用户名: 密码: 验证码:
光栅刻划机虚拟样机技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光栅制造技术是当今最为精密的技术之一,而制作光栅的设备——光栅刻划机则被誉为“精密机械之王”,它通常需要在毛坯上实现每毫米数千道刻槽的刻划,并且要求刻划偶然误差小于1/10光栅常数、周期误差小于1/100光栅常数、同时使用干涉方法检验波面差必须小于1/3条纹。这些性能指标决定了光栅刻划机具有极高的精度要求,包括机械精度以及控制精度。光栅刻划机的超精密性使得零部件加工困难、制造周期长且造价昂贵,因而要求一次制造成功。传统的基于物理样机的开发流程在得到最终的物理样机之前,中间存在着反复的试制与修改过程,需要多次制造物理样机,因而不适用于光栅刻划机的研发。基于此种情况,本文中采用基于虚拟样机技术来进行光栅刻划机的开发,它能够减少物理模拟,降低了开发成本,并且这种方式缩短了开发周期,有效提高了产品的开发速度及设计质量,更重要的是由此避免了基于物理样机开发所存在的缺点,不需要重复制造物理样机即可实现光栅刻划机的开发。
     本文首先建立了光栅刻划机的虚拟样机模型,它主要是由分度系统及刻划系统两部分组成。分度系统实现了光栅毛坯的超精密定位,刻划系统则用于执行刻划操作,两者协同工作,共同完成光栅的刻划。在光栅刻划机的工作过程中,传动机构对光栅的刻划质量有着至关重要的影响,因而需要对其进行分析与优化,以获得最优的传动机构设计方案。在分度系统传动装置中,分析了机构转动惯量对传动效果的影响,从系统响应的快速性、平稳性等角度确定了转动惯量的优化目标。基于参数化的虚拟样机模型,采用灵敏度分析的方法获取结构参数与转动惯量之间的关系,并以机构的最大变形位移作为约束条件以确定各结构参数的取值从而使得所设计的传动机构既实现了转动惯量的优化目标,同时又能够满足机构的刚度与强度要求。在刻划系统中,为了保证光栅的刻划质量,要求刻刀始终保持匀速运动,因此对刻划传动链中的等速传动机构提出了较为严格的要求。本文基于虚拟样机技术进行运动学仿真,得到了传动机构的位移、速度及加速度曲线,分析得到初始传动机构设计中所存在的不足之处:加速度在往复运动的始末位置处存在跳变,因而对传动机构的凸轮结构采用了摆线运动规律对其进行修正,得到了较好的设计效果,保证了运动特性的连续性。
     光栅刻划机作为机电一体化的重大装备,其设计与分析需要一个综合的开发及性能评价平台。本文提出了机械、控制一体化联合仿真开发技术,利用虚拟样机技术所提供的集成开发环境,在制造物理样机之前,联合控制系统设计软件,将复杂的控制系统添加到机械结构虚拟样机模型中,对机械系统与控制系统进行联合仿真分析,模拟实际产品中各个模块的工作特性,为复杂机械产品的开发提供了一种全新的设计方法。本文利用专业的机械分析及控制设计软件,对光栅刻划机中实现超精密刻划的最关键部分——分度系统精定位机构进行了仿真分析,首先建立经过适当简化的工作台运动学仿真模型,并构建相应的控制系统,进行联合仿真开发研究。在联合仿真平台中,通过对多组控制参数及采样时间的研究,验证了控制算法的有效性并确定了较佳的控制参数及相应的采样时间。
     在光栅刻划机的系统设计中,控制软件是其中的重要组成部分。传统的软件开发一般需要等到硬件加工完成后再进行软件的调试,这就延长了软件的开发周期,无法适应于当前日益激烈的市场竞争环境。为了实现系统软件的并行开发,提出了基于虚拟硬件在环的软件仿真开发方法。利用计算机模拟实际控制单元的硬件运行情况,与被控对象的仿真模型相连进行软件的开发与调试,构建了应用软件运行所需要的虚拟硬件环境。本文以光栅刻划机控制软件为研究对象,详细介绍了基于虚拟硬件在环的软件仿真开发流程,并将开发完成的软件系统应用到光栅刻划机上,协调控制光栅刻划机的各个子系统共同实现了光栅的刻划。
Grating manufacturing technology is one of the most sophisticated technologies,and the grating ruling engine, which is used to manufacture grating, is known as the"King of precision machinery". It usually scores thousands of grooves per mm on theglass pressing blank, and requires accidental error less than1/10of grating constant,periodic error less than1/100grating constant and wavefront difference also less than1/3stripes. All of these performances determine that the grating ruling engine has ahigh precision, not only mechanism but also control system. Because ofultra-precision, parts are difficult to be manufactured, the development cycle is long,and the cost is also expensive. The traditional development process based on thephysical prototype does not apply to develop the grating ruling engine because itneeds repeated trial and modification and multiple physical prototypes aremanufactured before the final product. In this paper, the development process basedon virtual prototyping technology, which can reduce the physical experiments anddevelopment cost, shorten the development cycle, and improve the design quality, ispresented to develop the grating ruling engine. More importantly, this method doesnot repeat to manufacture the physical prototyp, so it avoids the traditional method’sdefect.
     At first, the virtual prototype model of the grating ruling engine is established,including indexing subsystem and ruling subsystem. The indexing subsystem achievesthe ultra-precision positioning, and the ruling subsystem performs the ruling operation.These two subsystems work together to rule grating. In the working process, thetransmission performance affects the quality of grating, so it is necessary to beanalyzed and optimized to obtain the optimal design. In the transmission of theindexing system, influence of inertia on the control is analyzed and the inertiaoptimization objective is determined with the fast and stable respond. The sensitivityanalysis method is used to obtain the relationship between structural parameters andinertia, and then parameters are calculated to meet the requirements of inertia andstiffness. In order to ensure the quality of grating, the nickingtool need to maintainuniform motion, so the equal-speed transmission mechanism of the ruling subsystemis very important. In this paper, the displacement, velocity and acceleration of theinitial transmission mechanism design is calculated by using kinematics simulation based on virtal prototype technology. From the analysis, the inadequacies that jump ofacceleration occur at transition location is presented, so cycloidal motion law isadopted to amend this phenomenon to get better design and ensure the continuity ofmotion.
     Grating ruling engine is one of the major mechanical and electrical equipment,whose design and analysis require a comprehensive platform for development andperformance evaluation. This paper presents a new methodology which combinesmechanism and control to simulation. In the integrated development environmentprovided by virtual prototype technology, complex control system is jointed tomechanism system to simulate the product performance. In this paper, the micro stagewhich is most important for positioning accuracy is analyzed. An appropriatesimplified stage’s simulation mode is established and control system is also built toachieve co-simulation. The effectiveness of control algorithms is verified and controlparameters are obtained by using co-simulation platform.
     In the grating ruling engine system design, control software is an important part.In the traditional software development approach, the software is usually developedand debugged after the completion of the hardware processing which extendsdevelopment cycle and is unable to adapt to the fierce market competition. In order toachieve the parallel software development, software simulation developmentmethodology based on the virtual hardware in the loop is proposed. Computer is usedto simulate the actual control unit for software development and debugging with thecontrolled object’s model. This paper uses grating ruling engine’s control software asresearch subjects to describe the software simulation development. The developedapplication is ported to control the real grating ruling engine
引文
[1]时轮,郝德阜,齐向东.高精度的光电式衍射光栅刻划机[J].仪器仪表学报.2001,22(4):103-104.
    [2]祖旭,黄洪钟,张旭.虚拟样机技术及其发展[J].农业机械学报.2004,35(2):168-171.
    [3]罗阿妮,刘贺平,吕金丽,胡胜海,张家泰.敏捷供弹系统虚拟样机技术[J].哈尔滨工程大学学报.2007,1:81-86.
    [4]虚拟样机技术及其在航天遥感器研发中的应用:PP1-2.
    [5]李伯虎,柴旭东.复杂产品虚拟样机工程[J].计算机集成制造系统.2002,8(9):678-683.
    [6]黄向华.2008.控制系统仿真[M].北京:北京航空航天大学出版社.
    [7]张晓阳,孙蓓蓓,孙庆鸿,陈南.基于Adams-Matlab联合仿真的车辆地面相互作用研究[J].东南大学学报.2009,25(3):335-339.
    [8]肖勇,靳晓雄,蔺玉辉. AMESim与MATLAB/Simulink联合仿真技术及在发动机主动隔振中的应用[J].振动与冲击.2007,26(8):148-149.
    [9]王玉,高桂仙,富国亮.虚拟样机技术的应用研究[J].安徽农业科学.2009,37(2):11720-11721.
    [10]刘宏伟.基于虚拟样机技术的机器人运动学研究[J].机械设计与制造.2009,5:194-196.
    [11]汤晓燕,刘少军,云忠.基于虚拟样机技术的深海采矿主动式升沉补偿系统设计[J].北京工业大学学报.2008,34(5):454-458.
    [12]王凯湛,马瑞峻,胡健锋.虚拟样机技术在农业机械设计上的应用和发展[J].中国农机化.2008,4:62-66.
    [13]李燕青,郝德阜.衍射光栅制造技术的发展[J].长春理工大学学报.2003,26(1):66-68.
    [14] Toshiaki Kita, Tatsuo Harada. Ruling engine using a piezoelectric device for large andhigh-groove desity gratings[J]. Applied Optics.1992,31(10):1399-1406.
    [15] Gregory Lee.Virtual prototyping on personal computers,Mechanical Engineering.1995,117(7):70-73.
    [16][1]H.J.Bullingrer, J.Warschat, D.Fischer. Rapid product development-an overview,Computers in Industry,42(2000):99-108.
    [17] Ron MeCoy:Virtual Prototyping:The Practical Solution,Inventor’Digest,May/June1998.
    [18] Stefan Haas:Cooperative Working on Virtual Prototypes.IFIP Workshop on VP,1994.
    [19] James C. Schaaf, Jr. Faye Lynn Thompson. System Concept Development with VirtualPrototyping. Proceedings of the1997Winter Simulation Conference,1998,941-947.
    [20] Fan Dai, Wolfgang Felger, Martin Gobel. Applying Virtual Reality to ElecrtonicPrototyping-Concept and First Results: Virtual Prototyping: Virtual environments and theproduct design process[C]. ChapMan and Hall Press,1955.
    [21] BIoor M.S.,McKay A.1995.Product and shape Representation for VirtuaIPrototyping[M].Book of Virtual Prototyping:Virtual environments and the product designprocess, ChapMan and Han Press.
    [22] The Availability of Low-Cost Prototyping. Prime Faraday Technology Watch,2001.
    [23] Kerttual M, Salmela M, Heikkinen M. Virtual Reality Prototyping–a Framework of theDevelopment of Electronics and Telecommunications Product[J]. Proceedings of8thIEEEInternational Workshop on Rapid System Prototyping,1997.
    [24]唐硕,陈士橹,赵建位.飞行器设计与试验的虚拟样机技术[J].宇航学报.2000, z1:1-6.
    [25]熊光楞,郭斌,陈晓波等.协同仿真与虚拟样机技术[M].北京:清华大学出版社.2004.
    [26]杜静.摩托车虚拟样机技术的研究及应用[D].重庆大学.2004.
    [27] George E.Dieter. Engineering Design3rdEdition. Boston: McGraw-Hill InternationalEditions,2000.
    [28]郑相周,唐国元.机械系统虚拟样机技术[M].北京:高等教育出版社.2010.
    [29] Jayaram S, Jayaram U, et al, Wang Y. A Virtual Assembly Design Environment[J]. IEEEComputer Graphics and Applications.1999,19(6):44-59.
    [30] Bullinger H J, Richer M, Seidel K A. Virtual Assembly Planning[J]. Human Factors andErgonomics In Manufacturing.2000,10(3):331-341.
    [31] Wan H G, Gao S M, Peng Q S. Virtual Assembly In a CAE Environment[C]. Proceedings ofthe Seventh International Conference on Computer Aided Design and Computer Graphics.Kunming:International Academic Publishers.2001.
    [32]韦树宝.基于虚拟样机技术的龙门起重机动力学仿真研究[D].武汉理工大学.2006.
    [33] Kerttula M,Salmela M,Heikkinen M.Virtual reality prototyping—a framework for thedevelopment of electronics and telecommunications products[C].Proceedings of8th IEEEInternational Workshop on Rapid System Prototyping,1997.
    [34] U Jasnoch,H Kress,J Rix.1995.Virtual Prototyping:Virtual Environments and the ProductDesign Process.
    [35] Packer R J.The role of modeling in system design and acceptance.Radar SystemModeling(Ref.No.1998/459),IEE Colloquium on Published.1998,5/1-5/6.
    [36] U. Jasnoch, H.Kress. Towards a Virtual Prototyping Environment.IFIP Workshop on VP,1994.
    [37] Shizuo Sumida, Masan Nagamatsu,Sigeki Hiramuatsu:Hierarchical funcitional model forautomobile development,Technical Notes/JSAE Review19(1998)35l-371.
    [38] Michael J.Ryken,Judy M.Vance: Applying virtual reality techniques to the interactive stressanalysis of a tractor lift arm.
    [39] R.Bergman,J.D.Baker:Enabling collaborative engineering and science at JPL,Advancesin Engineering Software31(2000)pp661-668.
    [40]毛娅.基于虚拟样机技术的分解炉数字化模拟关键技术研究[D].武汉理工大学.2008.
    [41]张斌.轴向柱塞泵的虚拟样机及油膜压力特性研究[D].浙江大学.2009.
    [42]吴宝贵,黄洪钟,张旭.复杂机械产品虚拟样机多学科设计优化研究[J].计算机集成制造系统.2006,12(11):1729-1735.
    [43]洪清泉,程颖.发动机与液力变矩器共同工作虚拟样机仿真[J].北京理工大学学报.2004,24(1):40-43.
    [44]庞思红,姚继蔚.液压挖掘机虚拟样机技术的实现[J].机械传动.2009,33(3):61-64.
    [45]徐文福,强文义,梁斌,李成.基于虚拟样机技术的空间机器人系统的建模与仿真[J].2005,27(3):193-196.
    [46]杨军荣,何永,米粮川.基于虚拟样机技术的双管火炮耦合发射动力学仿真[J].南京理工大学学报:自然科学版.2006,30(4):493-443.
    [47]王立权,王晓东.基于虚拟样机的控制系统仿真研究[J].哈尔滨工程大学学报.2000,21(6):26-29.
    [48]宋桂秋,姜明,李华强.汽车ABS虚拟样机仿真与制动性能的研究[J].东北大学学报:自然科学版.2007,28(3):414-417.
    [49]方子帆,舒刚,何孔德,赵新泽.基于虚拟样机的齿轮传动控制系统研究[J].机械传动.2009,33(2):17-19.
    [50]吴敏君,熊永前,秦斌,樊明武.回旋加速器虚拟控制系统框架设计计算机仿真[J].计算机仿真.2006,23(4):212-215.
    [51]姜虹,朱文海等.结构与控制系统协同并行设计技术研究[J].现代防御技术.2002,30(4):51-54.
    [52]赵峰,尚建忠.载装作业装置控制系统的机电液联合仿真[J].重庆大学学报:自然科学版.2008,31(3):319-323.
    [53]刘志民.轮式装载机虚拟设计与联合仿真研究[J].工程机械.2010,7:41-44.
    [54]柴保明,高学攀,谷兴海,高维金.基于Pro/E和ADAMS的变速器联合仿真实现[J].煤矿机械.2010,31(7):222-225.
    [55]于薇薇, C.Sabourin, K.Madani,闫杰.基于Adams和Matlab联合仿真的双足机器人越障研究[J].计算机测量与控制.2008,16(11):1741-1743.
    [56]刘静.挖掘机器人虚拟样机建模技术及其应用研究[D].浙江大学,2005.
    [57]宋志安.中型喷浆机器人虚拟样机技术[D].山东科技大学.2005.
    [58]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[J].陕西:西北工业大学出版社.2002.
    [59]曲秀全,焦映厚,陈照波,阚利宏.单自由度平面连杆机构等效转动惯量计算公式[J].哈尔滨工业大学学报.2004,36(5)610-612.
    [60]韩林山,李向阳,严大考.浅析灵敏度分析的几种数学方法[J].中国水运.2008,8(4):177-178.
    [61]陈刚,汪玉,毛为民,李兆俊,吴广明.冲击载荷作用下舰艇管路系统全局参数灵敏度分析[J].振动与冲击.2007,26(3):45-48.
    [62]杨柳,童小娇.基于半光滑方程的线性规划问题局部灵敏度分析[J].应用数学.2008,21(4):800-805.
    [63]邱志平,王晓军.结构灵敏度分析的区间方法[J].兵工学报.2005,26(6):798-802.
    [64]徐崇刚,胡远满,常禹等.生态模型的灵敏度分析[J].应用生态学报.2004,15(6):1056-1062.
    [65]曾国英,王建平.基于虚拟样机技术的三维振动台结构优化设计[J].机械设计.2008,25(11):56-58.
    [66]夏乐天.往复等速运动圆柱凸轮的靠模曲线设计.
    [67]石永刚,吴央芳.凸轮机构设计与应用创新[M].北京:机械工业出版社.2007.
    [68]李虎林,易湘斌.产品开发中的多软件联合仿真技术[J].机械设计与制造,2008,(4):55-57.
    [69]陈无畏,时培成,高立新,王其东,陈黎卿. ADAMS和Matlab的EPS和整车系统的联合仿真[J].农业机械学报.2007,38(2):22-25.
    [70]陈安宇.面向EPS的建模与联合仿真研究[D].浙江大学,2008.
    [71]沈俊,宋健.基于ADAMS和Simulink联合仿真的ABS控制算法研究[J].系统仿真学报,2007,19(5):1141-1143.
    [72]刘伟,刘大维,陈焕明,符朝兴.基于联合仿真的半主动悬架车辆行驶平顺性研究[J].农业机械学报.2009,6:16-22.
    [73]吕静.基于ADAMS和SIMULINK联合仿真的高速并联机械手伺服系统研究[D].天津大学,2007.
    [74]杨秀清.机电液耦合的搬运机械手虚拟样机研究[D].中国科学技术大学,2008.
    [75]蒋芬.电动助力转向系统的建模与仿真[D].武汉理工大学,2008.
    [76]杜中华,王兴贵,狄长春.用PRO/E和ADAMS联合建立复杂机械系统的仿真模型[J].2002,(29):153-154.
    [77]黄大贵,邹学军,廖细明.用Pro/E对过约束运动平台动态仿真分析研究[J].电子科技大学学报.2009,38(6):1042-1046.
    [78]二代龙震工作室. Pro/Mechanism Wildfire3.0/4.0机构/运动分析[M].北京:电子工业出版社.2002.
    [79]郭津津,武钢,王占亭,史津平.2006.基于Pro/Toolkit异步模式的Pro/E二次开发技术研究及应用[J].8:32-34.
    [80]谢楠,陈汉良. Visual Basic与Matlab的几种接口编程技术[J].仪器仪表学报.2004,z3:571-574.
    [81]郭阳宽,王正林.过程控制工程及仿真——基于MATLAB/Simulink[M].北京:电子工业出版社.2009.
    [82]孙屹. Simulink通信仿真与开发手册[M].北京:国防工业出版社2003.
    [83]邵昱. SIMULINK—控制系统的框图式仿真[J].计算机自动测量与控制,1998,(2):36-38.
    [84]舒怀林. PID神经元网络及其控制系统[M].北京:国防工业出版社.2006.
    [85] http://baike.baidu.com/view/1867834.htm.
    [86] M.C. Hutley. Diffraction Gratings[M]. Academic Press Inc. Ltd,1982.
    [87]李燕.基于Pro/Mechanism的仿生膝关节优化设计与运动仿真研究[J].机床与液压.2009,6:183-185.
    [88]刘云平. PID参数自整定方法在电力机车微机控制柜中的应用研究[D].西南交通大学.2009.
    [89]郭杰.光栅刻划机工作台控制的研究[D].中国科学技术大学.2010.
    [90] K.J. Astrom,T. Hagglund,C.C. Hang,W.K. Ho. Automatic tuning and adaptation for PIDcontrollers [J]. Control Engineer Practice.1993,1(4):699-714.
    [91] M.J. Willis and G.A. Montague. Auto-tuning PI (D) controllers with artificial neuralnetworks[J]. Proc.12th World Congress International Federation of Automatic Control,1993,61–64.
    [92]郝彬彬.基于无人机的单神经元PID控制算法研究[D].东北大学.2005.
    [93]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社.2004.
    [94]黎海青,郭百巍,徐红.基于ADAMS与SIMULINK的舵机虚拟样机建模和仿真[J].系统仿真学报.2009,21(21):6886-6888.
    [95]王健博.压电陶瓷驱动技术研究[D].长春理工大学.2010.
    [96] Law A.M, Kelton W.D.仿真建模与分析[M].北京:清华大学出版社.2000.
    [97]陈实.嵌入式软件仿真开发平台的设计与实现[D].电子科技大学.2007.
    [98]杨敬君.基于构件的软件复用技术研究与应用实践[D].大连海事大学.2009.
    [99]徐娟.软件复用技术在.NET平台下的应用[D].湖北大学.2008.
    [100]梅宏.软件复用技术研究与应用[C].2002年中国软件国际化论坛.2002,39-42.
    [101]闫锋欣.软C++GUI Qt4编程[M].北京:电子工业出版社.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700