用户名: 密码: 验证码:
毛竹林下里白生物学与生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对广泛分布于我国的蕨类植物里白(Hicriopteris glauca)的遗传资源、生理生态特性和繁殖技术开展一系列研究。采用trnG-S引物片段对分布于全国十个省区(安徽、福建、广东、广西、贵州、湖北、江西、四川、云南、浙江)毛竹(Phyllostachys edulis)林中12个野生群体的124个里白个体的cpDNA进行扩增,通过对变异位点数(P)、单倍型多态性(h)、核苷酸多态性(π)等遗传特性的分析,研究其遗传多样性状况。在此基础上,通过对浙江大溪里白群体生境为期1年的监测,揭示了里白生境中诸如温度、湿度、光照等生态因子的变化状况;并对大溪里白生境开展群落学调查和多样性研究;对其土壤和植株中所含水解性氮、速效钾、有效磷等大量元素以及微量元素的含量变化进行相关性分析,探讨了里白中矿质元素含量年动态变化规律;开展了里白在干旱胁迫条件下的光合作用响应规律研究;对在不同基质配比、不同光、温调控水平以及不同激素水平下里白孢子萌发、配子体增殖和孢子体诱导进行了研究。本研究旨在为蕨类植物里白的遗传资源评价、引种繁育以及在竹林复合经营中栽培利用等提供理论依据和科学支撑。通过以上研究,得到以下主要研究结果:
     (1)里白物种水平的单倍型多态性(h)为0.453,核苷酸多态性(Pi)为0.00067。西部群体的平均水平的核苷酸多态性(π= 0.000292)与单倍型多态性(h = 0.2)比中东部群体要高得多(π= 0.000145; h = 0.067)。群体内单倍型多样性(hS)和核酸多样性(πS)在里白群体间变化很大,群体内单倍型多样性(hS)平均值为0.127±0.231,核酸多样性πS (×10-3)的平均值为0.212±0.364。单倍型多样性(hS)和核酸多样性(πS)与海拔和经纬度没有相关性。AMOVA分析结果表明:在物种水平上不存在明显的谱系地理结构;地区间的变异为2.97%,群体间的变异为64.54%,群体内的差异为32.49%,地区间的差异不显著,变异主要出现在群体间;群体间的遗传距离和地理距离之间没有显著相关性。研究发现,里白具有四川龙溪(虹口)与湖北交接处、云南大围山以及黄山山脉一带3个遗传多样性分布中心,这3个分布中心涵盖了所测的所有3种单倍型,而其它地区的群体均仅含1种广布单倍型(Hap1)。
     (2)浙江大溪里白生境年平均气温20.5℃,年平均相对湿度65.5%,年平均光照强度5800lx,年平均土壤含水量19.4%,适宜植株生长。经调查,该里白生境毛竹林内共有维管植物75种,隶属43科,64属;其物种多样性指数较高,Simpson指数平均值为0.778,Shannon-wiener指数平均值为2.258,种间相遇机率平均值为0.783,群落均匀度平均值为0.783。灌木层属次生的常绿、落叶阔叶混交林类型。
     (3)浙江大溪里白生境土壤中氮、磷、钾、钙、镁、锰等大量营养元素含量在里白生长高峰期达到峰值;除锰元素外,里白中硫、钙、镁、铁、硼、锌、铜、钼、钠等元素含量均在里白生长旺季出现吸收高峰,随后下降,其变化规律基本相似。里白植株中氮和磷、氮和钾、磷和钾、钾和铁、钙和钼、钠和氮、钠和铁等矿质元素含量间相关性显著,氮和镁、氮和铁、镁和铁、钠和镁之间相关性极显著,且里白植株中氮、磷、钾等三种大量元素和土壤中变化规律一致。
     (4)不同土壤水分条件下,里白的Ci基本不变,表明干旱胁迫下气孔导度的降低不是引起Pn下降的主要原因;土壤相对含水量为80~60%时,不会引起Fv/Fm、Fv′/F′m、qP、ФPSⅡ和ETR的明显改变,在60%以下时,Fv/Fm、Fv′/F′m、qP、ФPSⅡ和ETR等参数明显下降,PSII的线性电子传递速率降低;干旱胁迫下用于PSII天线色素非光化学能量耗散的光能显著升高,对光合机构起到一定的保护作用;随着干旱胁迫的加重,发生膜脂过氧化现象。
     (5)里白孢子繁育的最佳光强为40μmol·m-2·s-1,配子体发育为孢子体的发育率达48.4%;基质以泥炭土-黄心土(1:1)效果最好,砂子最差;最适温度为20~25℃,低于或高于此温度,里白处于配子体阶段,不能形成孢子体;从孢子萌发到孢子体形成需要90d左右的时间,这和其它蕨类植物相比较缓慢。
     (6)无菌条件下,以配子体为外植体,配子体增殖适宜的培养周期为41~50d;配子体在培养基MS+6-BA0.5 +NAA0.5和MS+6-BA0.5 +NAA1.0上增殖效果最佳,但常用不同培养基间对配子体增殖倍率没有显著性差异;25℃为配子体培养的最适温度;孢子体诱导至90d时有大量孢子体产生,此时需要及时转接以利于后续培养。
In the study, the genetic resource, ecophysiological character and propagation in Hicriopteris glauca plants were investigated. The chloroplast DNA (cpDNA) was amplified using trnG-S primer in 12 wild-population 124 individual H.glauca which distributed in 10 provinces of china (including Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Jiangxi, Sichuan, Yunnan, Zhejiang). The genetic diversity was studied by the polymorphic sites (P), haplotype diversity (h), nucleotide diversity (π). Based on the above, the variation tendency of ecological factors, such as temperature, humidity, illumination, etc. were monitored in H.glauca population in Daxi, Zhejiang. The community and diversity in H.glauca habitat were also inverstigated. The content of macroelement in plant and in soil, such as hydrolysis nitrogen, potassium, phosphorus, and microelement were assayed to explore the change tendency of mineral element. To explore the physiological response of H.glauca to water stress, the characteristics of photosynthesis of H.glauca was also studied. In addition, we studied the sporegermination and gamete reproduction as well as sporophyte elicit in different matrix, temperature, water and different hormones level. This study is important to provide the theoretical basis and science supporting in genetic resource valuation, propagation, cultrue. The main study results as follow:
     (1) The mean of the haplotype diversity (h) is 0.4528, and the nucleotide diversity (π) is 0.00067 in H.glauca population. The haplotype diversity and the nucleotide diversity of H.glauca population in western China (π= 0.000292; h = 0.2) was higher than that in Eastern china (π= 0.000145; h = 0.067). The mean of haplotype diversity in population (hs) and the nucleic acid diversity (πS) among H.glauca population was largely different. The haplotype diversity in population (hs) and the nucleic acid diversity (πS) were not related with altitude, longitude and latitude. ANOVA analysis indicated that the genetic variation among different H.glauca population is 67.54%, which inclued 2.97% as genetic diversity among the geography region, which was not significant. The variation happened in the intergroup, there were not significant correlation between the genetic distance and geography distance in the whole population distribution. In this studiy, we found that there were three genetic distribution center of H.glauca, which located in the junction between Longxi, Sichuan and Hubei, the Dawei mountain in Yunnan and Huang Mountain. The three center contain all the three kinds of Haplotype, and the other population only contain one widely haplotype (Hap1).
     (2) The annual average temperature of H.glauca habitat in Daxi, Zhejiang is 20.5℃, the annual average relative humidity is 65.5%, the annual average illumination intensity is 5800lx, and the annual average relative soil water content is 19.4%. The environment is fit to grow for plant. There are 75 species vascular plant, belonged to 43 families, 64 genus. The results showed that the diversity index is high. the mean Simpson index is 0.778, the mean Shannon-wiener index is 2.258, the mean PIE is 0.783, and the mean the community evenness is 0.783. The shrub type is secondary evergreen and deciduous broad-leaved mixed forest.
     (3) The content of macroelement, such as Nitrogen(N), Phosphorus(P), Potassium(K), Calcium(Ca), Magnesium(Mg), Manganese(Mn), were on the peak in top growth stage. And the content of many elements, such as sulphur(S), calcium(Ca), Magnesium(Mg), iron(Fe), boron(B), zinc(Zn), copper(Cu), molybdenum(Mo), sodium(Na), increased in growth stage, and then decreased. The variation trend was similar. There were significantly correlation between these mineral elements: N and P, N and K, P and K, K and Fe, Ca and Mo Na and N, Na and Mg. And the variation trend of N, P, K in H.glauca plant were simlar to that in soil.
     (4) Under different soil water content, the intercellular CO2 content (Ci) had no change in H.glauca plants, which indicated that the decline of net photosynthetic rate (Pn) was not the main reason causing decline of stomatal conductance. The 80~60% of soil water content could not cause the obvious change in Fv/Fm, F′v/F′m, qP,ФPSⅡand ETR. However, when the soil water content was below 60%, the value of Fv/Fm、F′v/F′m、qP、ФPSⅡand ETR reduced obviously. These results suggested that the non-photochemistry energy dissipation in PSII antenna pigment is significantly rised, which have some protection effect on photosynthetic apparatus under the drought stress. With more seriously drought stress, the phenomenon of membrane lipid peroxidation happened.
     (5) The optimum illumination intensity of H.glauca spore propagation is 40μmol·m-2·s-1, and the developmental rate of gametophyte grow into sporophyte is 48.4%. The best matrix is peatsoil-subsoil, while worst effect is sand. The optimum temperature is 20~25℃. The gametophyte stage would keep below or over this temperature and could not grow into the sporophyte. The time from spore germination to sporophyte needed 90 days approximately, which was lower than the growth speed of other fern plant.
     (6) Under aseptic condition, the appropriate time of gametophyte propagation culture is about 41~50 day using gametophyte as explants. The optimal culture mediums were MS+6-BA0.5 +NAA0.5 and MS+6-BA0.5 +NAA1.0, and the optimal temperature is 25℃for gametophyte culture. However, there was no significant difference among gametophyte propagation using the different culture medium. When the large number of sporophyte were generated in sporophyte induction process, the successive transfer culture should be needed.
引文
[1]吴兆洪,秦仁昌.中国蕨类植物科属志.北京:科学出版社, 1991, 43~46
    [2]浙江植物志编委会.浙江植物志第一卷.杭州:浙江科学技术出版社, 1993, 37~39
    [3]丁炳扬,李根有,傅承新等.天目山植物志(第一卷).杭州:浙江大学出版社, 2009, 24
    [4]秦仁昌.中国蕨类植物地理与区系组成.纪念秦仁昌论文集, 1999, 118~132
    [5]王发国,陈红锋,邢福武.广东乡土野生观赏蕨类植物调查及其开发利用研究.中国园林, 1999, 5: 56~60
    [6]欧阳婵娟,王忠,罗燕燕等.华南野生观赏蕨类植物.广东园林, 2008, 5: 48~51
    [7]董仕勇.广州市蕨类植物物种多样性研究.热带与亚热带植物学报, 2008, 16(1): 39~45
    [8]贾桂康,苏仕林.百色市蕨类植物物种多样性研究.安徽农业科学, 2009, 37(27):13054~13055
    [9]周厚高,黎桦,黄玉源等.广西石灰岩地区蕨类植物区系组成与分类研究.广西农业生物科学, 1999, 18(Sup): 83~128
    [10]郑颖吾.木论喀斯特林区概论.北京:科学出版社, 1997
    [11]周厚高,谢义林,黎桦等.广西石灰岩地区蕨类植物区系水平分化研究.广西农业生物科学, 1999, 18(Sup): 71~75
    [12]周厚高,黎桦,黄玉源等.广西蕨类植物区系的基本特征.广西植物, 2004, 24(4): 44~48
    [13]黎桦,黄玉源,谢义林等.广西石灰岩地区蕨类植物垂直分布特点.广西农业生物科学, 1999, 18(Sup): 76~81
    [14]石雷,谷卫彬,朱光华等.贵州、云南和广西典型石灰岩地貌地区蕨类植物的一些观察.纪念秦仁昌论文集, 1999, 244~249
    [15]李保贵,朱华.西双版纳勐腊南贡山季风常绿阔叶林蕨类植物初步研究.广西植物, 2005, 25(6):497~503
    [16]李保贵,朱华.西双版纳热带山地常绿阔叶林蕨类植物多样性研究.广西植物, 2009, 29(2): 202~207
    [17]卢加举,崔百明,代正福等.贵州黔西南州珍稀野生观赏蕨类资源的调查.贵州农业科学, 2008.36(1):23~26
    [18]张戊英.福建梅花山观赏蕨类植物资源及其开发利用.亚热带植物科学, 2009, 38(4): 56~59
    [19]王振元.福建天柱山国家森林公园蕨类资源与应用研究.中国林副特产, 2009, 98(1): 83~85
    [20]魏开炬.九阜山蕨类植物资源及其开发利用.资源开发与市场, 2009, 25(7): 644~646
    [21]罗来辉.梅州山区蕨类植物生态特性.农业科学, 2009, 24: 123~124
    [22]黄晓冬,黄晓昆.福建牛姆林自然保护区蕨类植物区系分析.福建林业科技, 2008, 35(2):137~141
    [23]叶文,李振基, BENITO C Tan等.武夷山脉南北蕨类植物多样性研究.厦门大学学报(自然科学版), 2007, 46(3): 431~437
    [24]黄水文,胡献明.衢州九华山蕨类植物及其观赏价值研究.浙江林业科技, 2005, 25(4):62~65
    [25]郝朝运,刘鹏.浙江磐安蕨类植物资源及其开发利用.山地学报, 2005, 23(5): 606~615
    [26]范仁旺,朱春木,周爱华.丽水大山峰森林公园野生观赏蕨类植物资源及其利用.现代农业科技, 2008, 24:95~101
    [27]吴建飞.宁波五龙潭野生观赏蕨类植物资源与利用.安徽农业科学, 2008, 36(15):6273~6274
    [28]徐志山,胡红宝,汪丽芳等.淳安观赏性蕨类植物资源现状与利用前景探讨.浙江林业科技, 2006, 6(1): 76~80
    [29]卢毅军,应求是,施卫等.杭州西湖风景区野生观赏蕨类植物资源调查及其开发利用.中国野生植物资源, 2006, 25(3): 19~32
    [30]胡高鹏,季梦成.龙王山自然保护区观赏蕨类植物资源研究.江西农业科学学报, 29(6): 993~1000
    [31]沈培福,张建新.浙江箬寮岘自然保护区观赏蕨类植物资源及利用.福建林业科技, 2008, 35(1): 197~199
    [32]张豪,杨学哲,詹碧泉等.浙江北雁荡野生蕨类植物资源.中国野生植物资源, 2006, 25(4): 17~21
    [33]张建新,胡伯智.浙江松阳观赏蕨类植物资源及其开发利用.安徽农业科学, 2006, 34(16):3970~3972
    [34]梅笑漫,朱圣潮,徐双喜等.浙江凤阳山自然保护区蕨类植物区系的研究.植物研究, 2005, 25(1): 99~106
    [35]丁晓浩,何云核.安徽省观赏蕨类植物资源及其园林利用的研究.安徽农学通报, 2008, 14(7):103~106
    [36]李策宏,张国珍.峨眉山野生观赏蕨类资源及其开发利用.资源开发与市场, 2006, 22(4):371~374
    [37]李琳,牛玉璐,边文等.木兰围场自然保护区蕨类植物多样性的初步研究.河北师范大学学报, 2006, 30(5):603~605
    [38]孙起梦,刘兴剑,杨志民.南京紫金山蕨类植物资源初步调查.江西农业大学学报, 2009,21(6):54~56
    [39]舒应萍,丁绍刚,王晶慧.南京地区蕨类植物资源及其应用.中国城市林业, 2009, 7(4):80~83
    [40]黄超群.南京几种蕨类植物孢子繁殖及耐旱性的研究.南京林业大学硕士学位论文, 2007, 10
    [41]杨光穗,尹俊梅,徐世松等.海南蕨类植物资源及其开发利用.海南师范大学学报(自然科学版), 2007, 20(1): 69~74
    [42]简敏菲,刘琪璟,鲁顺保等.九连山常绿阔叶林群落中蕨类物种的多样性分析.江西农业大学学报, 2008, 30(4):246~251
    [43]方元平,胡章喜,高静.吴家山国家级森林公园药用蕨类植物资源及开发利用研究.安徽农业科学, 2007, 35(1): 161~164
    [44]郑东方.河南沁阳白松岭自然保护区蕨类植物资源的研究和利用.安徽农业科学, 2008, 36(34): 14958~14959
    [45]何先元,张丹,付利娟.重庆南山药用蕨类植物资源调查研究.安徽农业科学, 2008, 36(34): 15034~15035
    [46]尤志勉,姚振生,张森尧.浙江药用蕨类植物的地理分布及区系研究.江西科学, 2008, 26(2): 328~333
    [47]尤志勉,张森尧,姚振生.浙江天目山自然保护区药用蕨类植物资源调查.热带亚热带植物科学, 2007, 36(3): 59~63
    [48]韦福民,浦锦宝,张方钢等.浙江大盘山野生药用蕨类资源特点及其利用价值研究.医学研究杂志, 2007, 36(6): 103~104
    [49]吴建飞.浙江五龙潭药用蕨类资源.时珍国医国药, 2009, 20(3):763~764
    [50]叶拥军,李建良.浙江药用蕨类植物资源补遗.中草药, 2006, 37(9):1422~1425
    [51]张宏意,罗连,郭微.丹霞山药用蕨类植物资源调查分析.江西中医学院学报, 2008, 20(6): 54~55
    [52]周先容,戴玄,尚进等.大木山自然保护区药用蕨类植物资源研究.时珍国医国药, 2009, 20(20):2563~2565
    [53]朱立,孙超.贵州重要药用蕨类植物的资源现状及保护性建议.中华中医药杂志, 2007, 22(6): 339~341
    [54]朱立,刘海燕,胡雪华.贵州主要药用蕨类植物资源搜集与保护利用研究.贵州科学, 2007, 25(2): 72~77
    [55]易婷婷,罗豪.湖南省洪江市雪峰山药用蕨类植物种类调查.西北药学杂志, 2008, 23(4): 221~223
    [56]林勤,陈晓清. 4种蕨类植物多糖的提取及部分理化性质分析.微量元素与健康研究, 2008, 25(1): 18~20
    [57]方云山,杨雪琼,刘劲芸等. 32种云南蕨类植物的总黄酮测定.云南大学学报(自然科学版), 2008, 30 (4) : 401~404
    [58]李清玉,司民真,邓莉兰等.两种卷柏科蕨类药用植物的红外光谱分析研究.光散射学报, 2007, 19(2):163~167
    [59]梁晓华,徐成东,王陆琴.云南13种类植物中总黄酮含量的测定.安徽农业科学, 2008, 36(19): 7965~7973
    [60]阿孜古丽·克衣木,苏力坦·阿巴白克力,古丽斯玛依.新疆天山三种蕨类植物的总黄酮含量研究.新疆大学学报(自然科学版), 2006, 23(2): 201~206
    [61]吴瑞宁,黄慰生,蔡建秀等.蕨类植物中总黄酮的提取.福州大学学报(自然科学版), 2003, 31(6): 738~741
    [62]黄锁义,罗建华,蒙春越等.超声波提取肾蕨总黄酮及鉴别.时珍国医国药, 2007, 18(1): 154~155
    [63]常缨,胡金良,姜述君等.南京市紫金山药用植物蕨类资源分布及其总黄酮含量的测定.东北林业大学学报, 2005, 36(3): 320~323
    [64]蔡建秀,吴文珊,吴凌云等. 22种药用蕨类植物的总黄酮含量研究.福建师范大学学报(自然科学版), 2000, 16(4): 63~66
    [65]陈炳华,李淑慧,林菊霞等. 4种鳞毛蕨科植物中总酚含量的分析.福建师范大学学报, 2003, 19(1): 86~89
    [66] Niranjan Reddy V, Ravikanth V. A new triterpenoid from the fernAdiantum lunulatumand evaluation of antibacterial activity. Phy-tochemistry, 2001, 56: 173~175
    [67]杨岚,赵玉英.荚果蕨贯众化学成分研究.中国中药杂志, 2003, 28(3): 278~279
    [68]高增平,李瑞峰.鹿角蕨化学成分的研究.热带亚热带植物学报, 2002, 10(1): 69~73
    [69]戴锡玲,李新国,张莹.药用蕨类植物资源研究及其开发利用.资源开发与市场, 2003, 19 (6): 397~399
    [70] Higuchi H, Amaki W. Effects of 6-BA on the organgenesis of Asplenium nidus L. through in vitro propagation. Scientia Hortculture, 1989, 37: 351~359
    [71] Higuchi H. In vitro propagation of Nephrolepsis cordifolia Prsel. Scientia Horticulture, 1987,32:105~113
    [72] Wynn JM, Small JL, Pakeman RJ et al.. An assessment of genetic and environmental effects on sporangial development in bracken (Pteridium aquilinum (L.) Kuhn) using a quantitative method . Annals of Botany, 2000, 85: 113~115
    [73]李苏,陈铭德.不同色光照射对蕨类植物孢子萌发的实验探究活动.生物学教学, 2007, 32(12): 46~48
    [74] Scheuerlein R, Wayne R, Roux SJ. Calcium regulation of phytochrome mediated germination: No direct phytochrome-calcium Interaction in the phytochrome-initiated transduction chain . Planta, 1989, 178:25~30
    [75] Perez G, Orozco S, Riba R. The effects of white fluorescent light, far-red light, darkness, and moisture on spore germination of Lygodium heterodoxum (Schizaeaceae) .American Journal of Botany, 1994, 81: 1367~1369
    [76] Haupt W. Effects of nutrients and light pretreatment on phytochrome-mediated fern-spore germination . Planta, 1985, 164:63~68
    [77] Ranal MA. Effect of temperature on spore germination in some fern species from semideciduous mesophytic forest . American Fern Journal, 1999, 89(2):149~158
    [78] Haupt W. Phytochrome-mediated fern-spore germination-A temperature-sensitive phase in the transduction chain after the action of Pfr . Journal of Plant Physiology, 1992, 140(5): 575~581
    [79] Fernandez H, Bertrand A M, Feito I et al.. Gametophyte culture in vitro and antheridiogen activity in Blechnum spicant . Plant Cell Tissue and Organ Culture, 1997, 50(1): 71~74
    [80] Kagawa T, Sugai M. Involvement of Gibberellic-acid in phytochrome-mediated spore germination of the fern Lygodium japonicum . Journal of Plant Physiology, 1991, 138(3): 299~303
    [81] Fisher RW, Shropshire W. Ethylene-induced inhibition of fern spore germination-Photoreversible phenomenon . Plant Physiology, 1978, 61(4): 34~36
    [82] Fisher RW, Shropshire W. Reversal by light of ethylene-induced inhibition of spore germination in the sensitive fern Onoclea sensibilis action spectrum . Plant Physiology, 1979, 63(6): 984~988
    [83] Ong BL, Koh CK, Wee YC. Effects of CO2 on growth and photosynthesis of Pyrrosia piloselloides(L.) Price gametophytes . Photosynthetica, 1998, 35(1):21~27
    [84] Camloh M, Ravnikar M, Zel J. Jasmonic acid promotes division of fern protoplasts, elongation of rhizoids and early development of gametophytes . Physiologia Plantarum, 1996, 97(4): 659~664
    [85] Chia S, Raghavan V. New Abscisic-acid effects on spore germination and protonemal growth in the fern, Mohria Caffrorum . New Phytologist, 1982, 92(1): 31~37
    [86] Haufler CH, Welling CB. Antheridiogen, dark spore germination, and outcrossing mechanisms in Bommeria (Adiantaceae) . American Journal of Botany, 1994, 81(5): 616~621
    [87] Miller JH, Vogelmann TC, Bassel AR. Promotion of fern rhizoid elongation by metal-ions and the function of the spore coat as an ion reservoir.Plant Physiology, 1983, 71(4): 828~834
    [88] Devi S, Singh J. Effects of long-term low-dose exposure to cadmium during the entire life cycle of Ceratopteris thalictroides, a water fern . Archives of Environmental Contamination and Toxicology, 1992, 23(2): 184~189
    [89] Lawrence PA, Ashenden TW. Effects of acidic gases and mists on the reproductive capability of 3 fern species . Environmental Pollution, 1993, 79(3): 267~270
    [90] Sahi AN, Singh SK. Effects of sulfite on spore germination and rhizoid development in the tropical fern Lygodium japonicum (Filicales, Lygodiaceae) . Revista de Biologia Tropical, 1994, 42(1~2): 53~57
    [91] Bannon M, Kordan H, Sheffield E. Effects of Oxybarbiturates on fern spore germination and gametophyte development. Atla-Alternatives to Laboratory Animals, 1991, 19(3): 308~315
    [92] Haas CJ, Scheuerlein R. Nitrate effect on phytochrome-mediated germination in fern spores-investigations on the mechanism of nitrate action . Journal of Plant Physiology, 1991, 138(3): 350~357
    [93] Miller JH. Inhibition of fern spore germination by lipophilic solvents. American Journal of Botany, 1987, 74(11): 1706~1708
    [94] Camloh M. Spore age and sterilization affects germination and early deveiopment of Platycerium bifurcatum. American Fern Journal, 1999, 89(2): 124~132
    [95] Knauss JF. A partial tissue culture method for pathogen-free propagation of selected ferns from spores . ProcFla State Hort. Soc, 1976, 89: 363~365
    [96] Cooke RC. Homogenization as an aid in tissue culture propagation of Platycerium and Davallia.Hort Science, 1979, 14(1): 21~22
    [97] Hyunsuk L. Morphological characteristics and spore culture in vitro of Osmunda cinnamonea var. fokimesis Copel and O. japomica Thunb. Hort.Abs., 1998, 69(8): 952~961
    [98] Sara SC. Regeneration in KT-treated gametophytes of N. multiflora. Current Science, 1998,75(5):503~508
    [99] Savita G. Effects of CTK on spore germination in Adiantum capillus-veneris L. Phytomorphology, 1991, 41(2):115~120
    [100] Schraudolf H. Temperature effects on growth, morphogenesis and antheridium differentiation of Amenia phylltidis L. Beitrage zur Biologieder Pflanzen, 1993, 67(3): 475~483
    [101] Douglas DE, Sheffield E. A new technique for the culture of fern gametophytes. Plant Cell Reports, 1990, 8: 632~634
    [102]王俊,李吉宁,梁文裕等.蕨的组织培养.植物生理学通讯, 1997, 33(6): 361
    [103]张光飞.水鳖蕨幼叶的离体快速繁殖.云南大学学报(自然科学版), 2002, 24(3): 234~236
    [104]蒋忠海.蕨类植物组织培养研究进展.江苏农业科学, 2005, 5: 100~102
    [105]王宏航,李朝森,刘慧琴等.出口观赏蕨类育苗技术.福建农业科技, 2006, 4: 35~36
    [106]廖雪兰.蕨类植物孢子萌发培养基质的研究进展.科技咨询导报, 2007, 25: 142~147
    [107] Chen S Y. Micropropagation of leatherleaf fern (Rumohra adiantiformis) . Proc Fla State Hort Soc., 1983, 96: 266~269
    [108] Amaki W. Micropropagation of Pteris ensiformis‘Victoriae’. Journal of Agricultural Science (Tokyo), 1992, 37(1): 74~82
    [109] Camloh M, Gogala N, Rode J. Plant regeneration from leaf explants of the fern Platycerium bifureatum in vitro. Scientia Horticulture, 1994, 56: 257~266
    [110] Jambor-Benczur E. In vitro regeneration and propagation of Platycerium bifucatum. Hort Acta Agromonica Hungarica, 1995, 43(1/2):59~66
    [111] Loescher WH. Development in vitro of Nephrolepis exaltala cv. Bostoniensis runner tissues. Physiol Plant, 1979, 47: 250~254
    [112] Beck MJ, Caponetti JM.The effects of kinetin and NAA on in vitro shoot multiplication and rooting in the fishtail fern. Amer J Bot., 1983, 70(1): 1~7
    [113] Dolinsek JA. Plant regeneration from scales of the fern Platycerium bifurcatum(cav.) C. Chr.Hort. Abs., 2000, 70(10): 1181
    [114] Dolinsek JA, Caloh M. Gametophytic and sporophytic regeneration from bud scales of the fern Platycerium bifurcatum(cav.) C. Chr. in vitro . Annals of Bot., 1997, 80: 23~28
    [115] Hennen GR, Sheehan TJ. In vitro propagation of Platycerium stemaria (Beauvois) Desv . Hortscience, 1978, 13(3): 245~253
    [116] Dykeman BW. In vitro propagation of the ostrich fern (Matteuacia struthiopteris) . Can J Plant Sci., 1985, 65 : 1025~1032
    [117]张玉翠.观赏蕨类的无性繁殖.中国种业, 2006, 53~54
    [118]高海波,沈应柏.观赏蕨类的无性繁殖技术.北方园艺, 2006(1):92~97
    [119]李柯,王力超.观赏蕨类植物的繁殖技术.南方农业(园林花卉版), 2008, 2(4): 76~78
    [120]王淑珍.蕨类花卉的繁殖及栽培技术.河南农业科学, 2006, 4: 87~92
    [121]牟鸿飞.光照对蕨类植物孢子萌发的影响.现代农业科学, 2009, 16(2):38~50
    [122]韩敬,赵莉.蕨类植物繁殖研究进展.安徽农业科学, 2005, 33(7): 1261~1263
    [123]陈建军,赵云,王东升.蕨孢子个体发育规律及繁殖技术的研究.吉林林业科技, 1996, (3): 5~7
    [124]张金文,牛俊义.培养基、赤霉素和硼对蕨菜孢子萌发成苗影响的研究.草业学报, 1999, 8(1): 62~88
    [125]李兆亮,原永兵,曹宗巽.藻类植物和蕨类植物有性生殖的细胞学和生物化学研究现状.植物学通报, 1995, 12(2): 1~8
    [126]纪萍,那晓婷,闫恩维.四种蕨类繁殖叶及采集期比较.中国林副特产, 2005,74(1): 13
    [127]赵秀芳.蕨类植物孢子繁殖技术.中国种业, 2005, 2: 42~43
    [128]徐秀英.蕨类植物的繁殖和栽培技术.河北林业科技, 2005, 4: 124~125
    [129]钱张.观赏蕨类的繁殖与栽培养护.安徽林业, 2007, 5: 38
    [130]顾善炳.蕨类的栽培管理要点.技术, 2008, 4: 43
    [131]王用平,曾莉莉.贵州植物园珍稀濒危蕨类植物.贵州科学, 1995, 13(3): 53~55
    [132]曾宋君.华南植物园中的蕨园.植物杂志, 2000, 2: 29
    [133]焦瑜.蕨类植物在昆明地区的引种栽培.中国野生植物资源, 2000, 19(2): 52~54
    [134]曾汉元,邱昆,张清政等.观赏蕨类引种栽培及其物候期的观察.广西植物, 2008, 28(1): 86~90
    [135]詹选怀,桂忠明,徐雪峰等.庐山地区观赏蕨类的引种及其繁殖.中国野生植物资源, 2006, 25(1): 61~65
    [136]詹选怀,彭焱松,桂忠明.庐山蕨类植物区系研究.广西植物, 2008, 28(5): 615~619
    [137]詹选怀,桂忠明,彭焱松等.庐山蕨类植物研究.中国野生植物资源, 2008, 27(1): 24~27
    [138] Stein DB. Nucleic acid comparisons as a tool in understanding species interrelationships and phylogeny. Proc RSoc Edinb, 1985, 86 :283~288
    [139] Hasebe M, Ito M, Kofuji R et al.. Phylo-genetic relationships of ferns deduced from rbcL gene sequence.J Mol Evolb,1993 ,37: 476~482
    [140]陈进明,王晶苑,刘星等.中华水韭遗传多样性的RAPD分析.生物多样性, 2004,12:348~353
    [141] Kang M,Ye Q, Huang H.Genetic consequence of restrictedhabitat and population decline in endangered Isoetes sinensis (Isoetaceae). Ann Bot, 2005, 96: 1265~1274
    [142] Nakazato T, Jung MK, Housworth EA et al.. Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics, 2006, 173: 1585~1597
    [143] Woodhead M, Russell J, Squirrell J et al.. Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta)using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol, 2005, 14: 1681~1695
    [144] Woodhead M, Russell J, Squirrell J et al.. Development EST-SSRs from the alpine lady fern, Athyrium distentifolium. Mol Ecol Notes, 2003, 3: 287~290
    [145] Korpelainen H, Britto J, Doublet J et al.. Four tropical closely related fern species belonging to the genus Adiantum L.are genetically distinct as revealed by ISSR fingerprinting. Genetica, 2005, 125: 283~291
    [146] Dong YH, Chen JM, Gituru RW et al.. Gene flow in populations of the endangered aquatic fern Ceratopteris pteridoides in China as revealed by ISSR markers. Aquatic Bot, 2007, 87:69~74
    [147]周琼,王中仁.南宁地区蜈蚣蕨居群的遗传多样性分析.广西农业生物科学, 1999, 18(4): 239~242
    [148]谢义林,周厚高,谢庆武等.桂林地区蜈蚣蕨群体遗传多样性研究及与南宁地区群体的对比分析.广西农业生物科学, 1999, 18(Sup): 148~152
    [149]黎桦,周厚高,谢义林等.柳州蜈蚣蕨群体遗传多样性研究及与南宁群体的比.广西农业生物科学, 1999, 18(Sup): 153~157
    [150]李先进.四种药用蕨类DNA提取的比较研究.绵阳师范学院学报, 2008, 27(8): 85~97
    [151]陈媛媛,叶其刚,黄宏文.中华水韭(Isoétess inensis)等位酶分析的初步研究.武汉植物学研究, 2003, 21: 91~94
    [152]潘丽芹,季华,陈龙清.荷叶铁线蕨自然居群的遗传多样性研究.生物多样性, 2005, 13: 122~129
    [153]叶林奇. 11种蕨类植物过氧化物酶同工酶比较.涪陵师范学院学报, 2005, 21(5): 104~106
    [154]周厚高,谢义林,黎桦.广西石灰岩地区蜈蚣蕨居群的遗传多样性研究.广西植物, 2002, 22(1): 67~70
    [155] Doyle JJ. DNA protocols for plants: CTAB total DNA isolation. In: Hewitt GM and Johnston A, Ed. Molecular techniques in taxonomy. Berlin: Springer-Verlag, 1991, 283~293
    [156] Setoguchi H , Ohba, H. Phylogenetic relationships in Crossostylis (Rhizophoraceae) inferred from restriction site . Molecular cell , 1995, 24 (4) : 627~633
    [157] Thompson JD, Gibson TJ, Plewniak F et al.. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25(24): 4876
    [158] Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4:406~425
    [159] Nei M , Tajima F. DNA polymorphism detectable by endonucleases. Genetics, 1981, 97: 145~163
    [160] Rozas J, Sánchez-DelBarrio JC, Messeguer X et al.. DNA polymorphism analyses by coalescent and other methods. Bioinformatics, 2003, 19: 2496~2497
    [161] Wright S. Evolution and the genetics of populations. Chicago: University of Chicago press, 1978, 132~156
    [162] Schneider S, Roessli D, Excoffier L. A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland, Arlequin ver., 2000.
    [163] Clement M, Posada D, Crandall KA. TCS: A computer program to estimate gene genealogies. Mol. Ecol., 2000, 9: 1657~1659
    [164] Ritland K, Clegg MT. Optimal DNA sequence divergence for testing phylogenetic hypothese, in Clegg MT, O’Brien SJ [eds.], Molecular evolution, UCLA symposia on molecular and cellular biology. Alan R. Liss , New York , NY, new series, 1990, 122: 289~299
    [165] Schaal BA, Haywood DA, Olsen KM et al.. Phylogeographic studies in plants: problems and prospects. Molecular Ecology, 1998, 7: 465~474
    [166]李小娟,王留阳,杨惠玲等.麻花艽和管花秦艽(龙胆科)之间自然杂交类型的分子验证.云南植物物研究, 2007, 29(1): 91~99
    [167] Song BH, Wang XQ, Wang XR et al.. Cytoplasmic composition in Pinus densat and population establishment of the diploid hybrid pine. Molecular Ecology, 2003, 12: 2995~3001
    [168] Kress WJ, Wurdack KJ, Zimmer EA et al.. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 8369~8374
    [169] Hollingsworth P M. Progress and outstanding questions. Heredity, 2008, 101: 1~2
    [170] Lahaye R, van der Bank M, Bogarin D et al.. DNA barcoding the floras of biodiversity hotspots. Proceedings of the NationalAcademy of Sciences of the United States of America, 2008, 105: 2923~2928
    [171]陈士林,姚辉,宋经元等.基于DNA barcoding(条形码)技术的中药材鉴定.世界科学技术:中医药现代化, 2007, 9(3): 712
    [172] Wang YJ, Liu JQ. Phylogenetic analyses of Saussurea sect. Pseudoeriocoryne (Asteraceae: Cardueae) based on chloroplast DNA trnL-F sequences. Biochemical Systematics and Ecology , 2004, 32: 1009~1023
    [173] Su YJ, Wang T, Zheng B et al.. Genetic differentiation of relictual populations of Alsophila spinulosa in southern China inferred from cpDNA trnL-F noncoding sequences. Mol. Phylogenet. Evol, 2005, 34: 323~333
    [174] Wang HW. Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Mol. Ecol, 2006, 15: 4109~4122
    [175] Qiu YX, Guan BC, Fu CX et al.. Did glacials and/or interglacials promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation and divergence in Dysosma versipellis. Mol. Phylogenet. Evol, 2009, 51:281~293
    [176] Qiu YX, Qi XS, Jin XF et al.. Population genetic structure, phylogeography, and demographic history of Platycrater arguta (Hydrangeaceae) endemic to East China and South Japan, inferred from chloroplast DNA sequence variation. Taxon, 2009, 58:1226~1241
    [177]应俊生,张玉龙, Boufford DE.中国种子植物特有属.北京:科学出版社. 1993, 103~105
    [178]应俊生.中国种子植物物种多样性及其分布格局.生物多样性, 2001, 9(4): 393~398
    [179]景才瑞,刘会平.论李四光与中国第四纪地质研究.武汉:湖北学术出版社, 1993, 110~121
    [180] Kikvidze Z, Ohsawa M. Richness of Colchic vegetation: comparison between refugia of south-western and East Asia. BMC Ecology , 2001, 1: 1~10
    [181] Wu ZY, Wu SG. A proposal for a new floristic kingdom (realm)—The E. Asiatic kingdom, its delimitation and characteristics. In: Zhang A.L., Wu, S.G. (Eds.), Proceedings of the First international symposium on floristic characteristics and diversity of East Asian plants. China Higher Education Press, Beijing, China, and Springer-Verlag, Berlin, Heidelberg, Germany, 1998, 3~42
    [182] Zhang ZY, Fan L, Yang J et al.. Alkaloid polymorphism and ITS sequence variation in the Spiraea japonica complex (Rosaceae) in China: Traces of the biological effects of the Himalaya-Tibet Plateau uplift. American Journal of Botany, 2006, 93: 762~769
    [183] Chen YT , Zhou ZK et al.. Phylogeny and biogeography of the genus Ainsliaea (Asteraceae) in the Sino-Japanese region based on nuclear rDNA and plastid DNA sequence data. Annals of Botany, 2008, 101 : 111~124
    [184] Tian SL, Luo C , Ge S et al.. Clear genetic structure of Pinus kwangtungensis (Pinaceae) revealed by a plastid DNA fragment with a novel minisatellite. Annals of Botany , 2008, 102: 69~78
    [185]邵世光,韩丽,马艳红等.枫头类石斛cpDNApsbA-trnH的序列分析与鉴别.药学学报, 2009, 44(10): 1173~1178
    [186]王以红,陶晓瑜,刘海龙等.两个叶绿体基因位点的DNA条形码在桉属种间鉴定中的应用.园艺学报, 2009, 36 (11) : 1651~1658
    [187]哀建国,张一奇.天目山自然保护区蛇足石杉生境群落学特征研究.浙江林业科技, 2005, 25(4): 14~16
    [188]方炎明,章正忠,王文军.浙江龙王山和九龙山鹅掌楸群落研究.浙江林学院学报, 1996, 13(3): 286~292
    [189]吴征镒.中国种子植物属的分布区类型.云南植物研究, 1991,增刊Ⅳ:1~139
    [190]吴征镒.“中国种子植物属的分布区类型”的增订和勘误.云南植物研究, 1993,增刊Ⅳ:141~178
    [191]吴征镒,周浙昆,李德铢等.世界种子植物科的分布区类型系统.云南植物研究, 2003, 25(3): 245~257
    [192]吴征镒.《世界种子植物科的分布区类型系统》的修订.云南植物研究, 2003, 25(5):535~538
    [193]金则新.浙江天台山七子花群落特征的初步研究.广西植物, 1996, 16(1):25~34
    [194]宋永昌.植被生态学.上海:华东师范大学出版社, 2001, 186~193
    [195]哀建国,吴世忠,陈锦宇.石垟林场省级森林公园常绿阔叶林物种多样性研究.浙江林业科技, 2005, 25(2): 9~13
    [196]王伯荪.植物群落学.北京:高等教育出版社, 1978, 103~104
    [197]李家实.中药鉴定学.上海:科学技术出版社, 1996, 362
    [198]常新全,丁丽霞.中药活性成份分析手册.北京:学苑出版社, 2002, 1108
    [199]滕菲,唐章亮.超级杂交稻中浙优1号测土配方施肥研究.现代农业科技, 2009, ( 2):128~129
    [200]李晓勤.谈测土配方施肥技术的推广.现代农业科技, 2009, (2):191~192
    [201]黄胜君.火焰光度计法测定土壤速效钾读数漂移的控制.农技服务, 2007, 24( 3) :117~118
    [202]万益群,柳英霞,郭岚等.电感耦合等离子体原子发射光谱法测定当归补血汤中多种微量元素.光谱学与光谱分析, 2007, (01) :160~165
    [203]张胜帮,郭玉生. ICP - AES法测定酸枣仁汤中多种金属元素.光谱学与光谱分析, 2004, 13(4): 71~14
    [204]贾永莹.世界干旱地区概貌.干旱地区农业研究, 1995, 139(1): 121~126
    [205]罗志成.北方旱地农业研究的进展与思考.干旱地区农业研究, 1994, 12(1): 4~13
    [206]肖春旺,周广胜.不同浇水量对毛乌素砂地砂柳幼苗气体交换过程及其光化学效率的影响.植物生态学报, 2001, 25(4): 444~450
    [207]黄占斌,山仑.春小麦水分利用效率日变化及其生理生态基础的研究.应用生态学报, 1997, 8(3): 263~269
    [208] Hirasawa T, Hsiao TC. Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Research, 1999, 62: 53~62
    [209] Alderfasi AA, Nielsen DC. Use of crop waters tress index for monitoring water status and scheduling irrigation in wheat. Agricultural Water Management, 2001, 46(3): 241~251
    [210]黄昌勇.土壤学.北京:农业出版社, 2000, 102~104
    [211] Bilger W, Bj?rkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res , 1990, 25: 173~185
    [212] Demmig-Adams B, Adams WW, Barker DH et al.. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation to of excess excitation. Physiol. Plant., 1996, 98: 253~264
    [213] Wellburn AR, Lichtenthaler H. Formulae and program to determine carotenoids and chlorophyll a and b of leaf extracts in different solvents. In: Sybesma C (ed.): Advances in photosynthesis Research. Martinus Nijhoff: Dr W Junk Publisher, The Hague/Boston/Lancaster, 1984, (1): 9~12
    [214] Huang ZA, Jiang DA, Yang Y et al.. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence and antioxidant enzymes in leaves of rice plants. Photosynthetica, 2004, 42: 357~364
    [215] Giannopolitis CN , Ries SK. Superoxide dismutases: I. occurrence in higher plants. Plant Physiology, 1977, 59: 309~314
    [216] Hsiao TC. Plant response to water stress. Ann Rev Plant Physiol, 1973, 24: 519~570
    [217] Carrasco RM, Rodriguez JS, Perez P. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia forst and forst. Photosynthetica, 2002, 40(3): 363~368
    [218] Hui HX, Ii QR. Exogenous betaine improves the photosynthesis of Lycium barbarum under salt stress. Acta bot. Boreal, Occident. sin, 2003, 23(12):2l37~2422.
    [219] Xu HF, Iiu XT, Jin YM. Study on sunflower chloroPhyll and the specific leaf weight. System sciences and comprehensive studies in agriculture, 2003, 19(2):97~100
    [220] Cornic G, Briantaris JM. Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta, 1991, 183: 178~184
    [221] Quick WP, Chaves MM, Wendler R et al.. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Enviro, 1992, 15: 25~35
    [222] Lal AM, Ku SB, Edwards GE. Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgare and Vicia f aba : electron transport , CO2 fixation and carboxylation capacity. Photosynth Res, 1996, 49: 57~69
    [223]张岁岐.植物水分利用效率及其研究进展.干旱地区农业研究, 2002, 20(4): 1~4
    [224]林金科.水分胁迫对茶树光合作用的影响.福建农业大学学报,1998, 27(4): 423~427
    [225]孙骏威,杨勇,蒋德安.水分亏缺下水稻的光化学和抗氧化应答.浙江大学学报(农业与生命科学版), 2004, 26(3): 92~98
    [226]赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报, 2007, 15: 63~66
    [227]徐红霞,翁晓燕,毛伟华等.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响.中国水稻科学, 2005, 19: 338~342
    [228] Liu XZ, Huang BR. Heat stress injury in relation to membrane liqid peroxidation in creeping bentgrass. Crop Science, 2000, 40: 503~510
    [229]岳思君,苏建宇.蕨孢子培养.宁夏农学院学报, 2002, 23(1): 72~73
    [230]韩见宇,董燕,孙超.桂皮紫萁的孢子繁殖.贵州科学, 1998,16(1) : 69~72
    [231]吴学明,苏旭.华槲蕨孢子人工繁殖的初步研究.青海科技, 2005(3): 36~38
    [232]蒋胜军,曾霞,王胜培等.海南白桫椤组织培养的研究.热带农业科学, 2002, 22(6): 9~12
    [233]徐艳,石雷,刘燕等.大叶黑桫椤孢子的无菌培养.植物生理学通讯, 2004, 40(1): 72~76
    [234]徐艳,石雷,刘燕等.白玉凤尾蕨孢子繁殖技术的研究.园艺学报, 2005, 32(4): 658~662
    [235] Goller K, Ryaczynski JJ. In Vitro Culture Used for Woody Fern Cyathea australis (R. Br.)Domin Vegetative Propagation. Acta Societatis Botanicorum Poloniae, 1995, 64(1):13~17
    [236]吴艳芳,尤敏,王新胜等.槲蕨配子体发育影响因素的初步研究.武汉植物学研究, 2005, 23(5): 461~463
    [237] Raghavan V. Developmental biology of fern gametophytes. New York: Cambridge UniversityPress, 1989, 115~221
    [238] Sheffield E G E, Douglas S J, Hearned S, et al.. Enhancement of fern spore germination and gametophyte growth in artificial media. Amer. Fern J., 2001, 91: 179~186
    [239]牛俊义,李胜,秦舒浩等.光照条件及外源物质对蕨菜孢子萌发成苗的影响.园艺学报, 2002, 29(6): 584~586
    [240]姜述君,冯延江,黎玉梅等.薇菜孢子人工繁殖的环境条件.中国蔬菜, 2001(5): 11~13
    [241]杜红红.光照、温度和pH值对4种桫锣科植物孢子萌发及早期配子体发育的影响.东北林业大学,2009, 32(6): 15~17
    [242] Ranal MA. Effect of temperature on spore germination in some fern species from semideciduous mesophytic forest. American Fern Journal, 1999, 89(2): 149~158
    [243]张金文,牛俊义.培养基质、赤霉素和硼对蕨菜孢子萌发成苗影响的研究.草业学报, 1999, 8(1): 62~68
    [244]鲁雪华,郭文杰,刘润东等.华南鳞盖蕨的组织培养和快速繁殖.植物生理学通讯, 2005, 41(4): 495
    [245]曾宋君,关丽.波斯顿蕨的组织培养.植物组织培养简报, 1996, 32(3): 198~200
    [246]曾宋君,陈之林,段俊.楔叶铁线蕨的离体快繁.植物生理学通讯, 2005, 41(4): 499
    [247]罗世家.影响薇菜生长的主要环境因子分析.湖北民族学院学报, 2001, 19(4): 8~10
    [248]王新华,赵恒田.多齿蹄盖蕨孢子的离体培养.植物生理学通讯, 2004, 40(3): 345
    [249]陈龙清,季华,袁芳亭.荚果蕨孢子的无菌培养.植物生理学通讯, 2000, 36(5): 436~437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700