用户名: 密码: 验证码:
大尺寸视觉测量精度的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制造业的发展,对测量任务提出了大范围、高精度、现场测量,甚至动态测量的要求。传统的三维测量技术无法满足这一要求,在这种背景下,视觉测量技术得以产生并成为一个重要的研究方向。视觉测量技术以图像为信息的载体,和计算机技术紧密的结合,具有非接触、快速测量、高精度等特点,已被广泛应用于各种测量任务中。视觉测量系统的精度直接决定着该系统的价值,因此研究视觉测量的精度理论及实验有重要的意义。
     本文在相关项目的资助下,较系统的研究了大尺寸视觉测量精度的理论,具体涵盖了测量的误差源、误差传递分析、精度的评价、摄像机标定等方面。论文主要针对以下几个关键问题展开了研究并取得相应成果:
     (1)为了推导重建点的不确定度、投影矩阵和像点不确定度的数学关系,提出了利用参数方程重新描述投影过程的新思路。文中改变了视觉测量系统的原有解算方程,利用参数方程描述投影过程,并重新推导了三维重建点的解算方程。该方法克服了原有分析方法过于繁杂的不足,简化了误差传递分析,给出了明确的重建点不确定度的数学公式。同时,利用该数学公式估计权值,提出了视觉测量系统的加权最小二乘算法,仿真和实验结果表明,该算法在摄像机数量较少的条件下解算精度优于原有方法,在摄像机数量较多的条件下解算精度不次于原有方法。
     (2)针对视觉测量系统样本量小,误差非典型分布,以及并非所有的影响因素都可以建立明确的数学公式的问题,将灰色系统理论用于视觉测量系统。文中首先改进了灰色系统理论,提出利用灰色系数向量来描述测量数据的不确定度,在此基础上利用灰色系统关联分析方法,研究因素对视觉测量系统精度的影响,该方法弥补了采用数理统计方法作系统分析导致的不足,给出了影响因素和测量精度之间的关联度,为视觉测量方案的设计提供了参考依据。
     (3)针对大尺寸视觉测量的精度评价问题,提出了以距离约束为基础,进行点的拟合,利用拟合点估计偏差和不确定度的评定方法,并定义为拟合点的偏差和离散度。该方法首先在视场内建立多个基准距离;利用距离和坐标系的选取无关的性质,在视觉测量系统中,基于距离约束对点的偏差进行拟合。由于存在误差,使得该点的拟合存在离散度,从而将多个控制点的不确定度传递到拟合点上,利用该点的拟合不确定度来表示整个视觉测量的不确定度。实验中,偏差估计达到了设定的置信水平,不确定度的估计也符合实际值。
     (4)摄像机参数标定是视觉测量的关键环节,本文针对大尺寸视觉测量系统的摄像机标定问题,提出了二维柔性拼接标定方法。该方法基于多个子标定板,各子标定板分为扩展区和识别区,其中识别区由编码点组成,通过编码点的匹配使得多个子标定板拼接成一个虚拟的母标定板,从而构成一个大面积的二维标定板。该方法可以随意布置标定板,在视场内随意的扩展母标定板的面积,并且标定板制备非常方便,可以很好的适用于大尺寸视觉测量系统的摄像机标定。实验结果表明,该方法的标定精度较高。
Measurement is an important method for human beings to understand the world and is the basis of science development. With the development of manufacturing industries, the large-scale, high accuracy, even all attitude and dynamical measurement are required. The traditional three-dimensional measurement technology (CMM) can not meet these requirements. In this context, the vision measurement technology emerges and is becoming more important. Based on the rigorous theory and modern software and hardware facilities, vision measurement system has been closely combined with computer. The vision measurement technology as a non-contact, high accuracy, rapid measurement method has been applied widely. Accuracy is the core indicator of any measurement task, so it is significance to study the accuracy theory of vision measurement.
     Supported by relevant fund project, the accuracy theory of vision measurement is studied. In this paper, the research covered measurement error sources, error propagation analysis, accuracy evaluation and camera calibration. The dissertation conducts researches on the following issues:
     (1)In order to derive mathematical formulas from the uncertainty of reconstructing points, projection matrix and the uncertainty of image points, the vision measurement theory based on the parameter equations is proposed. In this paper, the original projective equations are substituted by parameter equations, and the solved fomulas are rederived. This method overcomes the original disadvantages. By this method the error propagation analysis is simplified and the mathematical formulas of uncertainty of reconstructing points are provided clearly. Based on the formulas, the weighted least square algorithm for vision measurement is proposed. Simulation and experiment results show that the method in the conditions of small number cameras is better than the original method, and in the conditions of large number cameras is not worse than the original method.
     (2) For the small sample size of vision measurement, error atypical distribution, and not all factors can be expressed by formulas, the grey system theory is used to vision measurement system analysis. Firstly, some part of the grey theory is researched and improved in this paper. The grey coefficient vector is proposed to describe the uncertainty of vision measurement that increases the stability. Then the grey system relation analysis method is used to study the impact of those factors. The grey theory is used to research the vision measurement system to make up some shortcoming of the statistical method and the correlation between the measurement accuracy and factors is described. This method provides a reference for the vision measurement plan design.
     (3) In order to evaluate the measurement accuracy of large scale vision measurement system, the method named "the variance of fitting point" based on distance constraints was proposed. Firstly, several line segments of known length with common vertex were placed in the view field and these length values were considered as true values. In vision measurement system coordinate, these line segments could not cross one point because of the error existence. According to the length constraint, a point would be fitted by the least error square algorithm. Finally, the measurement accuracy was denoted by the variance of the fitting point. In the experiment, bias estimation for 88 points has one point bias beyond the limit deviation, and the uncertainty evaluation is consistent.
     (4) The camera calibration is key factor of vision measurement. Focusing on the camera calibration of the large scale vision measurement system, the calibrating method based on two-dimensional connectible flexible object is proposed by this paper. The method based on many two-dimensional objects that include extending part and discriminative part. The discriminative part composed by encoded points. Many sub-objects connected by those encode points that make up of a large size two-dimensional object. This method can connect sub-object without errors, then calibrating the camera with high precision. The method can extend the two-dimensional object area enough large, and it is flexible and convenience. The method can accomplish the camera calibration task of the large scale vision measurement system.
引文
[1]Clive Fraser. Industrial photogrammetry applied to deformation measurement, Presented at the symposium Real Time Photogrammetry - A new challenge[C]. Ottawa, Canada, Jun.1986,15-19.
    [2]冯文灏.工业测量方法及其选用的基本原则[J].武汉大学学报信息科学版,vol.26(4),2001:331-336.
    [3]洪立波.现代工程测量学科发展现状-中国测绘学会2003年蓝皮书[M].北京:测绘出版社,2003.
    [4]Fraser, C. S. State of the art in industrial photogrammetry [J]. Ibid.,27(B5),1988:166-181
    [5]C. S. Fraser, D. C. Brown. Industrial Photogrammetry:New Developments and Recent Applications [J]. Photogrammetric record,12(68),1986:197-217.
    [6]Fraser, C. S. Innovations in automation for vision metrology systems [J]. Photogrammetric record,15(90),1997:901-911.
    [7]Boesemann, W. Sinnreich. An optical 3D tube measurement system for quality control in industry [J]. SPIE,2249,1994:192-199.
    [8]张国雄.三坐标测量机[M].天津大学出版社,1999.
    [9]许智钦,孙长库.3D逆向工程技术[M].中国计量出版社,2002.
    [10]李广云.工业测量系统进展[M].北京:解放军出版社,2000.
    [11]Faro公司,FaroARM便携式三坐标测量臂的产品说明书[S].2004.
    [12]李广云.激光跟踪测量系统的原理及在车身在线检测中的应用[J].上海计量测试,Vol.29(4),2002:14-18.
    [13]O. Nakamura, M. Goto. Development of a Coordinate Measuring System with Tracking Laser Interferometers [J]. Annals of the CIRP,40(1),1991.
    [14]API公司.激光跟踪仪产品说明书[S].2005
    [15]F. Kobayashi, T. Fukuda, K. Shimojima, T. Takusagawa, Shape measurement method integrating stereo vision and shape-from-shading with evolutionary programming[C]. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems,1997:1561-1566.
    [16]K.LBoyer, A.C KAK, Color-encoded structured light for rapid active ranging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1987,9(1):14-28.
    [17]T. Pancewicz, M. Kujawinska, CAD/CAM/CAE representation of 3D objects measured by fringe projection [J]. In:Proc. SPIE 3479,1998:70-75.
    [18]于来法,段定乾.实时经纬仪工业测量系统[M].北京:测绘出版社,1996.
    [19]潘正风.工程测量技术发展现状[J].铁道勘察,2004(6):1-3.
    [20]戴永江.激光雷达原理[M].北京:国防工业出版社,2002.
    [21]李宗春,李广云等.天线反射面精度测量技术述评[J].测绘通报,2003(6):16-19.
    [22]Clive Fraser. A summary of the industrial applications of photogrammetry[C]. Invited paper to the first Australian photogrammetric conference, Sydney. Nov.1991,7-9.
    [23]Frank chen, Gordon M.Brown, Mumin Song. Overview of three-dimensional shape measurement using optical methods[J]. Optical Engineering,39(1),2000:10-21.
    [24]邓文怡,吕乃光.测量工件三维表面的工业视觉测量系统[J].华中理工大学学报,Vol.27(1),1999:79-83.
    [25]桑新柱,吕乃光.三维形状测量方法及发展趋势[J],北京机械工业学院学报,(2),2001:32-38.
    [26]邓文怡,吕乃光等.三维拼接在大尺寸视觉测量中的应用[J].光电子·激光,Vol.13(11,)2002:1145-1147.
    [27]C. S. Fraser. Photogrammetric measurement to one part in a million[J]. Photogrammetric Engineering and Remote Sensing, Vol.58 (3),1992:305-310.
    [28]邓文怡,吕乃光等.数字摄影测量技术在三维测量中的应用[J].光电子·激光,Vol.12(7),2001:697-700.
    [29]N. Welsh. Photogrammetry in Engineering [J]. Photogrammetric record, Vol.12 (67),1986: 25-44.
    [30]Lu Naiguang, Deng Wenyi, Dong Mingli, et al.. Photogrammetric measurement of space deployable microwave antenna [J].5th international symposium on test and measurement, Vol.3,2003:2419-2422.
    [31]R. S. Pappa, L. R. Giersch, J. M. Quagliaroli et al.. Photogrammetry of A 5M Inflatable Space Antenna with Consumer-grade Digital Cameras [J]. Experimental Technique, Vol.25 (4),2001:21-29.
    [32]于来法,段定乾.实时经纬仪工业测量系统(2)[M].北京:测绘出版社,1996.
    [33]黄桂平.多台电子经纬仪/全站仪构成混合测量系统的研究与开发[M].郑州:解放军测绘学院,1999.
    [34]叶声华,邹定海,王春和等.轿车白车身三维尺寸视觉检测系统[J].机械月刊,20(2):120-123.
    [35]Calibration Report for LT500/LTD500 Laser Tracker[R]. Leica Geosystems AG,1999
    [36]Wendt. Development of Test and Calibration Procedure for Automated Theodolite Systems in Production Metrology[R]. PTB Project Report,1996
    [37]陈泽志吴成柯等.计算机视觉测量系统的误差模型分析[J].计算机辅助设计与图 形学学报 vol 14, No.5 may 2002.
    [38]Shin S W. When should we consider lens distortion in camera calibration [J]. Pattern Recognition,1995,28(3).
    [39]孙九爱,吕东辉,宋安平等.计算机视觉中传感器规划综述[J].中国图象图形学报,6(11),2001:1047-1052.
    [40]Cowan C K, Kovesi P D. Automatic sensor placement from vision task requirements [J]. IEEE Trans. on PAM1.,10(3),1988:407-416.
    [41]Fraser C.S. Optimization of precision in closed-ranged photogrammetry [J]. Photogrammetric Engineering and Remote Sensing,48(4),1982:561-570.
    [42]Mason S, Gruen A. Automatic sensor placement for accurate dimensional inspection [J]. Computer Vision and Image Understanding,61(3),1995,:454-467.
    [43]Olague G., Dunn E. Development of a practical photogrammetric network design using evolutionary computing [J]. Photogrammetric Record,2006.
    [44]Fraser C. S. Optimization of precision in closed-ranged photogrammetry [J]. Photogrammetric Engineering and Remote Sensing,48(4),1982:561-570.
    [45]于起峰,陆宏伟等.基于图像的精密测量与运动测量[M].科学出版社,2002,P11-14.
    [46]张广军.机器视觉[M].科学出版社,2005.
    [47]马颂德,张正友.计算机视觉[M].北京,科学出版社,1998.
    [48]Maurice G C, Bernd R. The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty [J]. Metrologia,2006,43(4):S178-S188.
    [49]Trapet E, Savio E, DE Chiffre L. New advances in traceability of CMMs for almost the entire range of industrial dimensional metrology need [J]. CIRP Annals:Manufacturing Technology,2004,53(1):433-438.
    [50]Abdel-Aziz Y I, Karara H M. Direct linear transformation from comparator coordinates into object space coordinates. In:Proceedings of Symposium on Close-Range Photogrammetry [J]. Virginia, USA:American Society of Photogrammetry,1971.1-18.
    [51]Tsai R, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration [J]. IEEE Transactions on Robotics and Automation,1989,5(3): 345-358.
    [52]Tsai R. An efficient and accurate camera calibration technique for 3D machine vision [C]. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA,1986.364-374.
    [53]Weng J Y, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(10):965-980
    [54]Zhang Z Y. Flexible camera calibration by viewing a plane from unknown orientations [C]. In:Proceedings of IEEE International Conference on Computer Vision. Kerkya, Greece, 1999.666-673
    [55]Meng X Q, Li H, Hu Z Y. A new easy camera calibration technique based on circular points [C]. In:Proceedings of the British Machine Vision Conference, Bristol, UK, 2000.496-505
    [56]Sturm P F, Maybank S J. On plane-based camera calibration:a general algorithm, singularities, applications [C]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado, USA,1999.1:432-437
    [57]Zhang Z Y. Camera calibration with one-dimensional objects [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2004,26(7):892-899
    [58]Hammarstedt P, Sturm P, Heyden A. Degenerate cases and closed-form solutions for camera calibration with one-dimensional objects [C]. In:Proceedings of IEEE International Conference on Computer Vision. Beijing, China,2005.1:317-324.
    [59]Wu F C, Hu Z Y, Zhu H J. Camera calibration with moving one-dimensional objects[C]. Pattern Recognition,2005,38(5):755-765.
    [60]Maybank S J, Faugeras O.D. A theory of self-calibration of a moving camera [J]. International Journal of Computer Vision,1992,8(2):123-151.
    [1]张广军.机器视觉[M].科学出版社,2005:25-27.
    [2]马颂德,张正友.计算机视觉[M].北京,科学出版社,1998:54-59.
    [3]吴斌,杨学友,叶声华.基于三维测量模型的立体视觉传感器的现场标定技术[J].光电子激光,Vol.14 No.8 2003.8:817-819.
    [4]谢耀华,汤晓安等.基于双相机的数字摄影测量系统关键技术研究[J].仪器仪表学报,Vol.25 No.4 2004.8:583-584.
    [5]刘佳音,王忠立,贾云得.一种双目立体视觉系统的误差分析方法[J].光学技术,Vol.29 No.3 2003.5:354-357.
    [6]Zhang Z Y. Flexible camera calibration by viewing a plane from unknown orientations [C]. In:Proceedings of IEEE International Conference on Computer Vision. Kerkya, Greece, 1999.666-673.
    [7]Tsai R. An efficient and accurate camera calibration technique for 3D machine vision [C]. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA,1986.364-374..
    [8]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,Vol.26(1)2000:43-54.
    [9]Edward M. Mikhail, James S. Bethel, J. Chris McGlone. Introduction to Modern Photogrammetry [J]. New York: John Wiley & Sons, Inc.,2001.
    [10]Wesley E.Snyder, Hairong Qi. Machine vision [M]. China Machine Press,2005
    [11]Linda GShapiro, George C.Stockman. Comuter Vision [M]. China Machine Press, 2005:17-20
    [12]谭跃钢,吴正平.一种新的基于双目视模型的三维重建方法[J].仪器仪表学报,2001.6(22):219-220.
    [13]刘伟,马峻.基于多视图的三维空间点精确重建算法[J].计算机工程与设计,2009.30(12):3035-3037
    [14]张琦.机器视觉系统的原理及现状[J].电子工业专业设备,1999.4.
    [15]查燕萍,张华平.数字摄影测量发展现状与趋势初探[J].江西测绘,2009(4):4-6.
    [16]张效栋,孙长库.新型简易三维数字化全貌测量系统[J].传感技术学报,Voi.21 No.10,2008.10:1798-1803.
    [17]王娟,裘祖荣,李鹏燕.一种新的视觉坐标测量模型及影响因素分析[J].光电子激光,Vol.20 No.9,2009.9:1181-1185.
    [18]王俊龙,曲兴华等.多目视觉检测技术中的照明系统设计[J].光电技术应用,Vol.24 No.4,2009.8:1-6.
    [19]卢成静,黄桂平,李广云.V-STARS工业摄影三坐标测量系统精度测试及应用[J].VOL.36 2007.6:245-249.
    [20]李东明.V-STARS摄影测量系统的原理与应用[J].水利电力机械,Vol.28 No.102006.10:26-27.
    [21]http://www.chenweikeji.cn/
    [22]刘建伟,梁晋等.大尺寸工业视觉测量系统[J].光学精密工程,Vol.18 No.12010.1:126-133.
    [23]黄桂平,钦桂勤,卢成静.数字近景摄影大尺寸三坐标测量系统V-STARS的测试与应用[J].宇航计量技术,Vol.29 No.2,2009.4:5-9.
    [1]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].科学出版社,2002.10:13-14.
    [2]Weng J, Cohen P, Herniou M. Camera Calibration with distortion models and accuracy evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(10):965-980.
    [3]Guo-Qing Wei, Song De Ma, Implicit and explicit camera calibration:theory and experiments[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,16(5), 1994:469-480.
    [4]兰海滨,王平,龙腾.图像拼接中摄像机镜头非线性畸变的校正[J].光学精密工程,2009(5):1196-1199.
    [5]刘航,郁道银,杜吉等.广角成像系统光学畸变的数字校正方法[J].光学学报,1998.8:1108-1111.
    [6]Linda G.Shapiro, George C.Stockman. Comuter Vision [M]. China Machine Press,2005:24
    [7]Olague G., Dunn E., Development of a practical photogrammetric network design using evolutionary computing[J], Photogrammetric Record,2006
    [8]Fraser C. S., Optimization of precision in closed-ranged photogrammetry[J], Photogrammetric Engineering and Remote Sensing,48(4),1982:561-570.
    [9]孙九爱,吕东辉,宋安平等,计算机视觉中传感器规划综述[J],中国图象图形学报,6(11),2001:1047-1052.
    [10]Cowan C K, Kovesi P D. A utomatic sensor placement from vision task requirements [J], IEEE Trans. on PAMI.,10(3),1988:407-416.
    [11]Fraser C.S., Optimization of precision in closed-ranged photogrammetry[J], Photogrammetric Engineering and Remote Sensing,48(4),1982:561-570.
    [12]Mason S, Gruen A, Automatic sensor placement for accurate dimensional inspection [J], Computer Vision and Image Understanding,61(3),1995:454-467.
    [13]Connolly C I, The determination of next best view [J], Proc. IEEE Int. Conf. Robotics Automat,1985:432-435.
    [14]Banta J. E., Zhien Yu, Wang X. Z., et al. Best-next-view algorithm for three-dimensional scene reconstruction using range images[J], SPIE on Intelligent Robots and Computer Vision,2588,1995:418-429.
    [15]Madsen C B, Christensen H I, A viewpoint planning strategy for determining true angles on polyhedral objects by camera alignment[J], IEEE Trans. On PAMI.,19(2),1997: 158-163.
    [16]E. Trucco, M. Umasuthan, A.M., et al, Model-based planning of optimal sensor placement for inspection[J], IEEE Trans. Robotics and Automation,13(2),1997:182-193.
    [17]Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986,8(6):679-698.
    [18]J. Liao, Z.Yuan. Image Noise Analysis and Pre-processing for Pattern Match [J]. Opto-Electronic Engineering.2002,29(6):21-25.
    [19]陈泽志吴成柯等.计算机视觉测量系统的误差模型分析[J].计算机辅助设计与图形学学报vol 14,No.5 may 2002.
    [20]冯文灏.近景摄影测量[M].武汉大学出版社,2002.2:63
    [21]马颂德.计算机视觉[M].科学出版社,2003.6:107-109.
    [1]刘智敏等.测量不确定度手册[M].北京:中国计量出版社,1997.
    [2]ISO/TAG4/WG3. Guide to the Expression of Uncertainty in Measurement[S]. Switzerland, 1993.
    [3]倪有才.关于测量不确定度的基本概念[J].中国计量,2005.1:73-74.
    [4]黄琴,赵红玉,邓贤锋.测量结果表示与A类不确定度的研究[J].计量与测试技术,Vol.36,No.11,2009.10:77-78.
    [5]魏元东,李伟克.关于测量不确定度评定结果的引用[J].计量与测试技术,V0l.36,No.11,2009.1 1:68-69.
    [6]司阳,吴晓华.关于测量不确定度评定与表示中存在问题的探讨[J].中国计量,2009.12:90.
    [7]G. Olague, R. Mohr. Optimal camera placement for accurate reconstruction [J]. Pattern Recognition,35(4),2002.4:927-944.
    [8]马颂德,张正友.计算机视觉[M].科学出版社,2003.9:107-109.
    [9]EUGEGNE S.Mckvey, JONGW Lee. Some accuracy and resolution aspects of computer vision distance measurements [J]. IEEE PAM 1.1982,4:646-649.
    [10]刘鹏程,艾廷华,邓吉芳等.基于最小二乘的建筑物多边形的化简与直角化[J].中国矿业大学学报,Vol.37,No.5,2008.9:699-704.
    [11]仲崇权,张立勇,杨素英等.基于最小二乘原理的多传感器加权融合算法[J].仪器仪表学报,Vol.24,No.4,2003.8:427-430.
    [12]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2000:38
    [13]张克欣.三坐标测量机测量结果的不确定度评定[J].中国计量,2009.7:87-89.
    [14]陆晓绗,张莉蓉.应用测量不确定度结果应注意的问题[J].中国计量,2009.1:87.
    [15]赵万生,史旭明,王刚.参数方程曲线的直接插补算法研究[J].哈尔滨工业大学学报,Vol.32,No.1,2000.2:133-136.
    [16]王平波,蔡志明,姜可宇.非高斯AR序列参数的加权最小二乘估计[J].武汉理工大学学报,Vol.32,No.6,2008.12:1009-1012.
    [17]楼智美.非中心力场中经典粒子的轨道参数方程与对称性[J].物理学报,Vol.54,No.4,2005.4:1460-1463.
    [18]倪忠德,冯国华,马宝华.基于加权最小二乘法的多舰定位算法[J].北京理工大学学报,Vol.25,No.1 1,2005.11:971-974.
    [19]韩玉兵,束锋,吴乐南.基于加权最小二乘滤波的视频序列超分辨率重建[J].电子与信息学报,Vol.31,No.1,2009.1:120-123.
    [20]张在房,褚学宁,程辉.基于模糊加权最小二乘的多粒度语言决策信息集成[J].上海交通大学学报,Vol.43,No.9,2009.9:1377-1382.
    [21]罗海勇,李锦涛,赵方等.基于软约束模式的加权最小二乘节点定位算法[J].系统仿真学报,Vol.20,No.21,2008.11:5767-5772.
    [22]杨剑,吕乃光,董明利.加权最小二乘算法在机器视觉系统中的应用[J].光学精密工程,Vol.17,No.8,2009.8:1870-1877.
    [23]张小凤,赵俊渭,王荣庆等.双基地加权最小二乘估计算法定位精度研究[J].兵工学报,Vol.25,No.6,2004.11:761-765.
    [24]司刚全,曹晖,张彦斌等.一种基于密度加权的最小二乘支持向量机稀疏化算法[J].西安交通大学学报,Vol.43,No.10,2009.10:11-15.
    [25]赵学智,陈统坚,叶邦彦.基于参数方程的小波基自适应选择[J].机械工程学报,2004.11.
    [1]ISO/TAG4/WG3. Guide to the Expression of Uncertainty in Measurement[S]. Switzerland, 1993.
    [2]国际标准化组织.肖明耀,康金玉译.测量不确定度表达指南[S].北京:中国计量出版社,1994.
    [3]Weise K, Woger W. A Bayesian theory of measurement uncertainty [J]. Meas. Sci. Technol. 1993,4:1-11
    [4]邓聚龙.灰色系统理论教程[M].华中理工大学出版社,1989.9
    [5]王中宇,夏新涛等.非统计原理及其工程应用[M].科学出版社,2005:16-20.
    [6]Steele W G, Taylor R P, Burrell R E. Use of Previous Experience to Estimate Precision Uncertainty of small sample Experiments[J]. AIAA Journal,1993,31(10):1891-1896.
    [7]Steven D Phillips, Keith R Eberhardt. Guidelines for expressing the uncertainty of measurement results containing uncorrected bias [J]. Journal of Research of the National Institute of Standards and Technology,1997,102(5):577-585.
    [8]刘智敏,刘凤.现代不确定度方法与应用[M].北京:中国计量出版社,1997.
    [9]肖明耀.误差与不确定度题解[M].北京:中国计量出版社,1999.
    [10]叶德培.测量不确定度[M].北京:国防工业出版社,1996.
    [11]李慎安.测量结果不确定度的估计与表达[M].北京:中国计量出版社,1997.
    [12]刘智敏.不确定度原理[M].北京:中国计量出版社,1993
    [13]王立吉.测量误差与不确定度表述中的若干问题[J].计量学报,1998,19(2):157-160.
    [14]MAURICE G C, BERND R L S. The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty [J]. Metrologia,2006,43(4):S178-S188.
    [15]MA Liqun, WANG Liding, CAO Tieze, et al. A large-scale laser plane calibration system [J]. Measurement Science and Technology,2007,18(1):1768-1772.
    [16]卢成静,黄桂平,李广云.V-STARS工业摄影三坐标测量系统精度测试及应用[J].红外与激工程,2007.6(35):245-249.
    [17]http://jpkc.whu.edu.cn/jpkc2007/jysycl/course/picnews.asp?id=19
    [18]HORN B K P. Closed-form solution of absolute orientation using unit quaternion [J]. Journal of the Optical of Society American A,1987,4(4):629-642.
    [19]H.沃尔夫著,方佩竹译.平差计算实用公式[M].测绘出版社,1983.
    [1]彭祖赠,孙韫玉等.模糊数学及应用[M].武汉大学出版社,2002.
    [2]潘正华.模糊推理算法的数学原理[J].计算机研究与发展,Vol.45,2008.6:165-168.
    [3]朱文彪,孙增妡.基于数据特征的模糊模型辨识与模糊控制器设计方法[J].东南大学学报,Vol.39,sup(Ⅰ),2009.9:53-56.
    [4]王彪.粗糙集与模糊集的研究及应用[M].北京:电子工业出版社,2008.
    [5]韩敏,张俊杰,彭飞等.一种基于多决策类的贝叶斯粗糙集模型[J].控制与决策,Vol.24,No.11,2009.11:1615-1619.
    [6]Wang Qinying. The Grey Mathematics [M]. Hua Zhong University of Science and Technology press,1996.
    [7]邓聚龙.灰色系统理论教程[M].华中理工大学出版社,1989.9
    [8]刘思峰,谢乃明等.灰色系统理论及其应用[M].科学出版社,2008.12:45
    [9]胡召音.灰色理论及其应用研究[J].武汉理工大学学报,Vol.27,No.3,2003.6:405-407.
    [10]刘思峰.灰色系统理论的产生与发展[J].南京航空航天大学学报,Vol.36,No.2,2004.4:267-271.
    [11]Liu Sifeng. The Grey System Theory and Application [M]. Science Press,2004.11.
    [12]王中宇,朱坚民等.几种测量不确定度的非统计评定方法[J].计量技术,2001.4
    [13]王中宇,夏新涛等.非统计原理及其工程应用[M].科学出版社,2005:16-25.
    [14]路晓峰,杨志强,贾小林等.灰色系统理论的优化方法及其在卫星钟差预报中的应用[J].武汉大学学报,Vol.33,No.5,2008.5:492-495.
    [15]崔先强,焦文海.灰色系统模型在卫星钟差预报中的应用[J].武汉大学学报,Vol.30,No.5,2005.5:447-450.
    [16]徐兰芳,胡怀飞,王爱民.基于灰色理论的主观信任计算方法[J].华中科技大学学报,Vol.35,No.11,2007.11:92-95.
    [17]王旭亮,聂宏.基于灰色系统GM(1,1)模型的疲劳寿命预测方法[J].南京航空航天大学学报,Vol.40,No.6,2008.12:845-848.
    [18]张建国,陈建军,马娟.基于灰色系统理论的机构可靠性分析[J].哈尔滨工业大学学报,Vol.41,No.5,2009.5:245-247.
    [19]李海峰,陆民燕,王智新等.基于灰色系统理论的软件可靠性综合评价框架[J].北京航空航天大学学报,Vol.34,No.11,2008.11:1261-1265.
    [20]陈晓怀,谢少锋,张勇斌.测量系统不确定度分析及其动态性研究[J].仪器仪表学报,Vol.23,No.3,2002.6:461-462.
    [21]王清印,刘志勇,赵秀恒.广义不确定性系统概念及其基本原理[J].华中科技大学学报,Vol.33,No.1,2005.1:58-61.
    [22]Weise K, Woger W. A Bayesian theory of measurement uncertainty [J]. Meas. Sci. Technol. 1993,4:1-11
    [23]Weise K, Woger W. Comparison of two measurement results using the Bayesian theory of measurement uncertainty [J]. Meas. Sci. Technol,1994,5:879-882
    [24]Bjorn Karlsson. Fuzzy handling of uncertainty in industrial recycling[C]. IEEE Instrumentation and Measurement Technology Conference. St. Paul Minnesota, USA, 1998,(5):832-836.
    [25]王义闹.灰色序列关联分析[J].华中科技大学学报,Vol.33,No.5,2005.5:7-9.
    [26]穆瑞,张家泰.基于灰色关联分析的层次综合评价[J].系统工程理论与实践,2008.10:125-130.
    [27]崔杰,党耀国,刘思峰.一种新的灰色预测模型及其建模机理[J].控制与决策,Vol.24,No.11,2009.11:1702-1706.
    [1]马颂德,张正友,计算机视觉[M].科学出版社,2003.9:52-59
    [2]Tsai R, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration [J]. IEEE Transactions on Robotics and Automation,1989,5(3): 345-358.
    [3]Maybank S J, Faugeras O D. A theory of self-calibration of a moving camera. International Journal of Computer Vision,1992,8(2):123-151.
    [4]Hartley R. Estimation of relative camera positions for uncalibrated cameras. In: Proceedings of European Conference on Computer Vision. Genova, Italy, Spring-Verlag, 1992.579-587.
    [5]Pollefeys M, Van Gool L, Osterlinck A. The modulus constraint: a new constraint for self-calibration. In: Proceedings of IEEE 13th International Conference on Pattern Recognition, Vienna, Austria,1996.1:349-353.
    [6]Luong Q T, Faugeras O D. Self-calibration of a moving camera from point correspondences and fundamental matrices. International Journal of Computer Vision, 1997,22(3):261-289
    [7]Abdel-Aziz Y I, Karara H M. Direct linear transformation from comparator coordinates into object space coordinates. In: Proceedings of Symposium on Close-Range Photogrammetry [J]. Virginia, USA:American Society of Photogrammetry,1971.1-18.
    [8].张广军.机器视觉[M].科学出版社,2005:76-79
    [9]Tsai R, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration [J]. IEEE Transactions on Robotics and Automation,1989,5(3): 345-358.
    [10]Tsai R. An efficient and accurate camera calibration technique for 3D machine vision [C]. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA,1986.364-374..
    [11]Zhang Z Y. Flexible camera calibration by viewing a plane from unknown orientations [C]. In:Proceedings of IEEE International Conference on Computer Vision. Kerkya, Greece, 1999.666-673.
    [12]Meng X Q, Li H, Hu Z Y. A new easy camera calibration technique based on circular points [C]. In:Proceedings of the British Machine Vision Conference, Bristol, UK, 2000.496-505
    [13]Sturm P F, Maybank S J. On plane-based camera calibration: a general algorithm, singularities, applications [C]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado, USA,1999.1:432-437
    [14]Zhang Z Y. Camera calibration with one-dimensional objects [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2004,26(7):892-899
    [15]Hammarstedt P, Sturm P, Heyden A. Degenerate cases and closed-form solutions for camera calibration with one-dimensional objects [C]. In:Proceedings of IEEE International Conference on Computer Vision. Beijing, China,2005.1:317-324
    [16]Wu F C, Hu Z Y, Zhu H J. Camera calibration with moving one-dimensional objects[C]. Pattern Recognition,2005,38(5):755-765

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700