用户名: 密码: 验证码:
基于广义位势理论的土的本构模型及其初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土的本构模型是现代土力学的基本方程,土的本构模型的研究对现代土力学的发展具有重要意义。现有用于建立土的本构模型的理论主要是基于传统的金属材料本构理论,然而土的力学特性与金属材料有很大的不同,直接应用是不适合的,即使在其基础上进行修正,但由于传统理论基本假设及理论基础的限制,也还是存在一定的局限性。
     广义位势理论从数学角度出发建立了土的统一的本构模型理论体系,可克服金属材料本构理论的不足而又同时包含了传统理论作为其特例,从而为土的本构模型研究提供新的和更一般的理论。同时,由于土的力学性质的复杂性,还有不少问题有待于进一步深入地研究。本文基于广义位势理论,针对目前土的本构模型中存在的一些主要问题展开研究,提出了几个简化的实用本构模型并进行了初步的应用。主要研究内容及结论如下:
     (1)从广义位势理论出发,揭示了传统位势理论的数学实质是在一定的假设条件下的坐标变换问题,因而传统位势理论可看作为广义位势理论在一定假设条件下的特例;并进一步分析了传统塑性位势理论在描述土的塑性应变增量方向非唯一性以及土的非共轴性等问题上的局限性,指出广义位势理论可为解决这些问题提供更为广阔的理论基础。
     (2)针对剑桥模型中采用的“能量方程”假设所带来的模糊性,从数学角度出发重新构建并发展剑桥模型,建立了基于广义位势理论的类剑桥模型。该模型既保持了原有剑桥模型参数确定简便的优点,同时又具有了更明确的数学基础;此外,该模型具有更大的灵活性,通过引入一个新的参数,可建立考虑剪胀性的类剑桥模型。试验验证结果表明:类剑桥模型计算结果与试验结果吻合较好,且能够反映剪胀性,效果优于传统的剑桥模型和修正剑桥模型。
     (3)针对传统塑性位势理论在描述土的塑性应变增量方向非唯一性以及土的非共轴性问题上的局限性,根据基于广义位势理论的拟弹性弹塑性模型提出了解决方法。该模型将塑性应变增量按其主要构成特性分解为方向与应力增量方向相关的拟弹性部分和方向由总应力状态确定的符合正交流动法则的纯塑性部分,这样分解后建立的模型更符合土的实际变形机理,并可应用于解决土的塑性应变增量方向非唯一性以及土的非共轴性问题。试验验证结果表明:基于广义位势理论的拟弹性弹塑性模型能够同时反映土的塑性应变增量方向的唯一性(高应力水平)和非唯一性(低应力水平),以及合理地描述主应力轴旋转过程中土的非共轴性,结果更符合实际。
     (4)针对邓肯—张模型基于广义胡克定律的理论限制以及采用双曲线函数拟合试验曲线的局限性,根据基于广义位势理论的数值弹塑性模型提出了解决方法。该模型既保留了邓肯—张模型在参数确定方面的简单性,又可弥补邓肯—张模型在反映土体剪胀性方面的缺陷。试验验证结果表明:基于广义位势理论的数值弹塑性模型计算结果与试验结果吻合良好,且能够反映剪胀性,从而初步证明了该模型的合理性。
     (5)基于FLAC3D软件实现了基于广义位势理论的类剑桥模型、拟弹性弹塑性模型和数值弹塑性模型的二次开发,并对三峡二期围堰等几个工程问题进行了分析。数值模拟结果表明:与共轴模型相比,基于广义位势理论的拟弹性弹塑性模型能够考虑主轴旋转对土体变形的影响;与邓肯—张模型相比,基于广义位势理论的数值弹塑性模型能够反映土体的剪胀特性,其计算结果与实测结果具有更好的一致性,从而进一步验证了该模型的合理性。
The constitutive model of soils is the basic equation of the modern soil mechanics, and the study on it has important significance for the development of the modern soil mechanics. At present, most of the theories which used to establish the constitutive model of soils are based on the traditional theories for metal materials. However, the mechanical properties of soils and metal materials are very different, which makes the direct application of the traditional theories on the constitutive model of soils exist great limitation. Even though making some modifications based on the traditional theories, the limitations also exist due to some basic assumptions in the traditional theories.
     The generalized potential theory, in wihch the constitutive model of soils is created directly by mathematical methods, and the deficiencies in the traditional theories for metal materials can be overcomed and the traditional theories can be regarded as its special cases. It gives a new theory to the study of constitutive model of soils. Meanwhile, due to the complexity of the mechanical properties of soils, many problems need further study. Therefore, according to the major problems in the present study of constitutive model of soils, some research works are carried out based on the generalized potential theory in this paper, and several constitutive models of soil are established and applied. The main contents and conclusions are summarized as follows:
     (1) The ansysis of mathematical essential of the traditional potential theories based on the generalized potential theory shows that the traditional potential theories are actually coordinate transformation under certain assumptions, and they can be regarded as special cases of the generalized potential theory. What is more, further analysis shows that the traditional potential theories can not describe the non-uniqueness of the direction of plastic strain increment and the non-coaxiality of soils, while the generalized potential theory can give a new theory to the study on these problems.
     (2) Aiming at the fuzziness brought by the energy equation hypothesis in the Cam-clay model, a similar Cam-clay model was established by mathematical methods base on the generalized potential theory. Parameters of the similar Cam-clay model can be determined as conveniently as the Cam-clay model, and the mathematical principle of similar Cam-clay model is more clear. Meanwhile, by introducing a new parameter, the similar Cam-clay model can describe the dilatancy of soil. The results of test verification show that the calculated results of the similar Cam-clay model agree well with test ones and the dilatancy of sand can also be described, which are better than the calculated results of Cam-clay model and the modified Cam-clay model.
     (3) Aiming at the limitations of the traditional potential theories on describing the non-uniqueness of the direction of plastic strain increment and the non-coaxiality of soils, solutions were proposed acrroding to the quasi-elastic-plastic constitutive model based on the generalized potential theory, in which the traditional plastic strain increment was decomposed into quasi-elastic part and pure-plastic part. The quasi-elastic part obeys elastic rule and the pure-plastic part obeys the traditional plasticity theory, which is reasonable and convenient, and it can also reflect the non-uniqueness of the direction of plastic strain increment and the non-coaxiality of soils. The results of test verification show that the quasi-elastic-plastic constitutive model based on the generalized potential theory can reflect the uniqueness (in high stress level) and the non-uniqueness (in low stress level) of the direction of plastic strain increment of soil simultaneously, and the non-coaxiality of soil during the rotation of principal stress axis can also be reflected, which agree with the actual.
     (4) Aiming at the limitations of Duncan-Chang model which is based on the generalized Hooke's law and adopts hyperbola hypothesis, solutions were proposed acrroding to the numerical elastic-plastic constitutive model based on the generalized potential theory, in which parameters can be determined as conveniently as Duncan-Chang model and the dilatancy of soils can also be described. The results of test verification show that the calculated results of the numerieal elastic-plastic constitutive model based on the generalized potential theory agree well with test ones and the dilatancy of soils can also be described, which proves the rationality of the numerieal elastic-plastic constitutive model.
     (5) Based on FLAC3D, the secondary developments of the similar Cam-clay model and the quasi-elastic-plastic constitutive model and the numerieal elastic-plastic constitutive model based on the generalized potential theory were implemented, and then they were applied to the ansysis of the second stage cofferdam of three gorges project etc. The results of numerical simulation show that, compared to the coaxial model, the quasi-elastic-plastic constitutive model based on the generalized potential theory can reflect the influence of the rotation of principal stresses axis to the deformation of soil. While compared to Duncan-Chang model, the numerieal elastic-plastic constitutive model based on the generalized potential theory can describe the dilatancy of soil and the calculated results of it are more agree with the measured results, which furtherly proves the rationality of the proposed model.
引文
[1]杨光华,李广信,介玉新.土的本构模型的广义位势理论及其应用[M].北京:中国水利水电出版社,2007:33.
    [2]李广信.高等土力学[M].北京:清华大学出版社,2004:48.
    [3]Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils [J]. J. S. M. F. D., ASCE,1970, 96(5):1629-1653.
    [4]沈珠江.考虑剪胀性的土和石料的非线性应力应变模式[J].水利水运科学研究,1986(4):1-14.
    [5]Desai C S. Nonlinear analysis using spline functions [J]. J. S. M. F. D., ASCE,1971,97(10): 1461-1480.
    [6]陆培炎,熊丽珍,陈韶永,等.三次及双三次样条函数应用于土的非线性分析[J].岩土工程学报,1982,4(1):46-62.
    [7]程展林,余剑平,丁红顺.水布垭面板堆石坝填料应力应变关系试验研究[J].长江科学院院报,1999,16(1):29-32.
    [8]沈珠江.土的三重屈服面应力应变模式[J].固体力学学报,1984(2):163-174.
    [9]沈珠江.土体应力应变分析的一种新模型[C]//第五届土力学及基础工程学术会议论文集.北京:建筑工程出版社,1990:101.
    [10]程新华.用数值方法研究土的本构关系的一个设想[J].岩土工程学报,1986,8(6):85-93.
    [11]Domaschuk L, Valliappan P. Nonlinear settlement analysis by finite element [J]. J. G. E. D., ASCE, 1975,101(7):601-614.
    [12]屈智炯.土的塑性力学[M].成都:成都科技大学出版社,1987.
    [13]高莲士,黄志国,赵红庆.粘性土多种应力路径试验及一种新的非线性K-G模型验证[C]//中国土木工程学会第七届土力学及基础工程学术会议论文集.西安,1994:160-164.
    [14]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [15]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [16]黄文熙.土的弹塑性应力—应变模型理论[J].岩土力学,1979(2):13-36.
    [17]郑颖人.岩土塑性力学的新进展—广义塑性力学[J].岩土工程学报,2003,25(1):1-10.
    [18]Drucker D C, Gibson R E, Henkel D J. Soil mechanics and work-hardening theories of plasticity[J]. Transactions, ASCE,1957(122):338-346.
    [19]Roscoe K H, Schofield A N, Thurairajah A. Yielding of clays in states wetter than critical[J]. Geotechnique,1963,13(3):211-240.
    [20]Roscoe K H, Burland J B. On the generalized stress-strain behaviors of an ideal wet clay[C]// Proceedings of Engineering Plasticity. Cambridge:Cambridge University Press,1968:535-609.
    [21]李广信.关于土的本构模型研究的若干问题[J].岩土工程学报,2009,31(10):1636-1641.
    [22]魏汝龙.正常压密粘土的塑性势[J].水利学报,1964(6):9-20.
    [23]魏汝龙.正常压密粘土的本构定律[J].岩土工程学报,1981,3(3):10-18.
    [24]Huang Wenxi, Pu Jialiu, Chen Yujiong. Hardening rule and yield function for soils [C]//Proceedings of the 1Oth International Conference on Soil Mechanic and Foundation Engineering,1981:631-634.
    [25]李广信.土的三维本构关系的探讨与模型验证[D].北京:清华大学,1985.
    [26]Lade P V, Duncan J M. Elasto-plastic stress-strain theory for cohesionless soil[J]. J. S. M. F. D., ASCE, 1975,101(10):1037-1053.
    [27]Lade P V. Elastoplastic stress-strain theory for cohesionless soil[J]. J. Geotech. Eng. Div., ASCE,1977, 102(4):303-321.
    [28]殷宗泽.在有限元计算中考虑剪胀性的问题[C].//第一届全国计算岩土力学研讨会论文集.西安:西南交通大学出版社,1987.
    [29]Vermeer P A. A double hardening model for sand[J]. Geot.,1978,28(4):413-433.
    [30]殷宗泽.一个土体的双屈服面应力—应变模型[J].岩土工程学报,1988,10(4):64-71.
    [31]沈珠江.土体应力应变分析的一种新模型[C].//第五届全国土力学及基础工程学术讨论会论文集.北京:建筑工业出版社,1989.
    [32]沈珠江.土的三重屈服面应力应变模式[J].固体力学学报,1984(2):163-174.
    [33]沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报,1980,2(2):11-19.
    [34]向大润.土体弹塑性理论加载准则和计算模型探讨[J].岩土工程学报,1983,5(4):78-91.
    [35]郑颖人.岩土的多重屈服面理论与应变空间理论[C].//岩石力学新进展.沈阳:东北工学院出版社,1989.
    [36]Dafalias Y F. Bounding surface plasticity. I:mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics,1986,112(9):966-987.
    [37]Dafalias Y F, Herrmann LR. Bounding surface plasticity. II:application to isotropic cohesive soils[J]. Journal of Engineering Mechanics,1986,112(12):1263-1291.
    [38]Anandarajah A, Dafalias Y F. Bounding surface plasticity III:application to anisotropic cohesive soils. Journal of Engineering Mechanics,1986,112(12):1292-1318.
    [39]钦亚洲,陈建龙,熊孝波.土体各向异性边界面模型研发的几个问题探讨[J].力学与实践,2013,35(5):59-62.
    [41]Kiousis P D. Strain space approach for softning plasticity [J]. J. Eng. Mech., ASCE,1987,113(2): 210-221.
    [42]Iwan W D, Chelvakumar K. Strain-space constitutine model for clay soils[J]. J. Eng. Mech., ASCE, 1988,114(9):1454-1472.
    [43]陈长安,郑颖人.应变空间中的岩土屈服准则与本构关系[J].应用数学与力学,1985,6(7):647-654.
    [44]殷有泉,曲圣年.弹塑性耦合和广义正交法则[J].力学学报,1982(1):63-70.
    [45]Casey J, Naghdi P M. On the nonepuivalence of the stress-space and strain-space formulations of plasticity[J]. J. Applied Mechanics,1983(50):350-354.
    [46]沈珠江.岩土力学理论的某些进展[C]//江苏力学论文集.河海大学出版社,1994.
    [47]Valanis K C. A theory of viscoplasticity without yield surface, Part II:Application to mechanical behavior of metals[J]. Archives of Mechanics,1971(23):535-551.
    [48]Valanis K C. Fundamental consequences of a new intrinsic time measure:Plasticity as a limit of endochronic theory [J]. Arch. Mech,1980 (32):171-191.
    [49]范镜泓.内蕴时间塑性理论及其新进展[J].力学进展,1985,15(3):250-252.
    [50]Frantziskonis G, Desai C S. Constitutive model with strain softening[J]. Int. J. Solids,1987,23(6): 133-150.
    [51]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993(3):247-255.
    [52]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28.
    [53]沈珠江.土体变形特性的损伤力学模拟[C]//第五届全国岩土力学数值分析与解析方法讨论会论文集,1994:1-8.
    [54]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [55]杨松岩,余茂宏.一种基于混合物理论的非饱和岩土类材料的弹塑性损伤模型[J].岩土工程学报,1998,20(5):58-63.
    [56]胡黎明,濮家骝.土与结构物接触面损伤本构模型[J].岩土力学,2002,3(1):6-11.
    [57]邓若宇,王靖涛.粘土本构关系的神经网络模型[J].土工基础,1999,13(1):28-32.
    [58]王靖涛,杨毅,张曦映.考虑应力路径的砂土的神经网络本构关系模型[J].岩石力学与工程学报,2002,21(10):1487-1489.
    [59]王靖涛.建立岩土本构模型的数值方法[J].华中科技大学学报(城市科学版),2002,19(1):44-47.
    [60]Matsuoka H, Nakai T. Stress-strain relationship of soil on the "SMP"[C]//Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo:Japanese Society of Soil Mechanics and Foundation,1977:153-162.
    [61]邵松桂,向大润.土石坝空间非线性和弹塑性的应力应变分析[J].河海大学学报,1987,15(5):1-11.
    [62]杨光华.岩土材料应力应变本构理论的基本数学问题[C]//岩土力学数值方法的工程应用.上海:同济大学出版社,1990.
    [63]郑颖人,严德俊.基于试验拟合的土的多重屈服面模型[C]//第五届全国岩土力学数值分析与解析方法讨论会论文集.武汉:武汉测绘科技大学出版社,1994.
    [64]卢廷浩,向大润,夏怀祖.一种新的土体本构模型的建议[J].河海大学学报,1991,19(6):115-119.
    [65]杨光华.建立土的本构关系的广义塑性位势理论[C]//第三届全国岩土力学数值分析与解析方法会议论文集.珠海:[s.n.],1988.
    [66]杨光华.岩土类工程材料的多重势面弹塑性本构模型理论[J].岩土工程学报,1991,13(5):99-107.
    [67]杨光华.岩土塑性本构关系的势函数理论表述问题[C]//首届全国岩土力学与工程青年工作者学术会议论文集.杭州:浙江大学出版社,1992.
    [68]杨光华.土的本构模型的数学理论及其应用[D].北京:清华大学,1998.
    [69]杨光华,介玉新,李广信,等.土的多重势面模型及其验证[J].岩土工程学报,1999,21(5):578-582.
    [70]介玉新,杨光华.应力空间的模型到应变空间的转换方法[C]//第一届全国岩土本构理论研讨会论文集.北京:北京航天航空大学出版社,2008.
    [71]周爱兆.基于广义位势理论的土与结构接触面模型研究及应用[D].南京:河海大学,2009.
    [72]姚捷.基于广义位势理论的土的本构模型的研究[D].武汉:武汉大学,2010.
    [73]介玉新,杨光华.基于广义位势理论的弹塑性模型的修正方法[J].岩土力学,2010,31(S2):3842.
    [74]周爱兆,卢廷浩,姜朋明.基于广义位势理论的接触面本构模型一般表述[J].岩土力学,2012,33(9):2656-2662.
    [75]杨光华,姚捷,温勇.考虑拟弹性塑性变形的土体弹塑性本构模型[J].岩土工程学报,2013,35(8):1496-1503.
    [76]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [77]陈明祥.弹塑性力学[M].北京:科学出版社,2007.
    [78]Anandarajah A, Sobhan K, Kuganenthira N. Incremental stress-strain behavior of granular soil[J]. Journal ofGeotechnical Engineering,1995,121(1):57-68.
    [79]Desai C S, Hashmi Q S E. Analysis evaluation and implementation of a nonassociative model for geologic materials. Int. J. of plasticity,1989(5):397-420.
    [80]谢和平,刘夕才,王金安.关于21世纪岩土力学发展战略的思考[J].岩土工程学报,1996,18(4):98-102.
    [81]杨光华.土的弹塑性本构模型理论的若干问题[C]//第五届全国土力学与基础工程学术会议论文集.厦门:1987.
    [82]Matsuoka H, Sakakibara K. A Constitutive model for sands and clays evaluating principal stress rotation[J]. Soils and Foundations,1987,27(4):73-88.
    [83]Gutierrez M, Ishihara K, Towhata I. Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations,1991,31(4):121-132.
    [84]Gutierrez M, Ishihara K, Towhata I. Model for the deformation of sand during rotation of principal stress directions. Soils and Foundations,1993,33(3):105-117.
    [85]刘元雪,郑颖人.含主应力轴旋转的广义塑性位势理论[J].力学季刊,2000,21(1):129-133.
    [86]史宏彦.无粘性土的应力矢量本构模型[D].西安:西安理工大学,2000.
    [87]钱建固,黄茂松.复杂应力状态下岩土体的非共轴塑性流动理论[J].岩石力学与工程学报,2006, 25(6):1259-1264.
    [88]Roscoe K H. The influence of strains in soil mechanics[J]. Geotechnique,1970,20(2):129-170.
    [89]Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads[J]. Soils and Foundations,1983,23(4):11-26.
    [90]沈扬.考虑主应力方向变化的原状软黏土试验研究[D].杭州:浙江大学,2007.
    [91]严佳佳,周建,管林波,等.杭州原状软黏土非共轴特性与其影响因素试验研究[J].岩土工程学报,2013,35(1):96-102.
    [92]蒋明镜,李立青,刘芳,等.应力旋转对同济一号模拟月壤变形特性的影响[J].同济大学学报(自然科学版),2013,41(4):483-489.
    [93]姚仰平,侯伟,罗汀.土的统一硬化模型[J].岩石力学与工程学报,2009,28(10):2135-2151.
    [94]盛佳韧.上海黏土力学特性综合试验研究及本构模拟[D].上海:上海交通大学,2012.
    [95]孙德安,陈波.重塑超固结上海软土力学特性及弹塑性模拟[J].岩土力学,2010,31(6):1739-1743.
    [96]Yao Yang-ping, Sun De-an, Matsuoka H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics,2008, (35):210-222.
    [97]Huang Wen-xiong, Wu Wei, Sun De-an, et al. A simple hypoplastic model for normally consolidated clay[J]. Acta Geotechnica,2006(1):15-27.
    [98]Lade P V, Duncan J M. Cubical triaxial tests on cohesionless soil [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1973,99(SM10):793—812.
    [99]沈珠江,盛树馨.土的应力应变理论中的唯一性假设[J].水利水运科学研究,1982(1):31-42.
    [100]孙德安,陈波,周科.重塑上海软土的压缩和剪切变形特性试验研究[J].岩土力学,2010,31(5):1389-1394.
    [101]刘德贵.FORTRAN算法汇编(第一分册)[M].北京:国防工业出版社,1984.
    [102]田海.复合地基中桩材与土的相互作用试验研究[D].北京:清华大学,1997.
    [103]陈育民,徐鼎平.Flac/Flac3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [104]Ishihara K, et al. Sand liquefaction under rotation of principal stress Axes[C]//2nd Int. Symp. on Numerical Models in Geotechnics. Ghent,1986:1015-1018.
    [105]刘元雪,郑颖人.含主应力轴旋转的土体平面应变问题弹塑性数值模拟[J].计算力学学报,2001,18(2):239-241.
    [106]包承纲.三峡工程二期深水围堰的建设和研究[J].水利水电科技进展,2001,21(4):21-25.
    [107]包承纲,刘松涛,龚壁卫.长江三峡围堰混凝土防渗墙方案应力应变非线性有限元分析综合报告[J].长江科学院院报,1986(1):21-34.
    [108]殷宗泽,李宏.三峡二期围堰混凝土防渗墙的受力分析[J].河海大学学报,1987,15(1):51-57.
    [109]沈珠江,刘松涛.三峡二期高土石围堰应力应变分析研究[J].人民长江,1996,27(10):1-4.
    [110]刘松涛.三峡深水围堰堰体与防渗墙联合作用研究[J].长江科学院院报,1997,14(1):46-49.
    [111]胡黎明,濮家骝.施工及运行期三峡二期围堰防渗墙有限元分析[J].水利水电技术,1999,30(5):64-66.
    [112]张小平,包承纲,张劲松.三峡工程二期围堰防渗墙变形规律及运行状况分析[J].水利学报,2000(9):91-95.
    [113]沈细中,张俊霞,兰雁.修正D-P模型在三峡二期围堰分析中的应用[J].哈尔滨工业大学学报,2009,41(6):182-185.
    [114]程展林等.三峡二期围堰填料的力学参数及其补充实验[R].长江科学院,1994.
    [115]程展林等.三峡二期深水围堰工程性状反分析[R].长江科学院,2006.
    [116]刘松涛,包承纲.98汛期二期围堰防渗墙应力和变形[J].中国三峡建设,1999(5):43-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700