用户名: 密码: 验证码:
轻轨车辆与斜拉桥动态耦合系统的数值模拟方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜拉桥由于造型美观、受力合理、跨越能力强,成为近年来桥梁建设的主要桥型之一。随着社会经济的快速发展,一方面,斜拉桥的跨度越来越大,材料越来越轻;另一方面,车速不断提高、交通密度不断增加、载荷不断加重。车辆所引起的动荷载在斜拉桥整体响应中所占比重越来越大,导致斜拉桥结构产生疲劳,降低其强度和稳定性,影响行车安全和乘员舒适性。因此,对斜拉桥进行车-桥动态响应分析,掌握其动态响应特性是十分必要的。通过数值模拟方法计算斜拉桥的车-桥动态响应过程,可以确定斜拉桥的强度、刚度、行车安全性、乘员舒适性及其相关因素的影响,为斜拉桥结构设计提供参考依据。本文基于拟实建模技术及并行计算技术,对车-桥动态耦合系统及其耐撞性进行数值模拟研究。本文的主要研究内容包括:
     研究车-桥动态耦合系统数值模拟的基本理论。考虑到大跨度斜拉桥的几何非线性和车-桥之间的动力相互作用关系,从数值分析的理论角度出发,研究了几何非线性分析的基本理论以及动态接触的数值计算方法,为车-桥耦合系统动态响应的求解提供理论依据。在对几何非线性有限元方程求解时,采用更新拉格朗日格式中心差分算法;轮轨之间的相互作用通过基于罚函数的耦合方式加以实现。
     研究大跨度斜拉桥与轻轨车辆的全三维非线性精细有限元模型的建模方法。基于拟实建模技术,斜拉桥模型采用了板壳单元、实体单元、梁单元以及索单元等组合式单元模拟。轻轨车辆模型包含轮对、转向架和车体,它们之间采用弹簧和阻尼连接。将车轮与钢轨之间的相互作用看作是动态接触关系,通过建立轮轨三维动力接触模型将桥梁与车辆耦合在一起。轻轨车辆内建立两个乘员假人模型,分别为坐姿和站姿,用于分析乘员舒适性。
     研究适用于车-桥动态耦合系统的区域分解并行计算方法。斜拉桥的全三维非线性精细有限元模型单元数量巨大,普通的串行计算机难以满足这种大规模数值计算要求,因此需要采用并行计算技术。现有的节点数均衡的分区策略,没有考虑各子区域之间接触特性可能的不同,从而影响并行计算效率。根据斜拉桥车-桥动态耦合系统的特点,结合上海超级计算中心曙光4000A计算机的体系结构,在递归对分区域分解算法的基础上,提出基于接触均衡的区域分解法,相对于递归对分区域分解法,该方法有着更高的加速比和并行效率
     研究车-桥耦合系统的动态响应。考虑到大跨度斜拉桥的几何非线性,首先确定大跨度斜拉桥的初始成桥状态,在斜拉桥成桥状态的基础上,数值模拟多种工况下车-桥耦合系统的动态响应。主要分析车速、双线运行和车辆紧急制动对斜拉桥刚度、强度的影响,以及对行车安全、乘员舒适性的影响,为斜拉桥设计提供细致、详尽的仿真计算结果。将斜拉桥精细有限元模型结果与已有的平面杆系有限元模型结果进行了对比,验证了模型的可靠性。
     研究车-桥动态耦合系统的耐撞性。船舶对斜拉桥的撞击作用通过建立船舶的三维有限元模型加以实现。将轻轨车辆、斜拉桥、船舶视为一个整体系统进行分析,基于此观点提出了面向车辆行驶过程的车-船-桥动态耦合系统的数值模拟方法。通过分析船舶撞击作用对行驶车辆的动态响应的影响,为桥梁设计更加合理的防撞设施提供了参考依据。
The cable-stayed bridge has become one of the chief types for long span bridges due to its beautiful shape, reasonable bearing capacity, and long span ability. With the rapid development of science and technology, the bridges become more and more big and light. With faster and faster running, the increasing traffic density, and the increasing load, the dynamic interaction of the vehicle-bridge is receiving increasing attention. The numerical simulation method is used to calculate the dynamic response of the vehicle-bridge. Based on the virtual modeling and the parallel computing technologies, the dynamic couple system of the vehicle-bridge is studied. The dynamic couple system crashworthiness of the vehicle-bridge is also studied. The main contents include:
     The basic theory of the numerical simulation for the vehicle-bridge dynamic couple system is studied. Considering the geometric nonlinear of the long span cable-stayed bridge and the vehicle-bridge interaction, the geometric nonlinear theory and numerical method for the dynamic contact is studied. The Update Lagrange Formation is used to solve the geometric nonlinear equation. The penalty function method is used to deal with the wheel-rail interaction.
     The modeling technology of the refined finite element models of the long span cable-stayed bridge and light rail vehicle is studied. Based on the virtual modeling technology, the finite element model of the cable-stayed bridge is represented by the shell element, the solid element, the beam element, and the cable element. The vehicle model includes the wheel-set, the bogie, and the body, which are connect by the spring and damping. The three dimensional dynamic contact model of the wheel-rail is built. The two dummy models, standing and sitting, are set up to analyze the riding comfort.
     The parallel computing method of the vehicle-bridge dynamic couple system is studied in order to deal with so large model. Serial computer could not deal with this large-scale model. The parallel computing is necessary. Based on the character of the vehicle-bridge dynamic couple system and the structures of DAWNIING 4000A supercomputer located in Shanghai Supercomputer Center, the domain decomposition method based on the contact balance is proposed. Comparing with the recursive coordinated bisection method, the domain decomposition method based on the contact balance has higher speedup and parallel efficiency.
     The dynamic response of the vehicle-bridge couple system is analyzed. The initial state of long span cable-stayed bridge is determined firstly, which could provide the initial condition for the couple dynamic simulation of the vehicle-bridge. The influence of the velocity, two line, and brake on the stiffness, strength of the cable-stayed bridge and the vehicle safety and passenger comfort is analyzed, which can provide the detailed simulation results for the bridge design. The refined three-dimensional model and the plane beam model of the long span cable-stayed bridge are compared.
     The dynamic couple system crashworthiness of the vehicle-bridge is studied. The three dimensional numerical model of the ship is built. The light rail vehicle, the cable-stayed bridge, and the ship are analyzed as a whole system. The modeling method of the dynamic couple system of the vehicle-ship-bridge for vehicle running is put forward. The dynamic response of the cable-stayed bridge and the light rail vehicle under ship impact is analyzed, which can provide more reasonable reference for bridge crashworthiness design.
引文
[1]扈振衣.城市轨道交通发展状况及相关问题.铁道建筑技术. 2001(6), 1-3.
    [2]刘士林,梁智涛,候金龙.斜拉桥.北京:交通人民出版社, 2002.
    [3]刘小虎,杨文兵,王乘.大桥受船撞击灾害的计算机评价方法.工程力学. 2000, 17(4), 124-131.
    [4] Fafard M., et al. Dynamics of Bridge-Vehicle Interaction. Proc. EURODYN’93, Rotterdam, Balkema, 1993, 951-960.
    [5] Flyba L. Nonstationary Response of a Beam to Moving Random Force. Journal of Sound and Vibration, 1976, 46, 323-338.
    [6] Green M. F., Cebon D. Dynamic Response of Highway Bridges to Heavy Vehicles Loads: Theory and Experimental Validation. Journal of Sound and Vibration, 1994, 170(1), 51-78.
    [7] Huang D. Z., Wang T. L. Impact Analysis of Continuous Multigirder Bridge due to Moving Vehicles. Journal of Structural Engineering, ASCE, 1992, 118(10), 3427-3443.
    [8] Olsson M. Finite Element Model Coordinate Analysis of Structures Subjected to Moving Loads. Journal of Sound and Vibration, 1985, 99(1), 1-12
    [9] Olsson M. On the Foundational Moving Load Problem. Journal of Sound and Vibration, 1991, 145(2), 299-307.
    [10] Shan D. S., et al. Dynamic Response of Curved-Beam Under Moving Loads. Journal of Southwest Jiaotong University, 1999, 7(2).
    [11] Wang T. L., et al. Dynamic Response of Highway Tracks due to Road Surface Roughness Journal Computers and Structures, 1993, 49(6), 1055-1067.
    [12] Wang T. L., Shahswy M. Impact in Highway Prestressed Concrete Bridge. Journal Computers and Structures, 1992, 44(3), 525-534.
    [13] Wird H. S. Traffic Generated Vibrations and Bridge Integrity. Journal of Structural Engineering, ACSE, 1984, 110(10), 2487-2498.
    [14] Xia He, Chen Yingjun. Dynamic Analysis of Vehicle-Track-Bridge System. Bridges into the 21st Century, Proc. HKCEC, Hong Kong, 1995, 1142-1147.
    [15]夏禾,陈英俊.车-梁-墩体系动力相互作用分析,土木工程学报, 1992, 25(2), 3-12.
    [16] Yang Y. B., et al. Vehicle-Bridge Interaction Analysis by Dynamic Condensation Method Journal of Structural Engineering, ASCE, 1995, 121(11), 1636-1643.
    [17] Yang Y. B., et al. Impact Formulas for Vehicle Moving over Simple and Continuous Beams Journal of Structural Engineering, ASCE, 1995, 121(11), 1644-1650.
    [18] Yang Y. B., et al. Vehicle-Bridge Interaction Element for Dynamic Analysis. Journal of Structural Engineering, ASCE, 1997, 123(11), 1512-1518.
    [19] Flyba L. Vibration of Solids and Structures under Moving Loads. Groningen. NoordhoffInternational Publishing, 1972.
    [20] Muchnikov V.M. Some Methods of Computing Vibration of Elastic Systems Subjected to Moving Loads. Gosstroiizdat, Moscow, 1953.
    [21] Naleskiewicz J. On the Dynamics of Bridge Girders. Archiwum Mechaniki, Stosowanei, 1953.
    [22] Vellozzi, J. Vibration of suspension bridges under moving loads. Journal of structural engineering, ASCE, 1967, 93 (4):123-138.
    [23]松浦章夫.高速铁路桥梁动力问题研究.日本土木学会论文报告集,1976. 12,256:35-47.
    [24] Wilson,J.F. and Barbas,S.T. Response of continuous elasticity supported beam guide way to transit loads. Journal of Dynamic System, Measurement and Control. 1980, 102: 247-254.
    [25] Bhatti M H. Vertical and Lateral Dynamic Response of Railway Bridges Due to Nonlinear Vehicle and Track Irregularities. Chicago: Illinois Institute of Technology, 1982.
    [26] Diana G, et al. A Numerical Method to Define the Dynamic Behavior of a Train Running on a Deformable Structure. MECCANICA, 1988, Special Issue: 27-42.
    [27] Diana G, et al. Dynamic Interaction between Railway Vehicles and Track. Report Dip. Di. Meccanica Politecnico di Milano, 1986.
    [28] Diana G, Cheli F. Dynamic Interaction of Railway Systems with Large Bridges. Vehicle System Dynamic, 1989,18(1-3): 71-106.
    [29] Diana G, et al. Wind Effect on the Dynamic Behavior of Suspension Bridge. International Report, Milano, 1986.
    [30] Khalifa, M.A. Parametric Study of Cable-Stayed Bridge Response Due to Traffic-Induced Vibration. Computer and Structure, 1993, 47 (2):321-339.
    [31] Zaman, M., Taheri, M.R. and Khanna, A. Dynamic Response of Cable-Stayed Bridges to Moving Vehicles Using the Structural Impedance Method. Applied Mathematical Modeling. 1996, 20 (12):877-889.
    [32] Xu, Y.L., Ko, J.M., and Zhang,W.S. Vibration Studies of Tsing Ma Suspension Bridge. Journal of Bridge Engineering. 1997, 2:149-156.
    [33] Au, F.T.K., Wang, J.J., Cheng,Y.K. Impact Study of Cable-Stayed Bridge Under Railway Traffic Using Various Models. Journal of Sound and Vibration. 2001, 240 (3): 447-465.
    [34] R..Calcada. Dynamic Analysis of Metallic Arch Railway Bridge. Journal of Bridge Engineering. JULY/AUGUST 2002.
    [35] Myung-Kwan Song. A New Three–Dimensional Finite Element Analysis Model of High-Speed Train-Bridge Interactions. Engineering Structure. 2003, 25: 1611-1626.
    [36] Michal Majka, Michael Hartnett. Effects of Speed, Load and Damping on the Dynamic Response of Railway Bridges and Vehicles. Computers and Structures. 2007, 86 (6): 556-572.
    [37] Leslaw Kwasniewski, Hongyi Li, Jerry Wwkezer, eta. Finite Element Analysis of Vehicle-Bridge Intreaction. 2006, 42: 950-959.
    [38] Carlos. Study of the Bridge-Train Interaction. ASCE, 2006, 17th analysis and computation specialty conference.
    [39] Olsson M. Finite Element Model coordinate Analysis of Structures Subjected to Moving Loads. Sound and Vibration, 1985, 99(1):1-12.
    [40] Olsson M. On the Foundational Moving Load Problems. Sound and vibration, 1991, 145(2):299-307.
    [41] Bogaert Van Dynamic Response of Trains Crossing Large Span Double-Track Bridges. Constructional steel research. 1993,24(1):57-74.
    [42] Green M F, Cebon D. Dynamic Response of Highway Bridge to Heavy Vehicle Loads: Theory and Experimental Validation. Sound and Vibration, 1994, 170(1):51-78.
    [43] Green M F, et al. Effect of Vehicle Suspension Design on Dynamics of Highway Bridges. Structural Engineering, ASCE. 1995, 121(2): 272-282.
    [44] Yang Y B, et al. Vehicle-Bridge Interaction Analysis by Dynamic Condensation Method. Structural Engineering, ASCE. 1995, 121(11):1636-1643.
    [45] Yang Y B, et al. Impact Formulas for Vehicle Moving over Simple and Continuous Beams. Structural Engineering, ASCE. 1995, 121(11):1644-1650.
    [46] Yang Y B, et al. Vehicle-Bridge Interaction Element for Dynamic Analysis. Structural Engineering, ASCE. 1997, 123(11):1512-1518.
    [47] Yang Y B, et al. Vibration of Simple Beams due to Trains Moving at High Speeds. Structural Engineering, ASCE. 1997, 19(11):936-944.
    [48] Yang Y B, Wu Y S. Dynamic Stability of Trains Moving over Bridges Shaken by Earthquakes [A]. High Speed Railway and Bridge Dynamics. Taibei, 2002, 129-158.
    [49]夏禾,陈英俊.车-梁-墩体系动力相互作用分析.土木工程学报, 1982, 25(2):3-12.
    [50]夏禾.列车过桥时高桥墩的动力响应及其对车辆运行稳定性的影响.北京:北方交通大学, 1984.
    [51] Xia he, Xu Y L, et al. Dynamic interaction of long suspension bridges with running trains. Sound and Vibration, 2000, 237(2): 263-280.
    [52] Y.S.Cheng, F.T.K. Au, Y.K.Cheung. Vibration of Railway Bridges under a Moving Train by Using Bridge-Track-Vehicle Element. Engineering Structures. 23(2001): 1597-1606.
    [53] F.T.K. Au, J.J.Wang, Y.K.Cheung. Impact study of cable-stayed railway bridges with random rail irregularities. Engineering Structures. 24(2002): 529-541.
    [54]李小珍,强士中.高速列车-大跨度刚斜拉桥空间耦合振动响应研究.桥梁建设, 1998, 4:65-68.
    [55]李小珍,强士中.京沪高速南京越江钢斜拉桥车桥耦合振动分析.西南交通大学学报, 1999, 34(2):153-157.
    [56]李小珍,强士中.大跨度公铁两用斜拉桥车桥动力分析.振动与冲击. 2003, 22(1): 6-9.
    [57]肖新标,沈火明. 3种车桥耦合振动分析模型的比较研究.西南交通大学学报. 2004, 39(2):172-175.
    [58]程庆国,许慰平.大跨度铁路斜拉桥列车走行性探讨.全国桥梁结构学术大会论文集.武汉, 1992, 41-51.
    [59]程庆国,潘家英.大跨度铁路斜拉桥竖向刚度分析.全国桥梁结构学术大会论文集.武汉, 1992, 1163-1168.
    [60]冯星梅,陈庆中,史永吉.铁路桥梁横向振动模拟及适应快速行车结构型式的研究.土木工程学报. 2005, 38(12): 70-75.
    [61]张麒,曾庆元.钢桁梁桥横向刚度控制指标的探讨.桥梁建设, 1998, 1: 1-4.
    [62]郭文华,郭向荣,曾庆元.京沪高速铁路南京长江大桥斜拉桥方案车桥系统振动分析.土木工程学报. 1999, 32, (3):23-27.
    [63]张庆,史家钧,胡振东.高速车辆-桥梁结构耦合振动分析.振动与冲击, 2003, 22(2):49~52.
    [64]吴定俊,王小松,项海帆.高速铁路尼尔森拱桥车桥动力特性.铁道学报, 2003, 25(3): 96-100.
    [65]陈燊,唐意,黄文机.多车荷载下刚架拱桥车振仿真可视化研究.工程力学. 2005, 22(1): 218-222
    [66]邹锦华,王荣辉,魏德敏.城市轨道交通连续刚构桥车桥耦合动力分析.铁道科学与工程学报. 2006, 3(1): 36-40.
    [67]李军强,刘宏昭,何钦象.车-桥系统耦合振动响应的简便计算.应用力学学报. 2004, 21(2): 66-69.
    [68]李忠献,黄健,张国忱.考虑图-结构相互作用得车桥系统耦合振动分析.天津大学学报. 2005, 38(12): 1035-1041.
    [69]张进.船舶撞击桥梁下部结构问题的研究.武汉理工大学. 2003.
    [70]刘建成,顾永宁.船-桥碰撞力学问题研究现状及非线性有限元仿真.船舶工程, 2002,5:4-9.
    [71] Consolazio G R, Cowan D R. Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design. Computer and Structure, 2003, 81(8):547-557.
    [72] Proske D, Curbach M. Risk to historical bridges due to ship impact on German inland waterways. Reliability Engineering and System Safety, 2005, 90(3):261-270.
    [73] Rafal Wuttrich, Jerry Wekezer, Nur Yazdani, etc. Performance evaluation of existing bridge fenders for ship impact. Journal of Performance of Constructed Facilities, 2001,15(1):17-23
    [74]胡志强,顾永宁,高震.基于非线性数值模拟的船桥碰撞力快速估算.工程力学,2005,22(3):235-240.
    [75]王君杰,陈诚.桥墩在船舶撞击作用下的损伤仿真研究.工程力学,2007,24(7):156-160.
    [76]程翔云,王榃.连续悬索桥受横桥向船撞力的分析.公路. 2002, 3:57-60.
    [77]刘建成,顾永宁.基于整船整桥模型的船桥碰撞数值仿真.工程力学.2003,20(5):155-162.
    [78] Y.L.Xu, N.Zhang, H.Xia. Vibration of coupled train and cable-stayed bridge systems in crosswinds. Engineering Structures. 2004, 26: 1389-1406.
    [79]葛玉梅,周述华,李龙安.斜拉桥在考虑风效应时的车-桥耦合振动.西南交通大学学报. 2001, 36(4):369-373.
    [80]李永乐,强士中,廖海黎.风-车-桥系统空间耦合振动研究.土木工程学报. 2005, 38(7):61-64.
    [81]横风对货车通过高墩桥梁行车安全性的影响分析.铁道学报. 2007, 29(4):80-86.
    [82]韩艳,夏禾,郭薇薇.斜拉桥在地震与列车荷载同时作用夏的动力响应分析.工程力学. 2006, 23(1): 93-98.
    [83]董永财,杨长春.在地震力作用下高架桥梁上轨道车辆的动态分析与安全性研究.地震工程与工程振动. 2005, 25(5): 153-159.
    [84]熊建珍,高芒芒,俞翰斌.天兴洲长江大桥斜拉桥在地震作用下的车-桥耦合振动分析.中国铁道科学. 2006, 27(5): 54-58.
    [85] Jensen, J. Ship-induced derailment on a railway bridge. Structural Engineering International, 1996, 6(2):107-112.
    [86] Hallquist J. Ls-dyna Theoretical Manual, LSTC, Livermore, 1998.
    [87]赵海鸥. LS-DYNA动力分析指南.北京:兵器工业出版社, 2003.
    [88] Belytschko T, Liu W K, Moran B. Nonlinear Finite Elements for Continua and Structures, Wiley, 2000.
    [89] Hallquist J. Ls-dyna Keyword User’s Manual, LSTC, Livermore, 1998.
    [90] Green J. The use of OASYS DYNA3D for crash simulation. Proceeding of the First International LS-DYNA Conference, 1993
    [91] A..M.S. Freire, J.H.0. Negrao, A.V.Lopes. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges. Computer and Structures, 2006, 84(31): 2128-2140.
    [92]钟万勰,刘元芳,纪峥.斜拉桥施工中的张拉控制和索力调整.土木工程学报, 1992, 25(3): 9-15.
    [93]余德浩.科学与工程计算研究的回顾与展望.中国科学院院刊, 2001, (6):403-407.
    [94]阮红河,袁勇,柳献.分布存储环境并行有限元研究进展.同济大学学报(自然科学版), 2005, 33(1):21-27.
    [95]程建钢,姚振汉,李明瑞.结构动力分析显式积分并行算法与实现.清华大学学报(自然科学版). 1996, 36(10):80-85.
    [96] P. Krysl, Z. Bittnar. Parallel explicit finite element solid dynamics with domain decomposition and message passing dual partitioning scalability. Computer and Structure, 2001, 79:345-360.
    [97] K. Huang, Z. W. Xu. Scalable parallel computing technology, architecture, programming. Beijing. China Mechanical Industry Press, 1999.
    [98]亓文果.基于并行有限元和神经网络的汽车碰撞事故再现方法研究.上海交通大学,博士学位论文, 2006.
    [99] Mackerle J. Parallel finite element and boundary element analysis: theory and applications: Abibliography (1997-1999). Finite elements in analysis and design, 2000, 35:283-296.
    [100] Danielson K T, Namburu R R. Nonlinear dynamic finite element analysis on parallel computers using Fortran90 and MPI. Advances in engineering software, 1998, 29(3):179-186.
    [101] Topping B, Sziveri J, Bahreinejad A. Parallel processing, neural networks and genetic algorithms. Advances in engineering software, 1998, 29(10):763-786.
    [102] S.Kirkpatrick, C.D.Gelatt, M.P.Vecchi. Optimization by simulated annealing. Science, 1983, 220: 671-680.
    [103] C.Farhat. A simple and efficient automatic FEM domain decomposer. Computers and structures, 1988,28(5): 579:602.
    [104] A. Pothen, H.D.Simon, K.Liou. Partitioning sparse matrics with eigenvectors of graphs. Journal on Matrix Analysis and Application, 1990, 11:430-452.
    [105] S.T.Barnard, H.S. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Tech Rep. RNR-92-033, NASA Ames Research Center, Moffett Field, CA, April 1993.
    [106] M.J.Berger, S. H.Bokhari. A partitioning strategy for nonuniform problems on multiprocessors. IEEE Transaction Computers, 1987, 36:570-580.
    [107]杨文忠,练松良,刘杨.轨道不平顺功率谱拟和分析.同济大学学报. 2006, 34(3): 363-367.
    [108]铁道车辆动力学性能评定和试验鉴定规范, 1985.
    [109]王悦明,王新锐.客车舒适度的评定.铁道机车车辆, 2000, 3:1-4.
    [110]倪纯双,王悦明.浅析平稳性指标和舒适度指标.铁道机车车辆, 2003, 23(6):1-3.
    [111] ISO2631-2001, Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration, Part 4: Guidelines for the evaluation of the effects of vibration and rotational motion on passenger and crew comfort in fixed-guideway transport system.
    [112] UIC513 code, Guidelines for evaluating passenger comfort in relation to vibration in railway vehicles[S]. International Union of Railways, 1995.
    [113]张济民,胡用生,陆正刚.轨道车辆运行过程中人体振动仿真研究.振动与冲击, 2007, 26(10):76-80.
    [114]陶向华,黄晓明.人-车-路相互作用三质量车辆模型分析.交通运输工程学报. 2004, 4(3):11-15.
    [115]闵浦二桥新建工程施工图设计计算报告.上海市城市建设设计研究院, 2007.
    [116]阎兴非,彭俊,周良.公轨两用斜拉桥-闵浦二桥总体设计分析.中国市政工程. 2008
    [117]铁运函[2004] 120号,铁路桥梁检定.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700