用户名: 密码: 验证码:
雷公藤盐胁迫及施肥对其影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷公藤是最近才兴起的药材植物,具有很高的经济价值和利用价值,由于雷公藤需求量在不断地上升,天然资源开始日益减少,发展人工种植雷公藤成为了解决雷公藤资源枯竭的首要条件。因此深入了解雷公藤的生物学特性和生态学特性,参阅其他树种“施肥与营养诊断研究”方法与技术路线,针对雷公藤的生物学特性和生态学特性,对雷公藤进行施肥与营养诊断研究是十分必要的。本研究以雷公藤一年生苗为材料,研究了雷公藤盐胁迫以及不同施肥处理对雷公藤有效成分的影响,主要结果如下:
     ⑴在电解质渗透率和丙二醛含量的变化方面,在盐胁迫条件下的植株,其叶片电解质渗透率均有不同程度的增加,在一定的NaCl浓度范围内,植物自身可通过调节来减少盐胁迫对叶片细胞膜造成的伤害,维持细胞膜的稳定性和完整性,提高盐胁迫时植物对环境的适应能力,其极限值为18mmol/LNaCl。叶片中的丙二醛含量在胁迫开始前的15天时呈上升趋势,在第15天时达到最大值,随后开始下降,其中缓解极限在22.5mmol/L。
     ⑵在脯氨酸含量方面,在盐胁迫条件下,七个处理在盐胁迫期间,前20天植株叶片内脯氨酸的含量增长较为平缓,20天之后开始快速增长,并在第30天达到最高峰,不同NaCl浓度的盐胁迫处理下,45mmol/L处理效果最为显著,而9mmol/L处理试验后期对脯氨酸含量的增加起到了抑制作用。
     ⑶在酶活性方面,不同NaCl浓度处理的雷公藤叶片SOD活性成不同的变化趋势,在各处理中以27mmol/L处理在25天时叶片中SOD活性最高,对盐胁迫抵御能力最强。随着胁迫时间的延长,植株叶片中POD活性呈向上升后下降的趋势变化,雷公藤叶片中POD活性在22.5mmol/L处理下会达到最大。不同NaCl浓度下盐胁迫对雷公藤叶片中CAT活性除了0mmol/L处理变化较为平稳之外其他7个处理均呈现较明显的波动,其中45mmol/L与27mmol/L处理的CAT活性显著高于其他处理。
     ⑷不同配比施肥对雷公藤一年生苗的生物量和苗高的影响,对盆栽雷公藤一年生苗运用3414施肥试验设计,其结果表明,N、P、K三种肥料不同配比施肥对雷公藤的生物量和苗高都有不同程度的影响,由数学模型我们可以计算出最优方案的最大株高生长量为35.10865cm,此时最适宜N,P,K的量分别为3.6g/盆,1.8g/盆,3.3g/盆。从6月份开始到9月份各处理苗的鲜重快速升高,除第11号处理(有严重的落叶现象),7月份之后营养生长开始减弱。由数学模型我们可以计算出最优方案的最大鲜重为28.13598g,此时最适宜N,P,K的量分别为4.3g/盆,1.5g/盆,4.6g/盆。
     ⑸不同配比施肥对雷公藤一年生苗生理指标的影响,包括硝酸还原酶活性,叶绿素含量,光合作用和植物中甲素含量。经过对14个处理5个月的数据进行处理,可以得出N肥的使用量对于一年生雷公藤苗的硝酸还原酶活性具有决定性作用。由数学模型我们可以计算出最优方案的最大硝酸还原酶活性为61.8μg g~(-1) h~(-1),此时最适宜N,P,K的量分别为4.1g/盆,1.9g/盆,3.6g/盆。
     ⑹对于不同配比施肥,我们可以看出,14个处理中叶绿素含量增加的主要时期在6月和7月,与雷公藤一年生苗的营养生长时期相一致,其中植株中叶绿素含量涨幅最高的是10号处理。由数学模型我们可以计算出最优方案的最大叶绿素含量为4.1mg g~(-1) Fw,此时最适宜N,P,K的量分别为6.77g/盆,4.8g/盆,7.3g/盆。
     ⑺对于不同施肥对一年生雷公藤苗的光合作用的影响,从前文的数据中我们可以看出在7、8、9月份的时候植株的净光合速率达到最大,其中以9号和10号处理的净光合速率最高。由数学模型我们可以计算出最优方案的最大净光合速率为4.1mg g~(-1) Fw,此时最适宜N,P,K的量分别为6.4g/盆,3.1g/盆,3.2g/盆。
     ⑻对于植物中甲素含量而言,由数学模型我们可以计算出最优方案的最大净光合速率为4.1mg g~(-1) Fw,此时最适宜N,P,K的量分别为6.4g/盆,3.1g/盆,3.2g/盆。
Tripterygium wilfordii Hook. F is a new type of medicinal materials plant which has the very higheconomic value, because its demand rising, natural resources is reducing day by day, and develop artificialTripterygium wilfordii Hook. F planting has became a solution to solve exhaustion resource. So furtherunderstanding of its biological characteristics and ecological characteristics, refer to the other tree"fertilization and nutrition diagnosis research" method and the technical route, in view of its biologicalcharacteristics and ecological characteristics of its fertilization practice and nutrition diagnosis research isvery necessary. The Tripterygium wilfordii Hook. F annual seedlings as materials, Reach the influence ofthe Tripterygium wilfordii Hook. F salt stress and different fertilizer treatment on the active ingredients, themain results are as follows:
     ⑴In the change of electrolyte permeability and malondialdehyde and the condition of salt stress,plant leaves electrolyte permeability are different degree of increased, in certain NaCl concentration range,the plant can reduce regulation through own salt stress on leaf of the cell damage, the plant can maintainthe stability and integrity of the cell, improve the salt stress adaptability to the environment of plants, thelimit for18mmol/LNaCl. Mda content of leaves in15days before the start of stress is increasing,15daysin reach maximum, and then began to decline, which ease in the limit of22.5mmol/L.
     ⑵In proline content, in salt stress condition, in the period of seven processing in salt stress,20daysbefore of plant proline content of leaves in the relatively moderate growth,20days later began to rapidgrowth, and in the30days to peak, different NaCl concentration of salt stress under processing,45mmol/Lthe treatment effect is the most significant, and9mmol/L processing test the late with the increase of thecontent of proline played the inhibition.
     ⑶In the enzyme activity, different NaCl concentration of processing tripterygium wilfordii blade SODactivity into different change trend, the treatment to27mmol/L in25days in the leaf blade handle SODactivity of the highest, and the ability to salt stress against the strongest. Along with the stress the extensionof time, the plant in the leaf blade is after rising to POD activity of the decline of the trend, tripterygiumwilfordii leaf in POD activity in22.5mmol/L treatment will reach the maximum under. Different NaClunder salt stress concentration of tripterygium wilfordii leaf in CAT activity mmol/L except for zero handlechange is more steady other seven processing are significantly more apparent fluctuations, including45mmol/L and27mmol/L of processing significantly higher than other CAT activity processing.
     ⑷Different ratio fertilization for tripterygium wilfordii annual biomass and seedlings seedlings of highimpact on the potted tripterygium wilfordii annual seedlings use3414fertilization trial design, and theresults show that N, P, K three fertilizer fertilization for different ratio of tripterygium wilfordii biomassand seedling height has the influence of different level, the mathematical model we can calculate theoptimal scheme of the biggest growth for plant height35.10865cm, right now the most suitable N, P, K forthe amount of3.6g/basin respectively, and1.8g/basin,3.3g/basin. Begins in June to September theprocessing of the miao fresh weight increases rapidly, in addition to the11th processing (have seriousleaves phenomenon), and in July, the nutritional growth after started to diminish. The mathematical model we can calculate the optimum scheme of the biggest fresh weight of28.13598g, right now the mostsuitable for N, P, K for the amount of4.3g/basin respectively, and1.5g/basin,4.6g/basin.
     ⑸Different ratio fertilization for tripterygium wilfordii annual seedlings physiological indexes effects,including activities of nitrate reductase, chlorophyll content, photosynthesis and plants medium armorelement content. After14to treatment5months of data processing, can draw N fertilizer for the usage ofthe annual tripterygium wilfordii seedling activities of nitrate reductase decisive role. The mathematicalmodel we can calculate the optimum scheme of the biggest activities of nitrate reductase for61.8u g g~(-1) h~(-1), right now the most suitable for N, P, K for the amount of4.1g/basin respectively, and1.9g/basin,3.6g/basin.
     ⑹For different ratio fertilization, we can see,14processing content of chlorophyll in the main period inJune and July, and tripterygium wilfordii annual seedlings growth period of nutrition is consistent, of whichplants chlorophyll content is the highest annual10processing. The mathematical model we can calculatethe optimum scheme of the biggest chlorophyll content is4.1mg g~(-1) Fw, right now the most suitable forN, P, K for the amount of6.77g/basin respectively, and4.8g/basin,7.3g/basin.
     ⑺For different fertilization for annual tripterygium wilfordii seedlings of the influence of photosynthesis,once upon a time in the data we can see that in July and August and September when the plant of the netphotosynthetic rate achieve maximum, among them with9and10processing the net photosynthetic rate isthe highest. The mathematical model we can calculate theoptimum scheme of the biggest netphotosynthetic rate of4.1mg g~(-1) Fw, right now the most suitable for N, P, K for the amount of6.4g/basin respectively, and3.1g/basin,3.2g/basin.
     ⑻For meat content in plant medium armor, the mathematical model we can calculate the optimum schemeof the biggest net photosynthetic rate of4.1mg g~(-1) Fw, right now the most suitable for N, P, K for theamount of6.4g/basin respectively, and3.1g/basin,3.2g/basin.
引文
[1]秦秀芹,冯毓秀.雷公藤资源利用及药源扩大[J].中国野生植物资源,1994
    [2]赵仲坤,王玉玺.雷公藤的药用研究概述.药学情报通讯,1991,9(1):58~62
    [3]罗湘凯,余华,万卫红.雷公藤开发利用研究概况.江西中医药学院学报,1992,4(2):59~61
    [4]Sun H-J(孙海菁),Wang S-F(王树凤),Chen Y-T(陈益泰).Effects of salt stress on growth and physio-logical index of6treespecies.Forest Research(林业科学研究),2009,22(3):315-324(in Chinese)
    [5]赵明范.世界土壤盐渍化现状及研究趋势[J].世界林业研究,1994,7(1):84-86.
    [6] Epstein E,Norlyn J D,Rush D W,et al.Saline culture ofcrops: A genetic approach[J].Science (New York,NY),1980,210(4468):399-404
    [7]佟连生,刘云利.雷公藤综合利用的探讨[J].黑龙江医药科学,2004,27(5):4
    [8]韦松基,刘寿养.广西21中有毒药用植物的鉴别介绍.中草药,1990
    [9]林光美,姜建国,江锦红,等.雷公藤的开发利用与引种驯化栽培技术[J].中国野生植物资源,2004
    [10]Chun Moon-kyoon,Shin Hye-Won,Lee Huen.Superritical Fluid Extraction of Paclitaxel and Baccatin Ⅲfrom Needles ofTaxus Cuspidata.J.Supercrit Fluids,1996,9(3):192~198
    [11]Vandana V,Teja A S,Zalkow L H.Supercritical Extraction and HPLC Analysis of Taxol from Taxus Brevifolia UsingNitrous Oxide and Nitrous Oxide Ethanol Mixtures.Fluid Phase Equilib,1996,Equilib,1996,116(1-2):162~169
    [12]李卫民,高英.雷公藤的化学、药理研究进展[J].中草药,1991,13(9):34~35
    [13]杨小林,多琼.西藏通麦林区云南三尖杉的分布及保护对策[J].林业科技1997,22(5):5-6
    [14]徐志辉,高怀礼.树中之宝—云南三尖杉规模化扦插繁殖成功[J].生态经济,1996(3):38
    [15]马小军,丁万隆,陈震.东北三尖杉繁殖技术研究进展[J].天然产物研究与开发,1995,7(3):75~77
    [16]黄海滨,苏健,谭叶憧.HPLC法测定黎豆中左旋多巴的含量[J].广西植物2004(5):460-462
    [17]周东雄,姜建国,等.雷公藤驯化技术及其复合林分经营效益研究[M].鉴定材料,2004
    [18]徐同印,徐杰.雷公藤的栽培管理技术[J].中国中药杂志,1992
    [19]江锦红.药用植物雷公藤扦插育苗试验[J].林业科技开发,2004,18(6):55~56
    [20]罗都强,张兴.杀虫植物雷公藤研究进展[J].西北农业大学学报,2000
    [21]洪顺山,庄珍珍等,湿地松幼林营养的DRIS诊断[J].林业科学研究,1995,8(4),360~366
    [22]张玉萍,孙红专,应用综合诊断施肥法(DRIS)进行棉花营养诊断[J].新疆农业科学,2000(4),184~186
    [23]范少辉,俞新妥,杉木苗期氮素营养诊断的研究[J].福建林学院学报,1986,6(2),1~9
    [24]李淑仪,林书蓉,廖观荣等,雷林1号桉叶片营养诊断研究[J].林业科学研究,1997,10(1):13~188
    [25]李淑仪,林书蓉,廖观荣等,桉树营养状况与叶片营养诊断研究[J].林业科学,1996,32(6):481~490
    [26]郭祥泉,南方三尖杉苗木不同生长期和施肥措施的养分动态分析[J].福建林业科技,2001,12,2(4):18~24
    [27]林德喜,陈辉,锥栗人工林营养综合诊断(DRIS)研究[J].林业科学,第37卷专刊1,2001(11):117~125
    [28]黄宗玉,诊断施肥综合法(DRIS)的原理与应用问题[J].土壤学进展,1990,18(1),22~26
    [29]陈礼光,陆小静,蔡月琴,荣俊冬,郑郁善.杨榕柳杉苗木综合营养诊断Ⅰ.田间DRIS图解法[J].福建林学院学报2005,25(4):318~322
    [30]张旭东,董林水,周金星,郑郁善.珍稀乡土树种福建柏苗期DRIS营养诊断[J].生态学报.2005(5):1167~1170
    [31]Boyer,JS.Plant Productivity And Environment.Science,1982,218,443~448.
    [32]李金耀,张富春,马纪,王宾.植物生理学通讯,2003,39(6):715~719
    [33]张新春,庄炳昌,李自超,植物耐盐性研究进展[J],玉米科学,2002,10(1):50~56
    [34]刘友良和汪良驹,植物对盐胁迫的反应和耐盐性,余叔文、汤章城主编:植物生理与分子生物学(第二版),科学出版社,1998,752~769
    [35]翁跃进,作物耐盐品种及其栽培技术,中国农业出版社,2002
    [36] Munns R.Comparative physiology of salt and water stress.Plant Cell and Environment,2002,25:239-250
    [37]余叔文,汤章城.植物生理与分子生物学.北京科学出版社,2002,1(2):752~769
    [38] Zhu.J.K.,Salt and drought stress signal trasduction in plants.Annu.Rev.Plant Physiol.Plant Mol.Biol.2002,53:247~273
    [39]张宏飞,王锁民.高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展.植物学通报,2007,24,561~571
    [40] Flexas J,Diaz-EsPejo A,GalmesJ,Kaldenhoff R,Medrano H,Ribas-Carbo M.RaPid variatlons of mesophyll conductance inresponse to changes in CO2eoncentration around leaves.Plant Cell Environ.200730(10):1284-1298
    [41] Blumwald E,Aharon GS,Apse MP.Sodium transport in plant cells.Biochim BiophysActa,2000,1465:140-151
    [42]倪秀珍,张强.抗盐植物研究进展.特产研究,2004,4:58-62
    [43] Cheeseman JM.Mechanisms of Salinity Tolcrance in Plants Physiol.198887(3):547-550
    [44] Enstone DE,Peterson CA,Ma F.Root endodermis and exodermis:structure,function,and responses to the environment.JPlant Growth Regul2003,21,335-351.
    [45] Munns R.Comparative physiology of salt and water stress.Plant Cell and Environment,2002,25:239-250
    [46]赵可夫,李法曾.中国盐生植物(第一版).北京:科学出版社.1999,pp.30-65
    [47]王爱国等,活性氧对花生叶片大分子量DNA的损伤,植物生理学通讯,1993,29:260-262
    [48] Silberbush M,Ben-Asher J.Simulation study of nutrient uptake by plants from soilesscultures as affected by salinitybuildup and transpiration.Plant and Soil,2001,233:59-69
    [49]Flowers T.J.,Troke P.F.and Yeo A.R.The mechanism of salt tolerance in halophytes.Annu.Rev.PlantPhysiol.1997,28:89-121
    [50]Greenway H,Munns R..Mechanisms of salt tolerance in nonhalophytes.Annu Rev PlantPhysiol.1980,31:149-190
    [51]Munns,R.and Termaat,A.Whole plant responses to salinity.Australian Journal of PlantPhysiology1986,13:143-160
    [52]Munns,R.,Schachtman,D.P.and Condon,A.G.The significance of a twophase growthresponse to salinity in wheat andbarley.Australian Journal of Plant Physiology1995:22:561–569
    [53]Xiong,L.and Zhu,J.-K.Molecular and genetic aspects of plant responses to osmotic stress.Plant,Cell and Environment2002,25:131-139
    [54]Mark T.and Romola D.Na+Tolerance and Na+Transport in Higher Plants.Annals of Botany.2003,503-527
    [55] Ballesteros E.,Blumwald E.,Donaire J P.,Belver A..Na+/H+antiporter activity intonoplast vesicles isolated from sunflower induced by NaCl stress.Physiol Plant,1997.99:328-334
    [56] Chhipa B.R.,Lal P.Na/K ratios as the basis of salt tolerance in wheat.Aust J AgricRes,1995,46(3):533-539
    [57]Lichtentaler,H.K.Vegetation stress:an introduction to the stress concept in plants.Journal of Plant Physiology1995,148:4-14
    [58]梁一刚,杨新元,黄增强.向日葵出苗阶段耐盐性的测定[J].中国油料作物学报,1988,2:70-73
    [59]颜宏.碱地肤抗盐碱生理生态机制研究[D].2006:6-10
    [60]Gorham J,Wyn Jones R. G,McDonnell E. Some mechanisms of salt tolerance in crop plants. Plant and Soil,1985,(89):15-40
    [61]Bernstein L., Francois L.E. and Clark R. A. Interactive effects of salinity and fertility on yields of grains and vegetables [J].Agronomy Journal,1974(66):412-421
    [62] Parida A K,and DasA B,Salt tolerance and salinity effeets on Plants:a review.Ecotoxicologyand Environmental Safety2005,60:324—349
    [63]Tester M,Davenport R. Na+tolerance and Na+transport in higher plants. Ann Bot(Lond),2003,91:503~527
    [64] Cramer G.R.,Lauchli A.,Polito V.S..Displacement of Ca2+by Na+from the plasmalemma of root cells a primary responseto salt stress.Plant Physiology,1985,79:207-211.
    [65] Zhong,H.and L?uchli,A.Spatial and temporal aspects of growth in the primary root of cotton seedlings:effects of NaCl andCaCl2.Journal of Experimental Botany1993,44:763-771
    [66] Binzel,M.L.,Hess,F.D.,Bressan,R.A.and Hasegawa,P.M.Intracellular compartmentation of ions in salt adapted tobaccocells.Plant Physiology1988,86:607-614
    [67] Carden,D.E..The cell physiology of barley salt tolerance.Ph.D.thesis,University of Sussex,U.K.1999
    [68] Blumwald,E..Sodium transport and salt tolerance in plants.Current Opinion in Cell Biology2000,12:431-434
    [69] Berthomieu P,Conejero G,Nublat A,Brackenbury WJ,Lambert C,Savio C,Uozumi N,Oiki S,Yamada K,Cellier F.Functionalanalysis of AtHKT1in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance.EMBO J,2003,22:2004-2014.
    [70] W.Jones RG,Brady CJ,Spears J.Ionic and osmotic relations in plant cells.IN:Laidman DL,Wyn Jones RG,eds.Recentadvances in the biochemistry of cereals. London:Academic Press.1979,63-103
    [71] Mansour,M.M.F.,Lee-Stadlemann,O.Y.and Stadlemann,E.J.Solute potential and cytoplasmic viscosity in Triticumaestivum and Hordeum vulgare under salt stress.Acomparison of salt-resistant and salt-sensitive lines and cultivars.Journal ofPlant Physiology1993,142:623-628
    [72] Munns,R.Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses.Plant,Cell andEnvironment1993,16:15-24
    [73] Yeo,A.Molecular biology of salt tolerance in the context of whole-plant physiology.Journal of Experimental Botany1998,49:915-929
    [74]马建华,郑海雷,赵中秋,张春光.植物抗盐机理研究进展.生命科学研究,2001,5(3):175~179
    [75] Matheos DP,Kingbury TJ,Ahsan US,Cunningham KM.Tcn1p.Crz1p,acalcineurin-dependent transcription facter thatdefferentially regulates gene expression in Saccharomyces cerevisiae.Gene Dev,1997,11:3445-3458
    [76] Jonak,C.,Kiegerl,S.,Ligterink,W.,Baker,P.J.,Huskisson,N.S.,and Hirt,H.resssignaling in plants:A mitogen-activated proteinkinase pathway is activated by cold and drought.Proc.Natl.Acad.Sci.USA,1996,St93:11274-11279
    [77] Jang HJ,Pin KT,Kang SG et al.Molecular cloning of a novel Ca+-binding protein that is induced by NaCl stress.Plant MolBiol,1998,37:839-847
    [78]李艳华,杨敏生,王海英等.树木抗盐生理研究进展.河北林果研究,2000,15(2):189~196
    [79]李晓燕,宋占午,董志贤.植物的盐胁迫生理.西北师范大学学报(自然科学版),2004,40(3):106~111
    [80] Kallen J.,Spitzfaden C.,Zurini M.G.,Wider G.,Widmer H,.Wuthrich K.and Walkinshaw M.D..Structure of humancyclophilin and its binding site for cyclosporin Adetermined by X-ray crystallography and NMRspectroscopy.Nature,1991.353:276-279
    [81] Halliwell B.,and Gutteridge J.M.C..Free Radicals in Biology and Medicine.Oxford: Clarendon Press,1989
    [82]周三,韩军丽,赵可夫.泌盐盐生植物研究进展.应用与环境生物学报,2001,7,496-501
    [83]张道远,尹林克,潘伯荣.柽柳泌盐腺结构、功能及分泌机制研究进展.西北植物学报,2003,23,190-194
    [84] Luttge U.Structure and function of plant glands.Annu Rev Plant Physiol1971,22,23-44
    [85] Iyengar E R R,Reddy MP.Photosynthesis in highly salttolerant Plants.In:Pesserkli M.(Ed.),Hand book ofPhotosynthesis.Marshal DeKer,Baten Rose,USA,1996:897-909
    [86]王锁民,朱兴运.等.1994.盐胁迫对拔节期碱茅游离氨基酸成分和脯氨酸含量的影响[J].草业学报,3(3):22~26
    [87]郝治安,吕有军.植物耐盐机制研究进展.河南农业科学,2004,(11):30~33
    [88] Ashraf M,Harris P J C.Potential bioehemiea lindieators of salinity toleranee in Plants. Plant Scienee,2004,166:3~16
    [89] Chirmusamy V,Jagendorf A,Zhu JK. Understanding and improving salt tolerance in Plants.CropScience,2005,45(2):437~448
    [90]刘振林,戴思兰.植物甜菜碱醛脱氢酶基因研究进展.西北农林科技大学学报,2004,32(3):104~112
    [91]裘丽珍,黄有军,黄坚钦,夏国华,龚宁.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究.浙江大学学报(农业与生命科学胸,2006,32(4):420~427
    [92] Hoekstra F A,Golovlna E A,Bultink J.Mechanisms of plant desiccation tolerence.Trends Plant Sci,2001,6:431~443
    [93] Hasegawa M,Bressan R.The dawn of plant salt tolerance genetics. Trends in Plant SCience,2000,5(8):317~319
    [94] Zhifang G,Loescher W H.ExPression of a celery mannose6-phosphate reductase in Arabidopsis thaliana enhances salttolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer.Plant Cell andEnvironment,2003,26:275~283
    [95] Parida A,Das A B.Salt tolerance and salinity effects on plants: a review. Ecotoxicology and EnvironmentalSafaty,2005,60:324~349
    [96] Bohnert H J,Jensen R G.Strategies for engineering water-stress tolerance in plants.Trends inBiotechnology,1996,14:89~97
    [97] Jain M,Mathur G,Koul S, et al.Ameliorative effects of proline on salt stress-in duced lipid peroxidation in cell lines ofgroundnut(Arachis hypogeal L.).Plant Cell Reprodution,2001,20:463~468
    [98] Khatkar D. Kuhad M S.Short-term salinity induced changes in two wheat cultivars at different growth stages. Biology ofPlant,2000,43:629~632
    [99] Singh S K, Sharma H C, Goswami A M, et al.In vitro growth and leaf composition of grapevine cultivars as affected bysodium chloride.Biologia Plantarum,2000,43:283~286
    [100]马文月.植物抗盐性研究进展.农业与技术,2004,24(4):95~99
    [101] Yeo A.Molecular biology of salt tolerance in the context of whole-plant physiology.Journal of ExperimentalBotany.1998,49:915~929
    [102]马丽清,韩振海,周二峰,许雪峰.盐胁迫下珠眉海棠与山定子叶片Na+区域化的研究.西北植物学报,2006,26(7):1375~1353
    [103] Watiee R, Hibino T, Nakamuar T, et al. Overexpression of a Na+/H+antiporter confers salt tolerance on a freshwatercyanobacterium,making it capable of growth in sea water.Proc Natl Acad Sci USA,2002,99(6):4109~4114
    [104]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报(自然科学版),2003,21(2):177~182
    [105] Apse M P,Aharon G S,Snedden W A,et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiporter inArabidopsis. Scienee,1999,285:1256~1255
    [106]戴松香,陈少良,Eberhard Fritz,Andrea Olbrich.盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化.北京林业大学学报,2006,28(2):1~5·
    [107]王素平,李娟,郭世荣,等.Nacl胁迫对黄瓜植株生长和光合特性的影响.西北植物学报,2006c,26(3):0455~0461
    [108] Ershov P V,Reshetova O S,Trofimova M S,et al. Activity of ion transporters and salt tolerance in barley.Russian Journalof Plant Physiology,2005,52(6):765~773
    [109] Rubio F,Gassmann W,Schroeder J I.Sodium-driven potassium uptake by the plant potassium transporter HKTI andmutations conferring salt tolerance.Science,1995,270:1660~1663
    [110]Duvigneaud. P. et al,彭克明等译.植物生态学译丛(第一集)[M].北京:科学出版社,1974.
    [111]Duvigneaud. P. et al,彭克明等译.植物生态学译丛(第一集)[M].北京:科学出版社,1974.
    [112]中国农林科学院情报研究所.国外林业生产水平科技进展[M].北京:科学出版社,1974.
    [113]陈竑竣,李贻铨,杨承栋.中国林木施肥与营养诊断研究现状[J].世界林业研究,1998(3):58-65.
    [114][美]A.LAUCHLI,[新西兰]R.L.BIELSKI著,张礼忠,毛知耘译.植物的无机营养[M].北京:农业出版社,1990.
    [115]荆家海主编,植物生理学[M].西安:陕西科学出版社,1994.
    [116]汪振儒等译.木本植物生理学[M].北京:中国林业出版社,1985.
    [117]张玉萍,孙红专.应用综合诊断施肥法(DRIS)进行棉花营养诊断[J].新疆农业科学,2000(4):184-186.
    [118]李旭辉,李瑛,刘军,等.DRIS在关中地区冬小麦施肥中的应用研究[J].植物营养与肥料学报,2005,11(2):174-178.
    [119]周博,陈竹君,郝乾坤,等.猕猴桃矿质元素DRIS标准研究[J].杨凌职业技术学院学报,2002,1(2):6-9.
    [120]李国良,姚丽贤,付长营,等.香蕉营养诊断的DRIS标准的初步研究[J].中国土壤与肥料,2008(2):74-86.
    [121]冯茂松,张健,钟宇.四川巨桉人工林大中量营养元素DRIS诊断[J].四川农业大学学报,2009,27(1):55-59.
    [122]陆小静.柳杉苗期施肥与营养诊断研究[D].福建农林大学硕士学位论文,2004.
    [123]张旭东,董林水,周金星,等.珍稀乡土树种福建柏苗期DRIS营养诊断[J].生态学报,2005,25(5):1165-1170.
    [124]金宁,周广柱,张博,等.垂榆诊断施肥综合法(DRIS)的研究[J].现代农业科学,2009,16(7):52-53.
    [125]刘克林,孙向阳,王海燕,等.三倍体毛白杨叶片营养DRIS诊断[J].生态学报,2009,29(6):2893-2898.
    [126]郭喜军.红豆杉苗木营养诊断与施肥研究[D].福建农林大学硕士学位论文,2008.
    [127]吴震.三尖杉苗期施肥效应研究[D].福建农林大学硕士学位论文,2009.
    [128]褚国英,周广柱,周荣伟,等.DRIS法中诊断器官选择的研究进展[J].科技情报开发与经济,2009,19(15):123-125.
    [129]王婷,胡亮.毛竹营养诊断方法研究[J].北方园艺,2007(6):126-128.
    [130]鲁剑巍,曹卫东主编.肥料使用作技术手册[M].北京:金盾出版社,2010.
    [131]曾跃辉.土壤营养诊断[J].茶叶通讯,1996:44-45.
    [132]周文龙,梁坤南.不同P肥对尾叶桉幼林生长效应的研究[J].林业科学研究,1996,9(MEM),林木施肥与营养专刊:159-163.
    [133]张克建.桉树营养状况与诊断方法综述[J].桉树科技,2000(2):17-20.
    [134] Bouma.D.Diagnosis of mineral deficiencies using plant tests.Encyclopedia of plant physiology.Newseries.Ed.A.lauchi and R.I. Bielesk,Vol15A, springer-verlag Berlin.1983,120-146.
    [135]Shear C B, et. al. Nutrient element balance, A fundamental concept in plant nutrition[J]. Proc.Amer.Soc.Hort.Sci,1946,47:239-248.
    [136]林德喜,陈辉.锥栗人工林营养综合诊断(DRIS)研究[J].林业科学,2001,第37卷专刊1(11):117-125.
    [137]Summer ME.Advances in the use and application of plant analysis.Commun[J].In Soil Soi.Plant Anal.,1990,21(13-16):1409-1430.
    [138]黄宗玉.诊断施肥综合法(DRIS)的原理与应用问题[J].土壤学进展,1990,18(1):22-26.
    [139]国家林业局,中华人民共和国林业行业标准[M],1999,274~289
    [140]陈福明,陈顺伟,混合液测定叶绿素含量的研究[J].林业科技通讯,1984(2):4~8
    [141]周国章,苏梦云,杉木硝酸还原酶的初步研究[J].林业科学,24,(2),1988,156~161
    [142]陈竹君编译,一种林木营养诊断法-DRIS法[J].陕西林业科技,1993,2:38-40.
    [143]Goh K M. Preliminary nitrogen, phosphorus, potassium, calcium and magnesium DRIS norms and indices for appleorchards in Canterbury [J].New Zealand Common. Soil Sci. Plant Anal.,1992,23(13):1371-1385.
    [144]Needham T D. Relation ship between diagnosis and recommendation integrated system (DRIS) optima and foliar nutrientcritical levels [J].Soil Sci. Soc. Am. J,1990,54:883-886.
    [145]Righetti T. L. Diagnostic biases in DRIS evaluations on sweet cherry and hazelnut.[J].Commune. SoilSci. PlantAnal,1988,19:1429-1447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700