用户名: 密码: 验证码:
巨噬细胞移动抑制因子与小分子相互作用的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨噬细胞移动抑制因子(macrophage migration inhibitory factor,MIF),是一种重要的先天性免疫系统的调节因子,在宿主抗微生物防卫系统和应激反应中起重要作用,涉及败血症、肿瘤炎症和自身免疫性疾病等多种疾病的发病机制,并且具有酶的活性,能够催化苯丙酮酸、D-多巴色素的异构化反应以及硫醇蛋白的氧化还原反应。随着MIF的特殊生物学功能及其在多种疾病中的重要作用日益为人们所确认,MIF已逐渐成为新的研究热点。
     但目前关于MIF的研究主要采用实验手段在组织细胞水平进行,较少从原子水平上进一步研究MIF的结构、酶催化机理以及与抑制剂的相互作用。不同类型抑制剂与MIF具体的结合模式,同类抑制剂活性的差异,以及MIF突变体与这些分子作用模式的差异都没有从原子水平得到合适的解释。MIF与生物活性分子的结合过程中MIF构象的动态变化,MIF重要氨基酸在催化反应中的重要角色及其在MIF与不同底物、抑制剂结合过程中的作用需要进一步探讨。
     基于以上问题,在实验研究基础上从理论计算角度对一些实验无法解释的现象从原子水平上深入分析,进一步探讨MIF酶的催化机理,了解MIF的重要氨基酸在催化中的作用,研究抑制剂、底物等不同小分子与MIF及其突变体的特异性识别与结合亲和性,动态研究MIF在与生物活性分子的结合过程中的构象变化,比较MIF及其突变体与生物活性分子作用的差异。
     本论文主要对MIF与8个对羟基苯丙烯酸类似物、5个底物分子、2个ISO-1类似物、5个香豆素衍生物分子,以及MIF蛋白突变体P1G、K32A、N97A等与8个对羟基苯丙烯酸类似物的相互作用,利用分子对接和分子动力学模拟等计算工具进行了详细的分析。
     1.针对MIF对(E)-2-氟-对羟基苯丙烯酸类似物的立体化学选择性,对MIF与6个苯丙烯酸类似物的复合物结构分别进行了分子动力学模拟,并采用MM-PBSA分析了复合物的结合自由能。MIF蛋白构象非常稳定,与苯丙烯酸类似物的结合并没有对其构象产生较大影响。MIF主要通过Asn-97’、Pro-1、Lys-32与苯丙烯酸类似物形成氢键或盐桥。顺反类似物与MIF结合模式的最大区别在于,反式类似物与残基Pro-1形成一个N-H…O氢键,而顺式类似物无法与Pro-1形成任何氢键,这是造成顺反类似物亲和性差别的最主要原因,并且MM-PBSA分析也表明静电作用是造成这种结合亲和性差别的重要原因。
     2.为研究MIF、MIF突变体与丙烯酸类似物相互作用的差别,以及重要残基突变对蛋白构象的影响,利用分子对接方法构建了苯丙烯酸类似物与MIF、P1G、K32A、N97A的复合物结构,并对这些复合物进行了分子动力学模拟。氢键分析发现反式苯丙烯酸类似物与MIF、P1G的结合模式存在很大区别,反式类似物与MIF通过残基Pro-1形成一个N-H…O氢键,而与P1G则通过残基Ile-64一个N-H…O氢键。顺式类似物与MIF和P1G的结合模式没有明显区别,并没有与Pro-1或Ile-64形成氢键。N97A突变体都通过残基Ile-64与顺式、反式类似物形成N-H…0氢键,并与反式类似物通过残基Lys-32形成一个盐桥,而与顺式类似物不形成此盐桥。顺式类似物仅与K32A的Asn-97’残基形成一个O-H…O氢键,而反式类似物与K32A突变体的Asn-97’形成一个O-H…O氢键,与Ile-64形成一个N-H…O氢键。计算结合自由能的差别定性反映了顺反类似物对P1G、K32A、NP7A突变蛋白可能的抑制活性的差异,预示着P1G、K32A、NP7A可能对苯丙烯酸类似物仍然存在一定的选择性。对MIF蛋白三聚体、单体、N97A、K32A突变体结构也进行了动力学模拟,构象并没有太大变化,在纳秒时间尺度上呈现为刚性,显示重要残基的突变对MIF蛋白的构象影响较小。
     3.为分析对羟基苯丙酮酸(HPP)、R-多巴色素(RDP)、R-和S-多巴色素甲酯(RDPM,SDPM)等底物与MIF结合的差异性,通过分子对接方法构建了MIF与这些底物的复合物结构,并进行了多重动力学模拟和MM-PBSA结合自由能分析。HPP主要与MIF的残基Asn-97’和Ile-64分别形成O-H…O氢键,N-H…O氢键,并且与残基LVs-32形成盐桥。RDP与Pro-1和Ile-64分别形成一个N-H…O氢键。SDPM与Pro-1和Asn-97’分别形成一个N-H…N氢键,O-H…O氢键,而RDPM仅与Pro-1形成一个稳定性不强的N-H…O氢键。MM-PBSA分析表明底物与MIF的结合亲和力从强到弱依次为RDPM,HPP,SDPM,RDP,这一分析与实验结论一致说明了RDPM和SDPM是比RDP更好的MIF底物。同时MM-PBSA表明了范德华作用很大程度上决定了结合自由能大小,是MIF与这4个底物最重要的相互作用。
     4.对MIF与ISO一1等2个类似物(R1,S1)的复合物进行了分子动力学模拟,以研究它们具体的结合模式,并采用MM-PBSA计算方法衡量了R型、S型ISO-1与MIF的结合自由能。R1、S1都只与MIF的残基Asn-97’形成一个O-H…O氢键。MM-PBSA分析发现R型和S型的ISO-1的结合亲和性存在明显差别,静电作用是造成R1、S1结合亲和性差异的一个最重要因素。
     5.针对一系列高活性MIF抑制剂香豆素衍生物(A,B,C,D,E),采用分子对接方法构建了MIF与香豆素衍生物的复合物结构。并对5个复合物进行了分子动力学模拟。分析发现5个香豆素衍生物分子均与MIF的残基Asn-97’形成一个O-H…O氢键,分子A和E分别与残基Ile-64形成一个N-H…O氢键,而分子B、C、D都与残基Pro-1形成一个N-H…O氢键。这5个分子处在疏水性氨基酸周围,相互之间的疏水力能够增强小分子与MIF之间的结合亲和力。
     以上研究将有利于进一步了解MIF的催化机理,促进深入了解MIF的催化活性,并且为基于结构的MIF相关疾病的药物设计提供有益的信息。
Macrophage migration inhibitory factor (MIF) is a pivotal regulator of innate immunity and plays an important role in the host antimicrobial alarm system and stress response that promotes the pro-inflammatory functions of immune cells. It has been implicated in the pathogenesis of sepsis, tumors, inflammatory and autoimmune diseases. MIF can also act as a phenylpyruvate tautomerase, D-dopachrome tautomerase and thiol-protein oxidoreductase. Since the accumulated acknowledgement for the special biological function and its role in many diseases, MIF has now become a research hotspot.
     The current research related to MIF is mainly limited to experiments at the cell level, while little research is performed for further study of the structure of MIF, enzymatic mechanism and interactions with inhibitors at atomic level. The detailed binding mode of MIF with different types of inhibitors, the bioactivity difference within certain a series of inhibitor analogues and the effects on the binding modes brought about by the mutation of MIF residues remain to be unknown. The possible induced conformational change of MIF during its binding with bioactive molecules, the role of key residues in the catalytic reactions and the interaction of MIF with different substrates, inhibitors need to be further investigated.
     Theoretical study at the atomic level was performed to tackle questions that beyond the reach of experiments. The importance of several key residues for the catalytic reactions as well as the specific recognition and binding affinity of MIF, MIF mutants with different inhibitors and substrates were further investigated. The conformational change of MIF during the complex formation was dynamically studied and the comparisons for the interactions of bioactive molecules with MIF and MIF mutants were also made.
     The interaction of eight hydroxycinnamate analogues, five substrate molecules, two ISO-1 analogues, five coumarin derivative molecules molecules with MIF and the interaction between eight hydroxycinnamate analogues and three MIF mutants, P1G; K32A, N97A were fully studied using molecular docking and molecular dynamics simulation.
     1. To elucidate the stereochemistry preference of MIF for (E)-2-fluoro-p-hydroxycinnamate and its analogues, the molecular dynamics simulations were performed on these six cinnamate analogues and the MM-PBSA analysis was also made for the evaluation of the binding free energy. The conformation of MIF is very steady and it shows no large change during the binding of cinnamate analogues. MIF has formed hydrogen bonds or salt bridge with cinnamate analogues mainly through residue Asn-97', Pro-1, Lys-32. The binding modes of E-ligands are much different from those of Z-ligands, i. e. E-ligands have hydrogen bonds with Pro-1 while no hydrogen bond was found between Z-ligands and Pro-1. This is the main cause of large difference in the binding affinities and the MM-PBSA analysis shows that the electrostatic interaction mostly contributes to this difference.
     2. To study the difference in the interaction of cinnamate analogues between MIF and its mutants and to investigate the mutational effects of MIF on its conformation, the complex structures of cinnamate analogues with P1G, K32A, NP7A mutants were constructed with molecular docking and these structures were then studied by molecular dynamics simulations. The hydrogen bond analysis revealed that the binding mode of E-ligands to MIF or P1G is different from that of Z-ligands. For E-ligand, it has a N-H…O hydrogen bond with Pro-1 of MIF or with Ile-64 of P1G; however, no obvious binding difference was found between Z-ligands and the proteins. There is no any hydrogen bond of Z-ligands formed with Pro-1 of MIF or with Ile-64 of P1G.. N97A mutant can form a hydrogen bond with both Eand Z-ligands via its residue Ile-64, while it have a salt bridge only with E-ligands through its residue Lys-32. Besides forming a O-H…O hydrogen bond with residue Asn-97' of K32A mutant, the E-ligands have a N-H…O hydrogen bond with Ile-64 of K32A mutant, however, the Z-ligands only have a O-H…O hydrogen bond with Asn-97' of K32A mutant. The calculated binding free energy difference shows that there still exist a difference in the inhibition between the E- and Z-ligands for P1G, K32A, N97A mutants. This lead us a suggestion that P1G, K32A, NP7A may still have certain stereochemistry preference for these analogues. Molecular dynamics simulations have been also performed on the trimer, monomer of MIF, N97A, K32A mutants and no large conformational change were found. The conformation shows some rigidity on the nanosecond time scale and it was not affected much by the residue mutations.
     3. To investigate the binding specificity of MIF with p-hydroxyphenylpyruvate(HPP), R-dopachrome(RDP), R- and S-dopachrome methyl ester(RDPM, SDPM), molecular docking was performed to construct their structures. The multiple molecular dynamics simulations were then carried out on these structures and MM-PBSA analysis was also performed to evaluate the binding free energy. HPP forms two hydrogen bonds with MIF, one O-H…O hydrogen bond with Asn-97' and one N-H…O hydrogen bond with Ile-64. There also exists a salt bridge between HPP and Lys-32 of MIF. RDP has two N-H…O hydrogen bonds with Pro-1 and Ile-64 of MIF. The N-H…N and O-H…O hydrogen bond are formed between SDPM and Asn-97', Pro-1 of MIF, However, only one N-H…O hydrogen bond with limited stability exists between RDPM and Pro-1 of MIF. MM-PBSA analysis gave a correct ranking binding affinity of these MIF substrates that RDPM>HPP>SDPM>RDP. This order is in agreement with the experiment that, RDPM and SDPM are better substrates than RDP. The MM-PBSA analysis also revealed that the van der Waals interaction contributes the most part of the binding free energy and this interaction is of most significance to the whole interaction between MIF and these four substrates.
     4. Molecular dynamics simulations were performed on the complexes of MIF with two ISO-1 analogues(R1, S1) to investigate the detailed binding mode. MM-PBSA analysis was also carried out to evaluate the binding free energy of R-and S types of ISO-1. R1, S1 each has a O-H…O hydrogen bond with MIF. MM-PBSA analysis revealed that there is an obvious difference in the binding affinity between R and S ISO-1 and the electrostatic interactions are the predominant factor to this binding affinity difference.
     5. For a series of coumarin derivatives(A, B, C, D, E) as potent inhibitors of MIF, molecular docking was used to construct their complexes with MIF and molecular dynamics simulations were subsequently performed on these five complexes. Five coumarin derivative molecules all forms one O-H…O hydrogen bond with Asn-97' of MIF. Molecule A and E each has another N-H…O hydrogen bond with Ile-64, however, molecule B, C, D each forms another N-H…O hydrogen bond with Pro-1. These coumarin derivative molecules are surrounded by the hydrophobic residues and the hydrophobic force can enforce their binding affinities.
     The information obtained from this study could help to clarify enzymatic mechanism for MIF and may shed light on its enzymatic activity. It could provide instructive information for the structure-based drug design in the treatment of a variety of inflammatory and immune-related diseases associated with MIF.
引文
1. Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, Manogue KR, Cerami A, Bucala R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature, 1993, 365(6448):756-759.
    2. Donn RP, Ray DW. Macrophage migration inhibitory factor: molecular, cellular and genetic aspects of a key neuroendocrine molecule. J Endocrinol, 2004, 182(1):l-9.
    3. Calandra T. Macrophage migration inhibitory factor and host innate immune responses to microbes. Scand J Infect Dis, 2003, 35(9):573-576.
    4. Lolis E, Bucala R. Macrophage migration inhibitory factor. Expert Opin Ther Targets, 2003, 7(2):153-164.
    5. Baugh JA, Bucala R. Macrophage migration inhibitory factor. Crit Care Med. 2002, 30(1 Supp):S27-S35.
    6. Petrovsky N, Bucala R. Macrophage migration inhibitory factor (MIF). A critical neurohumoral mediator. Ann N Y Acad Sci, 2000, 917:665-671.
    7. Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J. Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect, 2002, 4(4);449-460.
    8. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol, 2003, 3(10):791-800.
    9. Mitchell RA. Mechanisms and effectors of MIF-dependent promotion of tumourigenesis. Cell Signal, 2004, 16(1): 13-19.
    10. Denkinger CM, Metz C, Fingerle-Rowson G, Denkinger MD, Forsthuber T. Macrophage migration inhibitory factor and its role in autoimmune diseases. Arch Immunol Ther Exp (Warsz), 2004, 52(6):389-400.
    11. Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 1966, 153(731):80-82
    12. David jR. Delayed hypersensitivity in vitro:its mediation by cell-free substances formed by lymphoid cell-antigen interaction. PNAS, 1966, 56(1):72-77.
    13. W Y Weiser, P A Temple, J S Witek-Giannotti, H G Remold, S C Clark, and J R David, Weiser WY, Temple PA, Witek-Giannotti JS, Remold HG, Clark SC, David JR. Molecular cloning of a cDNA encoding a human macrophage migration inhibitory factor. PNAS, 1989, 86(19):7522-7526.
    14. Sun HW, Bernhagen J, Bucala R, Lolis E. Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor. PNAS, 1996, 93:5191-5196.
    15. Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Nishihira J, Sakai M. Crystal structure of the macrophage migration inhibitory factor from rat liver. Nat. Struct. Biol, 1996, 3:259-266.
    16. Roper DI, Subramanya HS, Shingler V, Wigley DB. Preliminary crystallographic analysis of 4-oxalocrotonate tautomerase reveals the Oligomeric structure of the enzyme. J Mol Biol, 1994,243(4):799-801.
    17. Sugimoto H, Taniguchi M, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 A resolution. Biochemistry, 1999, 38(11):3268-3279.
    18. Budarf M, McDonald T, Sellinger B, Kozak C, Graham C, Wistow G. Localization of the human gene for macrophage migration inhibitory factor (MIF) to chromosome 22q11.2. Genomics, 1997, 39(2):235-236.
    19. Donn RP, Ray DW. Macrophage migration inhibitory factor: molecular, cellular and genetic aspects of a key neuroendocrine molecule. J Endocrinol, 2004, 182(1):1-9.
    20. Donn RP, Shelley E, Oilier WE, Thomson W. A novel 5'-flanking region polymorphism of macrophage migration inhibitory factor is associated with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum, 2001, 44(8):1782-1785.
    21. Baugh JA, Chitnis S, Donnelly SC, Monteiro J, Lin X, Plant BJ, Wolfe F, Gregersen PK, Bucala R. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun, 2002, 3(3):170-176.
    22. Rosengren E, Bucala R, Aman P, Jacobsson L, Odh G, Metz CN, Rorsman H. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction. Mol Med, 1996, 2(1):143-149.
    23. Rosengren E, Aman P, Thelin S, Hansson C, Ahlfors S, Bjork P, Jacobsson L, Rorsman H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett, 1997, 417(1):85-88.
    24. Kleemann R, Kapurniotu A, Frank RW, Gessner A, Mischke R, Flieger O, Juttner S, Brunner H, Bernhagen J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol, 1998, 280(1):85-102.
    25. Knox WE. p-Hydroxyphenylpyruvate enol-keto tautomerase. Methods Enzymol, 1955, 2:289-295.
    26. Knox WE, Pitt BM. Enzymic catalysis of the keto-enol tautomerization of phenylpyruvic acids. J. Biol. Chem, 1957, 225(2):675-688.
    27. Herder C, Peltonen M, Koenig W, Kraft I, Muller-Scholze S, Martin S, Lakka T, Ilanne-Parikka P, Eriksson JG, Hamalainen H, Keinanen-Kiukaanniemi S, Valle TT, Uusitupa M, Lindstrom J, Kolb H, Tuomilehto J. Systemic immune mediators and lifestyle changes in the prevention of type 2 diabetes: results from the Finnish Diabetes Prevention Study. Diabetes, 2006, 55(8):2340-2346.
    28. Bojunga J, Kusterer K, Bacher M, Kurek R, Usadel KH, Renneberg H. Macrophage migration inhibitory factor and development of type-1 diabetes in non-obese diabetic mice. Cytokine, 2003, 21(4):179-186.
    
    29. Cvetkovic I, Al-Abed Y, Miljkovic D, Maksimovic-Ivanic D, Roth J, Bacher M, Lan HY, Nicoletti F, Stosic-Grujicic S. Critical role of macrophage migration inhibitory factor activity in experimental autoimmune diabetes. Endocrinology, 2005, 146(7):2942-2951.
    
    30. Morand EF, Leech M, Bernhagen J. MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov, 2006 , 5(5):399-410.
    
    31. Baugh JA, Donnelly SC. Macrophage migration inhibitory factor: a neuroendocrine modulator of chronic inflammation. J Endocrinol, 2003, 179(1):15-23.
    
    32. Morand EF, Leech M. Macrophage migration inhibitory factor in rheumatoid arthritis. Front Biosci, 2005, 10:12-22.
    
    33. Santos LL, Morand EF. The role of macrophage migration inhibitory factor in the inflammatory immune response and rheumatoid arthritis. Wien Med Wochenschr, 2006, 156(1-2):11-18.
    
    34. Bozza FA, Gomes RN, Japiassu AM, Soares M, Castro-Faria-Neto HC, Bozza PT, Bozza MT. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock, 2004, 22(4):309-313.
    
    35. Bruhn A, Verdant C, Vercruysse V, Su F, Vray B, Vincent JL. Effects of dexamethasone on macrophage migration inhibitory factor production in sepsis. Shock, 2006, 26(2): 169-173.
    
    36. Mitamura Y, Takeuchi S, Yamamoto S, Yamamoto T, Tsukahara I, Matsuda A, Tagawa Y, Mizue Y, Nishihira J. Monocyte chemotactic protein-1 levels in the vitreous of patients with proliferative vitreoretinopathy. Jpn J Ophthalmol, 2002, 46(2):218-221.
    
    37. Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J. Macrophage migration inhibitory factor levels in the vitreous of patients with proliferative vitreoretinopathy. Am J Ophthalmol, 1999, 128(6):763-765.
    
    38. Kitaichi N, Kotake S, Sasamoto Y, Namba K, Matsuda A, Ogasawara K, Onoe K, Matsuda H, Nishihira J. Prominent increase of macrophage migration inhibitory factor in the sera of patients with uveitis. Invest Ophthalmol Vis Sci, 1999, 40(1):247-250.
    
    
    39. Stephan C, Xu C, Brown DA, Breit SN, Michael A, Nakamura T, Diamandis EP, Meyer H, Cammann H, Jung K. Three new serum markers for prostate cancer detection within a percent free PSA-based artificial neural network. Prostate, 2006, 66(6):651-659.
    
    40. Nishihira J, Ishibashi T, Fukushima T, Sun B, Sato Y, Todo S. Macrophage migration inhibitory factor (MIF): Its potential role in tumor growth and tumor-associated angiogenesis. AnnNYAcad Sci, 2003, 995:171-82.
    
    41. Yao K, Shida S, Selvakumaran M, Zimmerman R, Simon E, Schick J, Haas NB, Balke M, Ross H, Johnson SW, O'Dwyer PJ. Macrophage migration inhibitory factor is a determinant of hypoxia-induced apoptosis in colon cancer cell lines. Clin Cancer Res, 2005, 11(20):7264-7272.
    42. Mitchell RA, Bucala R. Tumor growth-promoting properties of macrophage migration inhibitory factor (MIF). Semin Cancer Biol, 2000, 10(5):359-366.
    43. Lolis E. Glucocorticoid counter regulation: macrophage migration inhibitory factor as a target for drug discovery. Curr Opin Pharmacol, 2001, l(6):662-668.
    44. Muhlhahn P, Bernhagen J, Czisch M, Georgescu J, Renner C, Ross A, Bucala R, Holak TA. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF). Protein Sci, 1996, 5(10):2095-2103.
    45. Kato Y, Muto, T, Tomura, T, Tsumura, H, Watarai, H, Mikayama, T, Ishizaka, K, Kuroki, R. The crystal structure of human glycosylation-inhibiting factor is a trimeric barrel with three 6-stranded beta-sheets. PNAS, 1996, 93(7):3007-3010.
    46. Sugimoto H, Suzuki M, Nakagawa A, Tanaka I, Nishihira J.Crystal structure of macrophage migration inhibitory factor from human lymphocyte at 2.1-A resolution. FEBS Lett, 1996, 389(2):145-148.
    47. Orita M, Yamamoto, S, Katayama, N, Aoki, M, Takayama, K, Yamagiwa, Y, Seki, N, Suzuki, H, Kurihara, H, Sakashita, H, Takeuchi, M, Fujita, S, Yamada, T, Tanaka, A. Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: discovery and X-ray crystallography. J Med Chem, 2001, 44(4):540-547.
    48. Zerovnik E, Janjic V, Francky A, Mozetic-Francky B. Equilibrium and transient intermediates in folding of human macrophage migration inhibitory factor. Eur J Biochem, 1999, 260(3):609-618.
    49. Lashuel HA, Aljabari B, Sigurdsson EM, Metz CN, Leng L, Callaway DJ, Bucala R. Amyloid fibril formation by macrophage migration inhibitory factor. Biochem Biophys Res Commun, 2005, 338(2):973-980.
    50. Blasi F, Fragonmele, F, Covelli, I. Thyroidal phenylpyruvate tautomerase. Isolation and characterization. J Biol Chem, 1969, 244(18):4864-4870.
    51. Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity. Biochemistry, 1999, 38(22):7346-7354.
    52. Hermanowski-Vosatka A, Mundt SS, Ayala JM, Goyal S, Hanlon WA, Czerwinski RM, Wright SD, Whitman CP. Enzymatically inactive macrophage migration inhibitory factor inhibits monocyte chemotaxis and random migration. Biochemistry, 1999, 38(39):12841-12849.
    53. Johnson WH Jr, Czerwinski RM, Stamps SL, Whitman CP. A kinetic and stereochemical investigation of the role of lysine-32 in the phenylpyruvate tautomerase activity catalyzed by macrophage migration inhibitory factor. Biochemistry, 1999, 38(48):16024-16033.
    54. Stamps SL, Taylor AB, Wang SC, Hackert ML, Whitman CP. Mechanism of the phenylpyruvate tautomerase activity of macrophage migration inhibitory factor: properties of the PIG, P1A, Y95F, and N97Amutants. Biochemistry, 2000, 39(32):9671-9678.
    55. Soares T, Goodsell D, Ferreira R, Olson AJ, Briggs JM. Ionization state and molecular docking studies for the macrophage migration inhibitory factor: the role of lysine 32 in the catalytic mechanism. J Mol Recognit, 2000, 13(3):146-156.
    56. Soares TA, Lins RD, Straatsma TP, Briggs JM. Internal dynamics and ionization states of the macrophage migration inhibitory factor: comparison between wild-type and mutant forms. Biopolymers, 2002, 65(4):313-323.
    57. Swant JD, Rendon BE, Symons M, Mitchell RA. Rho GTPase-dependent signaling is required for macrophage migration inhibitory factor-mediated expression of cyclin D1. J Biol Chem, 2005, 280(24):23066-23072.
    58. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R. MIF signal transduction initiated by binding to CD74. J Exp Med, 2003, 197(11): 1467-1476.
    59. Fingerle-Rowson G, Petrenko O, Metz CN, Forsthuber TG, Mitchell R, Huss R, Moll U, Muller W, Bucala R. The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting. PNAS, 2003, 100(16):9354-9359.
    60. Kleemann R, Hausser A, Geiger G, Mischke R, Burger-Kentischer A, Flieger O, Johannes FJ, Roger T, Calandra T, Kapurniotu A, Grell M, Finkelmeier D, Brunner H, Bernhagen J. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through JaE1. Nature, 2000, 408(6809):211-216.
    61. Burger-Kentischer A, Finkelmeier D, Thiele M, Schmucker J, Geiger G, Tovar GE, Bernhagen J. Binding of JAE1/CSN5 to MIF is mediated by the MPN domain but is independent of the JAMM motif. FEBS Lett, 2005, 579(7):1693-1701.
    62. Liao H, Bucala R, Mitchell RA. Adhesion-dependent signaling by macrophage migration inhibitory factor (MIF). J Biol Chem, 2003, 278(1):76-81.
    63. Ohkawara T, Takeda H, Miyashita K, Nishiwaki M, Nakayama T, Taniguchi M, Yoshiki T, Takana J, Imamura M, Sugiyama T, Asaka M, Nishihira J. Regulation of Toll-like receptor 4 expression in mouse colon by macrophage migration inhibitory factor. Histochem Cell Biol, 2006, 125(5):575-582.
    64. Morand EF, Leech M, Iskander MN. Therapeutic opportunities for antagonism of macrophage migration inhibitory factor. Expert Opin. Ther. Patents, 2003, 13(8):1189-1212.
    65. Pirrung Michael, Chen J, Rowley EG, Mcphail AT. Mechanistic and stereochemical study of phenylpyruvate tautomerase. J Am Chem Soc, 1993, 115(16):7103-7110.
    66. Taylor AB, Johnson Jr WH, Czerwinski RM, Li HS, Hackert ML, Whitman CP. Crystal structure of macrophage migration inhibitory factor complexed with (E)-2-fluoro-p-hydroxycinnamate at 1.8 A resolution: implications for enzymatic catalysis and inhibition. Biochemistry, 1999, 38(23):7444-7452.
    67. Zhang X, Bucala R. Inhibition of macrophage migration inhibitory factor(MIF) tautomerase activity by dopachrome analogs. Bioorg Med Chem Lett, 1999, 9:3193-3198.
    68. Orita M, Yamamoto S, Katayama N, Fujita S. Macrophage migration inhibitory factor and the discovery of tautomerase inhibitors. Curr Pharm Des, 2002, 8(14):1297-1317.
    69. Senter PD, Al-Abed Y, Metz CN, Benigni F, Mitchell RA, Chesney J, Han J, Gartner CG, Nelson SD, Todaro GJ, Bucala R. Inhibition of macrophage migration inhibitory factor(MIF) tautomerase and biological activities by acetaminophen metabolites. PNAS, 2002, 99(1);144-149.
    70. Dios A, Mitchell RA, Aljabari B, Lubetsky J, O'Connor KA, Liao H, Senter PD, Manogue KR, Lolis E, Metz C, Bucala R, Callaway DJ, Al-Abed Y Inhibition of MIF bioactivity by rational design of pharmacological inhibitors of mif tautomerase activity. J Med Chem, 2002, 45(12):2410-2416.
    71. Lubetsky JB, Dios A, Han J, Aljabari B, Ruzsicska B, Mitchell R, Lolis E, Al-Abed Y The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. J Biol Chem, 2002, 277(28):24976-24982.
    72. Al-Abed Y, Dabideen D, Aljabari B, Valster A, Messmer D, Ochani M, Tanovic M, Ochani K, Bacher M, Nicoletti F, Metz C, Pavlov VA, Miller EJ, Tracey KJ. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem, 2005, 280(44):36541-36544.
    73. Cheng KF, Al-Abed Y. Critical modifications of the ISO-1 scaffold improve its potent inhibition of macrophage migration inhibitory factor(MIF) tautomerase activity. Bioorg Med Chem Lett, 2006, 16(13):3376-3379.
    74. Golubkov PA, Johnson WH Jr, Czerwinski RM, Person MD, Wang SC, Whitman CP, Hackert ML. Inactivation of the phenylpyruvate tautomerase activity of macrophage migration inhibitory factor by 2-oxo-4-phenyl-3-butynoate. Bioorg Chem, 2006, 34(4):183-199.
    75. Alder BJ, Wainwright TE. Phase transition for a hardsphere system. J Chem Phys, 1957, 27:1208-1209.
    76. McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature, 1977, 267(5612):585-590.
    77. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ. The AMBER biomolecular simulation programs. J Comput Chem, 2005, 26(16):1668-1688.
    78. Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Wang J, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng A, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA. 2002, AMBER 7, University of California, San Francisco.
    79. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem, 2005, 26(16):1781-1802.
    80. Brooks BR, Bruccoleri RE, Olafson BD, States D J, Swaminathan S, Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem, 1983, 4(2): 187-217.
    81. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem, 2005, 26(16): 1701-1718.
    82. Christen M, Hunenberger PH, Bakowies D, Baron R, Burgi R, Geerke DP, Heinz TN, Kastenholz MA, Krautler V, Oostenbrink C, Peter C, Trzesniak D, van Gunsteren WE The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem, 2005, 26(16): 1719-1751.
    83. Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol, 2002, 9(9): 646-652.
    84. Karplus M. Molecular dynamics of biological macromolecules: a brief history and perspective. Biopolymers, 2003, 68(3): 350-358.
    85. Norberg J, Nilsson L. Molecular dynamics applied to nucleic acids. Acc Chem Res, 2002, 35(6): 465-472.
    86. Cheatham TE Ⅲ, young MA. Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise. Biopolymers, 2001, 56(4): 232-256.
    87. Hansson T, Oosenbrink C, Gunsteren WF van. Molecular dynamics simulations. Curr Opin Struct Biol, 2002, 12(2): 190-196.
    88. Kuntz ID. Structure-based strategies for drug design and discovery. Science, 1992, 257(21): 1078-1082.
    89. Krovat EM, Steindl T, Langer T. Recent advances in docking and scoring. Curr Comp Aided Drug Des, 2005, 1: 93-102.
    90. Cole JC, Murray CW, Nissink WM, Taylor RD, Taylor R. Comparing protein-ligand docking programs is difficult. Proteins, 2005, 60(3): 325-332.
    91.徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计.北京:化学工业出版社,2004.325-326.
    1. Rosengren E, Aman P, Thelin S, Hansson C, Ahlfors S, Bjork P, Jacobsson L, Rorsman H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett, 1997, 417(1): 85-88.
    2. Knox WE. p-Hydroxyphenylpyruvate enol-keto tautomerase. Methods Enzymol, 1955, 2: 289-295.
    3. Knox WE, Pitt BM. Enzymic catalysis of the keto-enol tautomerization of phenylpyruvic acids. J Biol Chem, 1957, 225(2): 675-688.
    4. Pirrung Michael, Chen J, Rowley EG, Mcphail AT. Mechanistic and stereochemical study of phenylpyruvate tautomerase. JAm Chem Soc, 1993, 115(16): 7103-7110.
    5. Taylor AB, Johnson Jr WH, Czerwinski RM, Li HS, Hackert ML, Whitman CP. Crystal structure of macrophage migration inhibitory factor complexed with (E)-2-fluoro-p-hydroxycinnamate at 1. 8 A resolution: implications for enzymatic catalysis and inhibition. Biochemistry, 1999, 38(23): 7444-7452.
    6.李锋,边庆花,乔振,王敏.农药分子中顺反异构现象.农药,2004,43(5):201-204.
    7. Moth CW, Prusakiewicz JJ, Marnett LJ, Lybrand TP. Stereoselective Binding of Indomethacin Ethanolamide Derivatives to Cyclooxygenase-1. J Med Chem, 2005, 48(10): 3613-3620.
    8. Krohn A, Redshaw S, Ritchie JC, Graves BJ, Hatada MH. Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. J Med Chem, 1991, 34(11): 3340-3342.
    9. Holladay MW, Salituro FG, Rich DH. Synthetic and enzyme inhibition studies of pepstatin analogs containing hydroxyethylene and ketomethylene dipeptide isosteres. J Med Chem, 1987, 30(2): 374-383.
    10. Pereillo JM, Maftouh M, Andrieu A, Uzabiaga MF, Fedeli O, Savi P, Pascal M, Herbert JM, Maffrand JP, Picard Claudine. Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos. 2002, 30(11): 1288-1295.
    11. Lam PY, Ru Y, Jadhav PK, Aldrich PE, DeLucca GV, Eyermann CJ, Chang CH, Emmett G, Holler ER, Daneker WF, Li L, Confalone PN, McHugh RJ, Han Q, Li R, Markwalder JA, Seitz SP, Sharpe TR, Bacheler LT, Rayner MM, Klabe RM, Shum L, Winslow DL, Komhauser DM, Hodge CN, Cyclic HIV protease inhibitors: synthesis, conformational analysis, P2/P2' structure-activity relationship, and molecular recognition of cyclic ureas. J Med Chem, 1996, 39(18): 3514-3525.
    12. Zhang Q, Schlick T. Stereochemistry and position-dependent effects of carcinogens on TATA/TBP binding. Biophys J, 2006, 90(6): 1865-1877.
    13. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res, 2000, 33(12):889-897.
    14. Huo S, Wang J, Cieplak P, Kollman PA, Kuntz ID. Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. J Med Chem, 2002, 45(7):1412-1419.
    15. Rafi SB, Cui G, Song K, Cheng X, Tonge PJ, Simmerling C. Insight through molecular mechanics Poisson-Boltzmann surface area calculations into the binding affinity of triclosan and three analogues for FabI, the E. coli enoyl reductase. J Med Chem, 2006, 49(15):4574-4580.
    16. Basdevant N, Weinstein H, Ceruso M. Thermodynamic Basis for Promiscuity and Selectivity in Protein-Protein Interactions: PDZ Domains, a Case Study. J Am Chem Soc, 2006, 128(39): 12766-12777.
    17. Kuhn B, Gerber P, Schulz-Gasch T, Stahl M. Validation and use of the MM-PBSA approach for drug discovery. J Med Chem, 2005, 48(12):4040-4048.
    18. BonnetP, Richard A, Bryce R. A. Molecular dynamics and free energy analysis of neuraminidase-ligand interactions. Protein Sci, 2004, 13(4):946-957.
    19. Wang JM, Morin P, Wang W, Kollman PA. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc, 2001, 123:5221-5230.
    20. Kuhn B, Kollman PA. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem, 2000, 43(20): 3786-3791.
    21. Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach(MM-PBSA/GBSA)to predict ligand bingding. Perspect Drug Discovery Des, 2000, 18(1):113-135.
    22. Spackova N, Cheatham TE 3rd, Ryjacek F, Lankas F, Van Meervelt L, Hobza P, Sponer J. Molecular dynamics simulations and thermodynamics analysis of DNA-drug complexes. Minor groove binding between 4',6-diamidino-2-phenylindole and DNA duplexes in solution. J Am Chem Soc, 2003, 125(7):1759-1769.
    23. Reyes CM, Kollman PA. Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. J Mol Biol, 2000, 297(5): 1145-1158
    24. Lee MR, Duan Y, Kollman PA. Use of MM-PB/SA in estimating the free energies of proteins: Application to native, intermediates, and unfolded villin headpiece. Proteins, 2000, 39(4):309-316.
    25. Gohlke H,Kiel C, Case DA. Insights into protein-protein bingding by bingding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RaiGDS complexes. J Mol Biol, 2003, 330(4):891-913.
    26. Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions:a novel approach to evaluate binding free energies. J Am Chem Soc, 1999, 121(36):8133-8143.
    27. Huo SH, Massova I, Kollman PA. Computational alanine scanning of the 1:1 human growth hormone-receptor complex. J Comput Chem, 2002, 23(1): 15-27.
    28. Accelrys Inc., DS Modeling, Release 1.1, San Diego: Accelrys Inc., 2003.
    29. Rizzo RC, Toba S., Kuntz ID. A molecular basis for the selectivity of thiadiazole urea inhibitors with stromelysin-1 and gelatinase-a from generalized born molecular dynamics simulations. J Med Chem, 2004, 47(12):3065-3074.
    30. Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity. Biochemistry, 1999, 38(22):7346-7354.
    31. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ. The AMBER biomolecular simulation programs. J Comput Chem, 2005, 26(16):1668-1688.
    32. Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Wang J, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng A, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA. 2002, AMBER 7, University of California, San Francisco.
    33. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79(2):926-935.
    34. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecule. J Am Chem Soc, 1995, 117(19):5179-5197.
    35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, ead-Gordon M, Replogle ES, Pople JZ. 1998, Gaussian 98, revision A7, Gaussian, Inc.: Pittsburgh, PA.
    36. Besler BH, Merz KM Jr, Kollman PA. Atomic charges derived from semiempirical methods. J Comp Chem, 1990, 11(4): 431-439.
    37. Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comp Chem, 1984, 5(2): 129-145.
    38. Fox T, Kollman PA. Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B, 1998, 102(41):8070-8079.
    39. Becke AD. Density-functional thermochemistry. III:The role of exact exchange. J Chem Phys, 1993, 98(7):5648-5652.
    40. Lee C, Yang WT, Parr RG. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37(2):785-789.
    41. Hehre W, Radom L, Schleyer PVR, Pople JA. Ab initio molecular orbital theory. Wiley, New York, 1986.
    42. Miertus S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys, 1981, 55(1):117-129.
    43. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys, 1977, 23(3):327-341.
    44. Darden T, York D, Pedersen L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98(12):10089-10092.
    45. Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science, 1995, 268(5214):1144-1149.
    46. Sitkoff D, Sharp KA, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem, 1994, 98(7):1978-1988.
    47. Connolly ML. Analytical molecular surface calculation. J Appl Cryst, 1983, 16:548-558.
    48. Srinivasan J, Cheatham TE III, Cieplak P, Kollman PA, Case DA. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc, 1998, 120(37):9401-9409.
    49. Muhlhahn P, Bernhagen J, Czisch M, Georgescu J, Renner C, Ross A, Bucala R, Holak TA. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF). Protein Sci, 1996, 5(10):2095-2103.
    50. Stamps SL, Taylor AB, Wang SC, Hackert ML, Whitman CP. Mechanism of the phenylpyruvate tautomerase activity of macrophage migration inhibitory factor: Properties of the PIG, PI A, Y95F, and N97A mutants. Biochemistry, 2000, 39(32):9671-9678.
    1. Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, Manogue KR, Cerami A, Bucala R. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature, 1993, 365(6448):756-759.
    2. Donn RP, Ray DW. Macrophage migration inhibitory factor: molecular, cellular and genetic aspects of a key neuroendocrine molecule. J Endocrinol, 2004, 182(1): 1-9.
    3. Calandra T. Macrophage migration inhibitory factor and host innate immune responses to microbes. Scand J Infect Dis. 2003, 35(9):573-576.
    4. Rosengren E, Bucala R, Aman P, Jacobsson L, Odh G, Metz CN, Rorsman H. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction. Mol Med, 1996, 2(1):143-149.
    5. Rosengren E, Aman P, Thelin S, Hansson C, Ahlfors S, Bjork P, Jacobsson L, Rorsman H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett, 1997, 417(1):85-88.
    6. Kleemann R, Kapurniotu A, Frank RW, Gessner A, Mischke R, Flieger O, Juttner S, Brunner H, Bernhagen J. Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J Mol Biol, 1998, 280(1):85-102.
    7. Thiele M, Bernhagen J. Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxid Redox Signal, 2005, 7(9-10):1234-1248.
    8. Swope M, Sun HW, Blake PR, Lolis E. Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor. EMBO J, 1998, 17(13):3534-3541.
    9. Stamps SL, Fitzgerald MC, Whitman CP. Characterization of the role of the amino-terminal proline in the enzymatic activity catalyzed by macrophage migration inhibitory factor. Biochemistry, 1998, 37(28):10195-10202.
    10. Stamps SL, Taylor AB, Wang SC, Hackert ML, Whitman CP. Mechanism of the phenylpyruvate tautomerase activity of macrophage migration inhibitory factor: properties of the P1G, P1A, Y95F, and N97A mutants. Biochemistry, 2000, 39(32):9671-9678.
    11. Taylor AB, Johnson WH Jr, Czerwinski RM, Li HS, Hackert ML, Whitman CP. Crystal structure of macrophage migration inhibitory factor complexed with (E)-2-fluoro-p-hydroxycinnamate at 1.8 A resolution:Implications for enzymatic catalysis and inhibition. Biochemistry, 1999, 38(23):7444-7452.
    12. Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity. Biochemistry, 1999, 38(22):7346-7354.
    13. Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G. Homology modeling, model and software evaluation: three related resources. CABIOS,1998, 14(66):523-528.
    14. Vriend G. WHAT IF: A molecular modeling and drug design program. J Mol Graph, 1990, 8(1):52-56.
    15. SYBYL, Version 6.8 (2001) St. Louis (MO): Tripos Associates Inc.
    16. Pirrung Michael, Chen J, Rowley EG, Mcphail AT. Mechanistic and stereochemical study of phenylpyruvate tautomerase. J Am Chem Soc, 1993, 115(16):7103-7110.
    17. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J Comput Chem, 1998, 19(14):1639-1662.
    18. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecule. J Am Chem Soc, 1995, 117(19):5179-5197.
    19. Fox T, Kollman PA. Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B, 1998, 102(41):8070-8079.
    20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, ead-Gordon M, Replogle ES, Pople JZ. 1998, Gaussian 98, revision A7, Gaussian, Inc.: Pittsburgh, PA.
    21. Besler BH, Merz KM Jr, Kollman PA. Atomic charges derived from semiempirical methods. J Comp Chem, 1990, 11(4):431-439.
    22. Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comp Chem, 1984, 5(2): 129-145.
    23. Tan XJ, Carlson HA. Docking studies and ligand recognition in folylpolyglutamate synthetase. J Med Chem, 2005, 48(24):7764-7772.
    24. Wang DF, Wiest O, Helquist P, Lan-Hargest HY, Wiech NL. On the function of the 14 A long internal cavity of histone deacetylase-like protein: implications for the design of histone deacetylase inhibitors. J Med Chem, 2004, 47(13):3409-3417.
    25. Wang M, Zhang J, Andrei D, Kuczera K, Borchardt RT, Wnuk SF. Are L-adenosine and its derivatives substrates for s-adenosyl-1-homocysteine hydrolase? J Med Chem, 2005, 48(10):3649-3653.
    26. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA. 2004, AMBER 8, University of California, San Francisco.
    27. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ. The AMBER biomolecular simulation programs. J Comput Chem, 2005, 26(16):1668-1688.
    28. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem, 2003, 24(16): 1999-2012.
    29. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79(2):926-935.
    30. Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98(12):10089-10092.
    31. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys, 1977, 23(3):327-341.
    32. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem, 2005, 26(16):1701-1718.
    33. Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod, 2001, 7(8):306-317.
    34. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem, 2004, 25(13): 1656-76.
    35. Berendsen HJC, Postma JPM, van Gunsteren, WF, Hermans J. Intermolecular Forces , chapter Interaction models for water in relation to protein hydration,, Eds. D. Reidel Publishing Company: Dordrecht, The Netherlands, 1981, 331-342.
    36. Johnson WH Jr, Czerwinski RM, Stamps SL, Whitman CP. A kinetic and stereochemical investigation of the role of lysine-32 in the phenylpyruvate tautomerase activity catalyzed by macrophage migration inhibitory factor. Biochemistry, 1999, 38(48): 16024-16033.
    37. Hermanowski-Vosatka A, Mundt SS, Ayala JM, Goyal S, Hanlon WA, Czerwinski RM, Wright SD, Whitman CP. Enzymatically inactive macrophage migration inhibitory factor inhibits monocyte chemotaxis and random migration. Biochemistry, 1999, 38(39):12841-12849.
    38. Muhlhahn P, Bernhagen J, Czisch M, Georgescu J, Renner C, Ross A, Bucala R, Holak TA. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF). Protein Sci, 1996, 5(10):2095-2103.
    39. Soares TA, Lins RD, Straatsma TP, Briggs JM. Internal dynamics and ionization states of the macrophage migration inhibitory factor: comparison between wild-type and mutant forms. Biopolymers, 2002, 65(4):313-323.
    1. Rosengren E, Aman P, Thelin S, Hansson C, Ahlfors S, Bjork P, Jacobsson L, Rorsman H. The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett, 1997, 417(1):85-88.
    2. Knox WE. p-Hydroxyphenylpyruvate enol-keto tautomerase. Methods Enzymol, 1955, 2:289-295.
    3. Knox WE, Pitt BM. Enzymic catalysis of the keto-enol tautomerization of phenylpyruvic acids. J Biol Chem, 1957, 225(2):675-688.
    4. Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity. Biochemistry, 1999, 38(22):7346-7354.
    5. Rosengren E, Bucala R, Aman P, Jacobsson L, Odh G, Metz CN, Rorsman H. The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomerization reaction. Mol Med, 1996, 2(1):143-149.
    6. Soares T, Goodsell D, Ferreira R, Olson AJ, Briggs JM. Ionization state and molecular docking studies for the macrophage migration inhibitory factor: the role of lysine 32 in the catalytic mechanism. J Mol Recognit, 2000, 13(3):146-156.
    7. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA. 2004, AMBER 8, University of California, San Francisco.
    8. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ. The AMBER biomolecular simulation programs. J Comput Chem, 2005, 26(16):1668-1688.
    9. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79(2):926-935.
    10. Zsoldos Z, Reid D, Simon A, Sadjad BS, Peter JA. eHiTS: An Innovative Approach to the Docking and Scoring Function Problems. Curr Protein Pepti Sci, 2006, 7(5):421-435.
    11. Zsoldos Z, Reid D, Simon A, Sadjad BS, Peter JA. eHiTS: A new fast, exhaustive flexible ligand docking system. J Mol Graph Model, 2006, online.
    12. Hurta DE, Suttona AE, Jon Clardy J. Brequinar derivatives and species-specific drug design for dihydroorotate dehydrogenase. Bioorg Med Chem Lett, 2006, 16(6):1610-1615.
    13. Kerwin SM. Computer Software Review of: eHiTS 5.1.6, SimBioSys Inc. J Am Chem Soc, 2005,127(24):8899-8900.
    14. SYBYL, Version 6.8 (2001) St. Louis (MO): Tripos Associates Inc.
    15. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecule. J Am Chem Soc, 1995, 117(19):5179-5197.
    16. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem, 2003, 24(16):1999-2012.
    17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, ead-Gordon M, Replogle ES, Pople JZ. 1998, Gaussian 98, revision A7, Gaussian, Inc.: Pittsburgh, PA.
    18. Besler BH, Merz KM Jr, Kollman PA. Atomic charges derived from semiempirical methods. J Comp Chem, 1990, 11(4):431-439.
    19. Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comp Chem, 1984, 5(2):129-145.
    20. Fox T, Kollman PA. Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B, 1998, 102(41):8070-8079.
    21. Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98(12): 10089-10092.
    22. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys, 1977, 23(3):327-341.
    23. Srinivasan J, Cheatham TE III, Cieplak P, Kollman PA, Case DA. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc, 1998, 120(37):9401-9409.
    24. Burley SK, Petsko GA. Aromatic-Aromatic interaction:A mechanism of protein structure stabilization. Science, 1985, 229(4708):23-28.
    25. Bendrat K, Al-Abed Y, Callaway DJ, Peng T, Calandra T, Metz CN, Bucala R. Biochemical and mutational investigations of the enzymatic activity of macrophage migration inhibitory factor. Biochemistry, 1997, 36(49):15356-15362.
    26. Hermanowski-Vosatka A, Mundt SS, Ayala JM, Goyal S, Hanlon WA, Czerwinski RM, Wright SD, Whitman CP. Enzymatically inactive macrophage migration inhibitory factor inhibits monocyte chemotaxis and random migration. Biochemistry, 1999, 38(39):12841-12849.
    27. Stamps SL, Fitzgerald MC, Whitman CP. Characterization of the role of the amino-terminal proline in the enzymatic activity catalyzed by macrophage migration inhibitory factor. Biochemistry, 1998, 37(28):10195-10202.
    28. Johnson WH Jr, Czerwinski RM, Stamps SL, Whitman CP. A kinetic and stereochemical investigation of the role of lysine-32 in the phenylpyruvate tautomerase activity catalyzed by macrophage migration inhibitory factor. Biochemistry, 1999, 38(48):16024-16033.
    1. Herder C, Peltonen M, Koenig W, Kraft I, Muller-Scholze S, Martin S, Lakka T, Ilanne-Parikka P, Eriksson JG, Hamalainen H, Keinanen-Kiukaanniemi S, Valle TT, Uusitupa M, Lindstrom J, Kolb H, Tuomilehto J. Systemic immune mediators and lifestyle changes in the prevention of type 2 diabetes: results from the Finnish Diabetes Prevention Study. Diabetes, 2006, 55(8):2340-2346.
    2. Bojunga J, Kusterer K, Bacher M, Kurek R, Usadel KH, Renneberg H. Macrophage migration inhibitory factor and development of type-1 diabetes in non-obese diabetic mice. Cytokine, 2003, 21(4):179-186.
    3. Morand EF, Leech M, Bernhagen J. MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov, 2006, 5(5):399-410.
    4. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol, 2003, 3(10):791-800.
    5. Baugh JA, Donnelly SC. Macrophage migration inhibitory factor: a neuroendocrine modulator of chronic inflammation. J Endocrinol, 2003, 179(1):15-23.
    6. Morand EF, Leech M. Macrophage migration inhibitory factor in rheumatoid arthritis. Front Biosci, 2005, 10:12-22.
    7. Santos LL, Morand EF. The role of macrophage migration inhibitory factor in the inflammatory immune response and rheumatoid arthritis. Wien Med Wochenschr, 2006, 156(1-2):11-18.
    8. Bozza FA, Gomes RN, Japiassu AM, Soares M, Castro-Faria-Neto HC, Bozza PT, Bozza MT. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock, 2004, 22(4):309-313.
    9. Bruhn A, Verdant C, Vercruysse V, Su F, Vray B, Vincent JL. Effects of dexamethasone on macrophage migration inhibitory factor production in sepsis. Shock, 2006, 26(2): 169-173.
    10. Mitamura Y, Takeuchi S, Yamamoto S, Yamamoto T, Tsukahara I, Matsuda A, Tagawa Y, Mizue Y, Nishihira J. Monocyte chemotactic protein-1 levels in the vitreous of patients with proliferative vitreoretinopathy. Jpn J Ophthalmol, 2002, 46(2):218-221.
    11. Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J. Macrophage migration inhibitory factor levels in the vitreous of patients with proliferative vitreoretinopathy. Am J Ophthalmol, 1999, 128(6):763-765.
    12. Stephan C, Xu C, Brown DA, Breit SN, Michael A, Nakamura T, Diamandis EP, Meyer H, Cammann H, Jung K. Three new serum markers for prostate cancer detection within a percent free PSA-based artificial neural network. Prostate, 2006, 66(6):651-659.
    13. Yao K, Shida S, Selvakumaran M, Zimmerman R, Simon E, Schick J, Haas NB, Balke M, Ross H, Johnson SW, O'Dwyer PJ. Macrophage migration inhibitory factor is a determinant of hypoxia-induced apoptosis in colon cancer cell lines. Clin Cancer Res, 2005, 11(20):7264-7272.
    14. Lolis E. Glucocorticoid counter regulation: macrophage migration inhibitory factor as a target for drug discovery. Curr Opin Pharmacol, 2001, 1(6):662-668.
    15. Morand EF, Leech M, Iskander MN. Therapeutic opportunities for antagonism of macrophage migration inhibitory factor. Expert Opin. Ther. Patents, 2003, 13(8):1189-1212.
    16. Al-Abed Y, Cvetkovic I, Miljkovic D, Nicoletti F, Stosic-Grujicic S. MIF antagonists are anti-diabetogenic (Abstract MEDI 184). 227th Americam Chemical Society National Meeting. 2004, March 28-April 1. Anaheim, Calif.
    17. Cvetkovic I, Al-Abed Y, Miljkovic D, Maksimovic-Ivanic D, Roth J, Bacher M, Lan HY, Nicoletti F, Stosic-Grujicic S. Critical Role of Macrophage Migration Inhibitory Factor Activity in Experimental Autoimmune Diabetes. Endocrinology, 2005, 146(7):2942-2951.
    18. Lubetsky JB, Dios A, Han J, Aljabari B, Ruzsicska B, Mitchell R, Lolis E, Al-Abed Y. The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. J Biol Chem, 2002, 277(28):24976-24982.
    19. Al-Abed Y, Dabideen D, Aljabari B, Valster A, Messmer D, Ochani M, Tanovic M, Ochani K, Bacher M, Nicoletti F, Metz C, Pavlov VA, Miller EJ, Tracey KJ. ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem, 2005, 280(44):36541-36544.
    20. Cheng KF, Al-Abed Y. Critical modifications of the ISO-1 scaffold improve its potent inhibition of macrophage migration inhibitory factor(MIF) tautomerase activity. Bioorg Med Chem Lett, 2006, 16(13):3376-3379.
    21. SYBYL, Version 6.8 (2001) St. Louis (MO): Tripos Associates Inc.
    22. Rizzo RC, Toba S., Kuntz ID. A molecular basis for the selectivity of thiadiazole urea inhibitors with stromelysin-1 and gelatinase-a from generalized born molecular dynamics simulations. J Med Chem, 2004, 47(12):3065-3074.
    23. Case DA, Darden TA, Cheatham TE III, Simmerling CL, J. Wang J, R.E. Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF,Paesani F, Wu X, Brozell S, Tsui V.Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA. 2006, AMBER 9, University of California, San Francisco.
    24. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ. The AMBER biomolecular simulation programs. J Comput Chem, 2005, 26(16): 1668-1688.
    25. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65(3):712-725.
    26. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem, 2003, 24(16): 1999-2012.
    27. Besler BH, Merz KM Jr, Kollman PA. Atomic charges derived from semiempirical methods. J Comp Chem, 1990, 11(4): 431-439.
    28. Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comp Chem, 1984, 5(2): 129-145.
    29. Fox T, Kollman PA. Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B, 1998, 102(41):8070-8079.
    30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79(2):926-935.
    31. Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98(12):10089-10092.
    32. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys, 1977, 23(3):327-341.
    33. Srinivasan J, Cheatham TE III, Cieplak P, Kollman PA, Case DA. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc, 1998, 120(37):9401-9409.
    1. Kulkarni MV, Kulkarni GM, Lin CH, Sun CM. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr Med Chem. 2006, 13(23):2795-2818.
    2. Curini M, Cravotto G, Epifano F, Giannone G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr Med Chem, 2006, 13(2):199-222.
    3. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMahon JB II, Currens MJ, Buckheit RW, Hughes SH Jr, Cragg GM, Boyd MR. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem, 1992, 35(15):2735-2743.
    4. Greaves M. Pharmacogenetics in the management of coumarin anticoagulant therapy: the way forward or an expensive diversion? PLoS Med, 2005, 2(10):e342.
    5. Dentali F, Ageno W, Crowther M. Treatment of coumarin-associated coagulopathy: a systematic review and proposed treatment algorithms. J Thromb Haemost, 2006, 4(9):1853-1863.
    6. Okamoto T, Kobayashi T, Yoshida S. Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas. Curr Med Chem Anticancer Agents, 2005, 5(1):47-51.
    7. Lacy A, O'Kennedy R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr Pharm Des, 2004, 10(30):3797-811.
    8. de Souza SM, Delle Monache F, Smania A Jr. Antibacterial activity of coumarins. Z Naturforsch [C], 2005, 60(9-10):693-700.
    9. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr Pharm Des, 2004, 10(30):3813-3833.
    10. Lee S, Sivakumar K, Shin WS, Xie F, Wang Q. Synthesis and anti-angiogenesis activity of coumarin derivatives. Bioorg Med Chem Lett, 2006, 16(17):4596-4599.
    11. Row EC, Brown SA, Stachulski AV, Lennard MS. Design, synthesis and evaluation of furanocoumarin monomers as inhibitors of CYP3A4. Org Biomol Chem, 2006, 4(8):1604-1610.
    12. Novaroli L, Daina A, Favre E, Bravo J, Carotti A, Leonetti F, Catto M, Carrupt PA, Reist M. Impact of species-dependent differences on screening, design, and development of MAO B inhibitors. J Med Chem, 2006, 49(21):6264-6272.
    13. Ishihara M, Yokote Y, Sakagami H. Quantitative structure-cytotoxicity relationship analysis of coumarin and its derivatives by semiempirical molecular orbital method. Anticancer Res, 2006, 26(4B):2883-2886.
    14. Garneau-Tsodikova S, Stapon A, Kahne D, Walsh CT. Installation of the pyrrolyl-2-carboxyl pharmacophore by CouN1 and CouN7 in the late biosynthetic steps of the aminocoumarin antibiotics clorobiocin and coumermycin Al. Biochemistry, 2006, 45(28):8568-8578.
    15. Chen W, Tang W, Lou L, Zhao W. Pregnane, coumarin and lupane derivatives and cytotoxic constituents from Helicteres angustifolia. Phytochemistry, 2006, 67(10): 1041-1047.
    16. Orita M, Yamamoto S, Katayama N, Aoki M, Takayama K, Yamagiwa Y, Seki N, Suzuki H, Kurihara H, Sakashita H, Takeuchi M, Fujita S, Yamada T, Tanaka A. Coumarin and chromen-4-one analogues as tautomerase inhibitors of macrophage migration inhibitory factor: discovery and X-ray crystallography. J Med Chem, 2001,44(4):540-547.
    17. Orita M, Yamamoto S, Katayama N, Fujita S. Macrophage migration inhibitory factor and the discovery of tautomerase inhibitors. Curr Pharm Des, 2002, 8(14):1297-1317.
    18. SYBYL, Version 6.8 (2001) St. Louis (MO): Tripos Associates Inc.
    19. Besler BH, Merz KM Jr, Kollman PA. Atomic charges derived from semiempirical methods. J Comp Chem, 1990, 11(4): 431-439.
    20. Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comp Chem, 1984, 5(2): 129-145.
    21. Fox T, Kollman PA. Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B, 1998, 102(41):8070-8079.
    22. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J Comput Chem, 1998, 19(14):1639-1662.
    23. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA. 2004, AMBER 8, University of California, San Francisco.
    24. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ. The AMBER biomolecular simulation programs. J Comput Chem, 2005, 26(16):1668-1688.
    25. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem, 2003, 24(16):1999-2012.
    26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 1983, 79(2):926-935.
    27. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8):3684-3690.
    28. Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98(12):10089-10092.
    29. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys, 1977, 23(3):327-341.
    30. Burley SK, Petsko GA. Aromatic-Aromatic interaction:A mechanism of protein structure stabilization. Science, 1985, 229(4708):23-28.
    31. Lubetsky JB, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of macrophage migration inhibitory factor functions as a catalytic base in the phenylpyruvate tautomerase activity. Biochemistry, 1999, 38(22):7346-7354.
    32. Stamps SL, Taylor AB, Wang SC, Hackert ML, Whitman CP. Mechanism of the phenylpyruvate tautomerase activity of macrophage migration inhibitory factor: properties of the P1G, P1A, Y95F, and N97A mutants. Biochemistry, 2000, 39(32):9671-9678.
    33. Taylor AB, Johnson WH Jr, Czerwinski RM, Li HS, Hackert ML, Whitman CP. Crystal structure of macrophage migration inhibitory factor complexed with (E)-2-fluoro-p-hydroxycinnamate at 1.8 A resolution:Implications for enzymatic catalysis and inhibition. Biochemistry, 1999, 38(23):7444-7452.
    34. Hermanowski-Vosatka A, Mundt SS, Ayala JM, Goyal S, Hanlon WA, Czerwinski RM, Wright SD, Whitman CP. Enzymatically inactive macrophage migration inhibitory factor inhibits monocyte chemotaxis and random migration. Biochemistry, 1999, 38(39):12841-12849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700