CCs and PPC. These observations suggested that apoplastic transport based onthe driving of H+-ATPase on plasma membrane was easily affected by SD condition, and thenlead to a low photosynthetic substance accumulation in inferior grains.
     4The responses of ethylene biosynthesis to water deficit in flag leaves and its relations tophotosynthesis and photochemical efficiency
     Thermal images indicated that SD obviously increased the temperature of flag leaves,mainly due to the decrease in E under SD. The marked increases in both EER and ACCconcentration were observed under SD, which can be effectively reversed by exogenous Spdor AVG. Exogenous Spd or AVG to some extent decreased the temperature of flag leaves. Thestrongly decreased of PNand gsas well as the photo-damage of PSII under SD at14and21DPA were also observed. Ciwas reduced at7DPA, but slightly increased at14and21DPAunder SD, indicating that the decreased PNat7DPA might result from stomatal limitations,while its decrease at14and21DPA might be attributed to nonstomatal limitations.Correlation analysis suggested that EER and ACC showed negative relations tophotosynthesis and photochemical efficiency. Data obtained suggested that the effects of SDwere predominantly mediated by the increase in EER and ACC concentration, which greatlydecreased the leaves photosynthesis and photochemical efficiency. Application of Spd or AVGevidently decreased the EER and ACC concentration, and thus exhibited a positive influenceon the leaves photosynthesis and photochemical efficiency under SD.
引文
程方民,钟连进,孙宗修.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响.中国农业科学,2003,36(5):492-501
    戴忠民,王振林,张敏.旱作与节水灌溉对小麦籽粒淀粉积累及相关酶活性变化的影响.中国农业科学,2008,41(3):687-694
    段俊,田长恩,祝骥,梁承邺.乙烯在水稻结实过程中的作用.植物生理学通讯,1999,35(5):369-370
    封超年,郭文善,施劲松,彭永欣,朱新开.小麦花后高温对籽粒胚乳细胞发育及粒重的影响.作物学报,2000,26(04):399-405
    何照范.粮油食品籽粒品质及其分析技术.北京:中国农业科学出版社,1985
    江华山.千斤小麦籽粒形成的灌浆特性的初步研究.南京农业大学学报,1985,2:17-25
    姜东,于振文,李永庚.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响.中国农业科学,2002,35(2):157-162
    胡炳义,牛明功,王启明.渗透胁迫与大豆幼苗叶片多胺含量的关系.植物营养与肥料学报,2006,12(6):881-886
    李文阳,尹燕枰,闫素辉,戴忠民,李勇,梁太波,耿庆辉,王振林.小麦花后弱光对籽粒淀粉积累和相关酶活性的影响.作物学报,2008,34(4):632-640
    李天,大杉立,山岸徹,佐佐木治人.灌浆结实期弱光对水稻籽粒淀粉积累及相关酶活性的影响.中国水稻科学,2005,19(06):545-550
    李天,大杉立,山岸徹,佐佐木治人.灌浆结实期弱光对水稻籽粒蔗糖及其降解酶活性的影响.作物学报,2006,32(06):943-945
    李睿,兰盛银,徐珍秀.外源激素对小麦胚乳程序性细胞死亡和子粒灌浆的影响.湖北农业科学,2004,05:26-30
    李世清,邵明安,李紫燕等.小麦籽粒灌浆特征及影响因素的研究进展.西北植物学报,2003,23(11):2031-2039
    刘霞,尹燕枰,姜春明,贺明荣,王振林.花后不同时期弱光和高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响.应用生态学报,2005,16(11):2117-2121
    刘霞,姜春明,郑泽荣,周筑南,贺明荣,王振林.藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较.中国农业科学,2005,38(5):897-903
    孟庆伟,李德全,赵世杰.土壤缓慢脱水对冬小麦渗透调节、光合作用和膜脂过氧化的影响.山东农业大学学报,1994,25(1):9-14
    彭永欣,郭文善,封超年,严六零,周振兴.小麦籽粒生长特性分析.江苏农学院学报,1992,13(3):9-15
    彭昌操,赵小兰.植物体内蔗糖转运蛋白的功能和调控.植物生理学通讯,2010,46(4):317-323
    山仑,吴枚君.小麦灌浆期生理特性和土壤水分条件对灌浆影响的研究.植物生理学通讯,1980,3:41-46
    汤日圣,郑建初,陈留根,张大栋,金之庆,童红玉.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响.植物生理与分子生物学学报,2005,31(6):657-662
    王丰,程方民,刘奕,钟连进,张国平.不同温度下灌浆期水稻籽粒内源激素含量的动态变化.作物学报,2006,32(1):25-29
    王文静,潘一展.不同类型小麦品种灌浆期蔗糖代谢关键酶的活性变化.华北农学报,2008,23(2):21-24
    王忠,李卫芳,顾蕴洁.水稻胚乳的发育及其养分输入的途径.作物学报,1995,21(5):520-527
    王忠,顾蕴洁,李卫芳等.小麦胚乳发育及其养分输人的途径.作物学报,1998,24:536-545
    王忠.植物生理学,中国农业出版社,北京,2002, p267-273
    许振柱,于振文,亓新华,余松烈.土壤干旱对冬小麦旗叶乙烯释放、多胺积累和细胞质膜的影响.植物生理学报,1995,21:295-301
    王桂林.小麦粒重形成过程中内源ABA和GAs的变化及其调节.北京农业大学学报,1991,17(增刊):25-29
    王金铃,张宪政,苏正疏.小麦对干旱的生理反应及抗性机理.国外农学,1994,5:44-46
    王文翰,彭文博.抗坏血璇和生育酚对小麦的延衰效应.河南农业大学学报,1994,28(41):404-407
    王新鼎.蚕豆种皮韧皮部中ATP酶活性及其与卸出的关系.植物学报,1993,35(5):356-361
    王志敏.小麦穗粒数的调节.北京:北京农业大学,1994
    魏育明,郑有良.内源激素对小麦可育小花数的调控.四川农业大学学报,1998,16(3):290-293
    许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响.作物学报,2003,29(4):595-600
    袁继超,刘从军,朱庆森,李俊青,杨建昌.播期对水稻籽粒灌浆特性的影响.西南农业学报,2004,17(2):164-16
    杨建昌,张亚洁,张建华.水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系.作物学报,2004,30(11):1069-1075
    杨建昌,王志琴,朱庆森,苏宝林. ABA与GA对水稻籽粒灌浆的调控.作物学报,1999,25(3):343-348
    张木清,陈如凯,余松烈.水分胁迫下叶片多胺代谢变化及其同抗旱性的关系.植物生理学报,1994,22(2):327-332
    张永平,王志敏,王璞.冬小麦节水高产栽培群体光合特征.中国农业科学,2003,36(10):1143-1149
    周小冬,王余龙,孙立军,董桂春,杨连新.水稻灌浆结实期籽粒接受14C-同化产物能力的研究.扬州大学学报(农业与生命科学版),2003,24(2):32-35
    周睿,杨洪强,束怀瑞.脱落酸对植物库强度的调节作用.植物生理学通讯,1996,32(3):223-228
    周竹青,李继伟,邓祥宜,王利凯,梅方竹,邹礼平.小麦颖果韧皮部细胞ATPase活性及其与籽粒光合同化物积累关系.中国农业科学,2009,42(7):2314-2325
    闫素辉,王振林,戴忠民,李文阳,付国占,贺明荣,尹燕枰.两个直链淀粉含量不同的小麦品种籽粒淀粉合成酶活性与淀粉积累特征的比较.作物学报,2007,33:84-89
    余松烈主编.山东小麦.北京农业出版社,1990:34-65
    于振文.作物栽培学各论.中国农业出版社,2003
    殷毓芳,张存良,姚凤吸.冬小麦不同品种光合速率与气孔导度等性状之间的关系的研究.作物学报,1995,21(5):561-567
    Abeles F. B., Morgan P.W., Saltveit M. E. Ethylene in Plant Biology. Academic Press, NewYork1992
    Alcazar R., Marco F., Cuevas J. C., Patron M., Ferrando A., Carrasco P., Tiburcio A. F.,Altabella T. Involvement of polyamines in plant response to abiotic stress. Biotech Lett.,2006,28:1867-1876
    Aoki N., Whitfeld P., Hoeren F., Scofield G., Newell K., Patrick J., Offler C., Clarke B.,Rahman S., Furbank R. T. Three sucrose transporter genes are expressed in the developinggrain of hexaploid wheat. Plant Mol. Biol.,2002,50:453-462.
    Bagnall N., Wang X.D., Scofield G.N., Furbank R.T., Offler C.E., Patrick J.W. Sucrosetransport-related genes are expressed in both maternal and filial tissues of developingwheat grains. Aust. J. Plant Physiol.,2000,27:1009-1020
    Ball S, Guan H P, James M, et al. From glycogen to amylopectin: a model for the biogenesis ofthe starch granule. Cell,1996,86:349-352
    Barnabas B., Jager K., Feher A. The effect of drought and heat stress on reproductive processesin cereals. Plant Cell Environ.,2008,31(1):11-38
    Bechtel D. B., Wilson J. D. Amyloplast formation and starch granule development in hard redwinter wheat. Cereal Chem.,2003,80:175-183
    Bechtel D. B., Zayas I. Y., Kaleikau L., Pomeranz Y. Size distribution of wheat starch granulesduring endosperm development. Cereal Chem.,1990,67:59-63
    Blumenthal C., Bekes F., Gras P. W., Barlow E. W., Wrigley C. W. Identification of wheatgenotypes tolerant to the effects of heat stress on grain quality. Cereal Chem.,1995,72:539-544
    Borkovee V., Prochazk A. S. Preanthesis interaction of cytokinins and ABA in the transport of14C-sucrose to the ear of winterwheat (Triticum aestivumL). J. Agro. Crop Sci.,1992,169(4):229-235
    Cai T., Xu H.C., Peng D.L., Yin Y.P., Yang W.B., Ni Y.L., Chen X.G., Xu C.L., Yang D.Q., CuiZ.Y., Wang Z.L. Exogenous hormonal application improves grain yield of wheat byoptimizing tiller productivity, Field Crops Res.,2014,172-183.
    Capell T., Bassie L., Christou P., Modulation of the polyamine biosynthetic pathway intransgenic rice confers tolerance to drought stress. Proc. Natl. Acad. Sci. USA.2004,101:9909-9914
    Chaves M.M. Effects of water deficits on carbon assimilation. J. Exp. Bot.,1991,42:1-16
    Chaves M.M., Oliveira M.M. Mechanisms underlying plant resilience to water deficits:prospects for water-saving agriculture. J. Exp. Bot.,2004,55:2365-2384
    Chen T.T., Xu Y.J., Wang J.C., Wang Z.Q., Yang J.C., Zhang J. H. Polyamines and ethyleneinteract in rice grains in response to soil drying during grain filling. J. Exp. Bot.,2013,64:2523-2538
    Cheng C.Y., Lur H.S. Ethylene may be involved in abortion of the maize caryopsis. PhysiolPlant,1996,98:245-252
    Dai Z. M., Yin Y. P., Zhang M., Li W. Y., Yan S. H., Cai R. G., Wang Z. L. Starch granule sizedistribution in wheat grains under irrigated and rainfed conditions. Acta AgronomicaSinica,2008,34:795-802
    Davies P. J. Introduction. In: Davies PJ, ed. Plant hormones, physiology, biochemistry andmolecular biology. Dordrecht, the Netherlands: Kluwer Academic Publishers,1995,1-12
    DiTomaso J.M., Shaff J.E., Kochian L.V. Putrescine-induced wounding and its effects onmembrane integrity and ion transport processes in roots of intact corn seedlings. PlantPhysiol.,1989,90:988-995
    Ennahli S., Earl H.J. Physiological limitations to photosyn-thetic carbon assimilation in cottonunder water stress. Crop Sci.,2005,45:2374-2382
    Evers A. D. The size distribution among starch granules in wheat endosperm. Starch,1973,25:303-304
    Feng H.Y., Wang Z.M., Kong F.N., Zhang M.J., Zhou S.L. Roles of Carbohydrate Supply andEthylene, Polyamines in Maize Kernel Set. J. Integr. Plant Biol.,2011,53(5):388-398
    Flores H.E., Galston A.W. Analysis of polyamines in higherplants by high performance liquidchromatography. Plant Physiol.,1982,69:701-706
    Fiorani F., Bogemann G.M., Visser E.J.W., Lambers H., Voe-senek L.A.C.J. Ethyleneemission and responsiveness to applied ethylene vary among Poa species that inherentlydiffer in leaf elongation rates. Plant Physiol.,2002,129:1382-1390
    Gaines C.S., Reaker M.O., Tilley M. Associations of starch gel hardness, granule size, waxyallelic expression, thermal pasting, milling quality and kernel texture of12soft wheatcultivars. Cereal Chem.,2000,77(2):163-168
    He L.X., Nada K., Kasukabe Y., Tachibana S. Enhanced susceptibility of photosynthesis tolow-temperature photoinhibition due to interruption of chill-induced increase ofs-adenosylmethionice decarboxylase activity in leaves of spinach (Spinacia oleracea L.).Plant Cell Physiol.,2002,43:196-206
    Hu W.W., Gong H., Pua E.C. Modulation of SAMDC expression in Arabidopsis thalianaalters in vitro shoot organogenesis. Physiol. Plant,2006,128:740-750
    Huang X.X., Bie Z.L. Cinnamic acid-inhibited ribulose-1,5-bisphosphate carboxylaseactivity is mediated through decreased Spermine and changes in the ratio of polyaminesin cowpea. J. Plant Physiol.,2010,167:47-53
    Hummel I., Amrani A.E., Gouesbet G., Hennion F., Couee I. Involvement of polyamines inthe interacting effects of low temperature and mineral supply on Pringlea antiscorbutica(Kerguelen cabbage) seedlings. J. Exp. Bot.,2004,55:1125-1134
    Hurkman W.J., McCue K.F., Altenbach S.B. Effect of temperature on expression of genesencoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci.,2003,164:873-881
    Iqbal N., Nazar R., Syeed S., Masood A., Khan N.A. Exogenously-sourced ethylene increasesstomatal conductance, photosynthesis, and growth under optimal and deficient nitrogenfertilization in mustard. J. Exp. Bot.,2011,62:4955-4963
    James M G, Robetson M G, Mayers A M, Characterization of the maize gene sugary1, adeterminant of starch composition in kernels. Plant Cell,1995,7:417-429
    Jiang D. Y., Yu Z. W. Effects of soil water on yield and grain quality of wheat. J. Agric. Sci.Technol.,2007,21,641-645(In Chinese)
    Jiang D., Cao W., Dai T., Jing Q. Activities of key enzymes for starch synthesis in relation togrowth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike.Plant Growth Regul.,2003,41:247–257
    Jiang M.Y., Zhang J, H. Abscisic acid and antioxidant defense in plant cells. Acta Bot. Sin.,2004,46(1):1-9
    Kanechi M., Kunitomo E., Inagaki N., Maekawa S. Water stress effects on ribulose-1,5-bisphosphate carboxylase and its relationship to photosynthesis in sunflower leaves.-In: Mathis, P.(ed.): Photosyntheis: from Light to Biosphere. Kluwer AcademicPublishers, Dordrecht Boston London1995, Vol. IV:597-600
    Khan N.A. An evaluation of the effects of exogenous ethephon, an ethylene releasingcompound, on photosynthesis of mustard (Brassica juncea) cultivars that differ inphotosynthetic capacity. BMC Plant Biol.,2004,4:21-27
    Khan N.A. The influence of exogenous ethylene on growth and photosynthesis of mustard(Brassica juncea) following defoliation. Sci. Hortic.2005,105:499-505
    Lee T.M. Polyamine regulation of growth and chilling tolerance of rice (Oryza sativa L.) rootscultured in vitro. Plant Sci.,1997,122:111-117
    Lefe`vre I., Gratia E., Lutts S., Discrimination between the ionic and osmotic components ofsalt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci.,2001,161:943-952
    Legocka J., Kluk A. Effect of salt and osmotic stress on changes in polyamine content andarginine decarboxylase activity in Lupinus luteus seedlings. J. Plant Physiol.,2005,162,662-668
    Li B., Sang T., He L.Z., Sun J., Li J., Guo S.R. Exogenous spermidine inhibits ethyleneproduction in leaves of cucumber seedlings under NaCl stress. J. Am. Soc. Hort. Sci.,2013,138:108-113
    Li W.Y., Yan S. H., Yin Y. P., Wang Z. L. Starch granule size distribution in wheat grain inrelation to shading after anthesis. J. Agricul. Sci.,2010148,183-189.
    Liang Y.L., Lur H.S. Conjugated and Free Polyamine Levels in Normal and Aborting MaizeKernels. Crop Sci.,2002,42:1217-1224
    Liu H.P., Ji X. E., Shi L. G. Effect of osmotic stress onthecontents of differentformpolyaminesinleavesof maize seedlings. Acta Agronomica Sinica,2006,32(10):1430-1436
    Luo H., Zheng Z., Lin S. Changes inendogenous hormones and polyamine during sexualdifferentiation of lychee flower. Acta Hort.,2005,665:203-208
    Macleod L. C., Duffus C. M. Temperature effects on starch granules in developing barleygrains. J. Cereal Sci.,1988,8,29-37
    Maiale S., Sanchez D.H., Guirado A., Vidal A., Ruiz O.A. Spermine accumulation under saltstress. J. Plant Physiol.,2004,161:35-42
    Marlean Z., Jacek K., Jan K. Participationof polyamines in the flowering of the short-dayplant Pharbitisnil. Plant Growth Regul.,2006,50(23):149-158
    Meyer S., Kouchkovsky Y. Electron transport, photosystem II reaction centres andclorophyll-proein complexes of thylakoids of drought resistant and sensible upin plants.Photosynth. Res.,1993,32:95-107
    Mo H., Pua E.C. Up-regulation of arginine decarboxylase gene expression and accumulationof polyamines in mustard (Brassica juncea) in response to stress. Physiol. Plant,2002,114:439-449
    Mohapatra P.K., Naik P.K., Patel R. Ethylene inhibitors improve dry matter partitioning anddevelopment of late flowering spikelets on rice panicles. Austr J Plant Physiol.,2000,27:311-323
    Morgan P.W., Drew M.C. Ethylene and plant response to stress. Physiologia Plantarum,1997,100:620-630
    Mohapatra P.K., Naik P.K., Patel R. Ethylene inhibitors improve dry matter partitioning anddevelopment of late flowering spikelets on rice panicles. Austr J Plant Physiol.,2000,27:311-323
    Murchie E.H., Chen Y.Z., Hubbart S., Peng S., Horton P. Interactions between senescence andleaf orientation deter-mine in situ patterns of photosynthesis and photoinhibition infield-grown rice. Plant Physiol.,1999,119:553-564
    Naik P.K., Mohapatra P.K. Ethylene inhibitors enhanced sucrose synthase activity andpromotedgrain filling of basal rice kernels. Austr J. Plant Physiol.,2000,27:997-1008
    Nakamura Y., Yuki K. Change in enzyme activities associated with carbohydrate metabolismduring the development of rice endosperm. Plant Sci.,1992,82:15-20
    Narayana I., Lalonde S., Saini H.S. Water-stress-induced ethylene production in wheat, afactor artifacting. Plant Physiol.,1991,96:406-410
    Navakoudis E., Lütz C., Langebartels C., Lütz-Meindl U., Kotzabasis K. Ozone impact on thephotosynthetic apparatus and the protective role of polyamines. BBA Bioenergetics,2003,1621:160-169
    Oparka K.J., Gates P. Transport of assimilates in the developing caryopsis of rice (Oryzasativa L.). Planta,1981,151:561-573
    Paschalidis K. A., Roubelakis-Angelakis K. A. Sites and regulation of polyamine catabolismin the tobacco plant. Correlations with cell division/expansion, cell cycle progression,and vascular development. Plant Physiol.,2005,138:2174-2184
    Peng M. S., Gao M. Separation and characterization of A-and B-type starch granules inwheat endosperm. Cereal Chem.,1999,76,375-379
    Pierik R., Tholen D., Poorter H., Visser E.J.W., Voesenek L.A.C.J. The janus face of ethylene:growth inhibition and stimulation. Trends Plant Sci.,2006,11:176-183
    Ravanel S., Gakiere B., Job D., Douce R. The specific features of methionine biosynthesis,and metabolism in plants. Proc. Nat.l Acad. Sci. USA,1998,95:7805-7812
    Richards F.J. A flexible growth function for empirical use. J. Exp. Bot.,1959,10:290-301
    Rook F., Corke F., Card R., Munz G., Smith C., Bevan W. Impaired sucrose-induction mutantsreveal the modulation of sugar-induced starch biosynthetic gene expression by abscisicacid signaling. Plant J.,2001,26:421-433
    Sairam R. K., Tyagi A. Physiology andmolecular biology of salinity stress tolerance inplants.Curr Sci.,2004,86:407-421
    Shangguan, M.A., Shao, J., Dyckmans. Interaction of osmotic adjustment and photosynthesisin winter wheat under soil drought. J. Plant Physiol.,1999,154:753-758
    Skotnica M., Matouskova J., Naus D., Lazar L. Thermo-luminescence and fluorescence studyof changes in photosystem II photochemistry in desiccating barley leaves. Photosynth.Res.,2000,65:29-40
    Soh H. N., Sissons M. J., Turner M. A. Effect of starch granule size distribution and elevatedamylase content on durum dough rheology and spaghetti cooking quality. Cereal Chem.,2006,83:513-519
    Tiburcio A.F., Kaur-Sawhney R., Galston A.W. Polyamine metabolism and osmotic stress II.Improvement of oat protoplasts by an inhibitor of arginine decarboxylase. Plant Physiol.,1986,82:375-378
    Tietz A. Effect of abscisic acid on the transport of assimilates in barley. Planta,1981,152:557-561
    Van D. G., Stead A. D. Abscission of flowers and floral parts. J. Exp.Bot.,1997,48(309):821-831
    Van Bel A.J.E. The phloem, a miracle of ingenuity. Plant Cell Environ.,2003,26:125-149
    Vincent T., Farhang R., Delennea J. Y. Wheat endosperm as a cohesive granular material. J.Cereal Sci.,2008,47,347-356
    Wada Y., Miura K., Watanabe K. Effects of source-to-sink ratio on carbohydrate productionand senescence of rice (Oryza sativa) flag leaves during the ripening period. Japan J.Crop Sci.,1993,62:547-553
    Wang X.Q., Huang, W.D. Effects of weak light on the ultrastructural variations of phloemtissues in source leaves of three-year-old nectarine trees (Prunus persica L.var. nectarinaAit.). Acta Bot.Sin.,2003,45(6),688-697
    Wang Z., Xu Y., Wang J., Yang J., Zhang J. Polyamine and ethylene interactions in grainfilling of superior and inferior spikelets of rice. Plant Growth Regul.,2012,66,215-228
    Whingwiri E. E., Kuo J., Stern W. R. The vascular system in the rachis of a wheat ear. Ann.Bot.,1981,48(2):189-202
    Williams L. E., Gregory A. Changes in the expression pattern of the plasma membraneH+-ATPase in developing Ricinus communis cotyledons undergoing the sink/sourcetransition. Planta,2004,218(4):562-568
    Wiltens J., Schreiber U., Vidaver W. Chlorophyll fluorescence induction: an indicator ofphotosynthetic activity in marine algae undergoing desiccation. Can. J. Bot.,1978,56:2787-2794
    Xu Z. Z., Yu Z. W., Zhang Y. L. The effects of soil moisture on grain starch synthesis andaccumulation of winter wheat. Acta Agronomica Sinica,2003,29,595-600(In Chinese)
    Yang J., Zhang J., Wang Z., Zhu Q., Liu L.(2003) Involvement of abscisic acid andcytokineins in the senescence and remobilization of carbon reserves in wheat subjectedto water stress during grain filling. Plant Cell Environ.,2003,26:1621-1631
    Yang J.C., Zhang J.H., Liu K., Wang Z.Q., Liu L.J. Abscisic acid and ethylene interact inwheat grains in response to soil drying during grain filling. New Phytol.,2006,171(2):293-303
    Yang J., Zhang J., Liu K., Wang Z., Liu L. Involvement of polyamines in the droughtresistance of rice. J. Exp. Bot.,2007,58:1545-1555
    Yordanov I., Velikova V., Tsonev T. Plant responses to drought and stress tolerance. Bulg. J.Plant Physiol.,2003,187-206
    Zhang W.P., Jiang B., Li W.G., Song H., Yu Y.S., Chen J.F. Polyamines enhance chillingtolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system.Sci. Hortic.,2009,122:200-208
    Zhang C. H., Jiang D., Li F., Cai J., Dai T. B., Cao W. X. Starch granules size distribution insuperior and inferior grains of wheat is related to enzyme activities and their geneexpressions during grain filling. J. Cereal Sci.,2010,51,226-233
    Zhang H., Yang J.C. Hormones in the grains and roots in relation to post-anthesisdevelopment of inferior and superior spikelets in japonica/indica hybrid rice. PlantPhysiol Biochem.,2009,47:195-204
    Zhao H.Z., Yang H.Q. Exogenous polyamines alleviate the lipid peroxidation induced bycadmium chloride stress in Malus hupehensis. Sci. Hortic.,2008,116:442-447
    Zhou Z.Q., Li J.W., Deng X.Y., Wang L.K., Mei F.Z., Zou L.P. The ATPase activity in phloemcells andits relation to the accumulation of photo-assimilates in developing caryopsisduring wheat grain filling. Sci. Agric. Sin.,2009,42(7):2314-2325(In Chinese)
    Zlatev Z.S., Yordanov I.T. Effects of soil drought on photosynthesis and chlorophyllfluorescence in bean plants. Bulg. J. Plant Physiol.,2004,30:3-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700