用户名: 密码: 验证码:
虚拟心脏解剖及电生理数学建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟心脏建模仿真工作是对心脏结构和功能的模拟,集电生理学、动力学、血液流体力学以及神经、生化控制于一身的极其复杂的综合系统,是一项难度和复杂度极高的技术工作。目前,心脏生理病理学家大多从细胞、基因、蛋白、分子等微观层次来研究心脏机理,实验反映出来的大多是单细胞或局部的特性,不能很好地阐明从微观病理变化如何演变成整体心脏的异常,而临床心脏学家则更多地关注整体心脏的宏观综合表现特征,对病症微观起源较少深究,对于病因复杂的心脏病诊治很大程度上依靠经验决断。连接心脏微观宏观研究的有效手段之一就是虚拟心脏模型,基于虚拟心脏模型我们可以非常方便地研究心肌微观生理病理变化是如何发展成整体心脏的宏观变化,而且是定量的,从而有助于提高心脏病的诊治水平和创新药物的开发。近些年生物医学工程领域和其它学科快速发展,出现了很多新方法、新理论,将这些成果引入心脏建模领域,会帮助我们建立更为复杂和完善的虚拟心脏模型,深入认识心血管系统的运动规律和本质,从而朝着建立复合虚拟心脏仿真模型的最终目标深入下去,推动虚拟心脏建模正逆问题研究的进一步发展。
     本文以虚拟心脏解剖结构数学建模和虚拟心脏电生理数学建模为研究方向,在原有浙江大学第一代LFX虚拟心脏模型基础之上,综合应用虚拟人技术、图像处理、信号处理、并行计算、三维科学可视化等技术手段,尝试求解虚拟心脏建模中关键的生物计算问题,建立了代表国际先进水平的Cardiome-CN虚拟心脏电生理数学模型。在若干性能指标上领先于国际同类模型,对推动Cardiome计划相关技术的向前发展具有重要影响力。其中基于细胞离子通道和双域模型方程的超大计算量心肌兴奋传播并行算法的实现,对其它大型生物计算技术的发展也具有一定的借鉴作用。本文主要工作和研究成果包括:
     (1)基于医学影像数据、生理标本数据、虚拟人数据建立了虚拟心脏解剖结构数据库,包含兔子、犬、人体等心脏解剖模型样本。其中以人体心脏模型为例,数据结构空间分辨率为0.33mm,包含了完整的心房、心室结构。对心室壁分层、心肌纤维旋向设定、传导通路设定、组织功能分类定义等虚拟心脏解剖结构建模的关键问题进行了研究,并给出了解决方案。针对各模型建立了相应的计算、可视化网格。这是国际上目前结构完整、精度高,且包含完整心肌纤维旋向和电传导通路信息的人体心脏解剖结构模型之一。
     (2)基于心肌细胞离子通道水平的实验数据,开创性的建立了国内首个犬、人体心肌细胞动作电位模型库。其中包含了起搏细胞、心房肌细胞、心室肌细胞等多样性、特异性的模型定义。模型还包含了完整的钙循环以及兴奋收缩耦联机制。针对细胞模型的计算和分析方法进行了深入研究,首次提出了使用非标准有限差分方法(NSFD)和DVODE算子来加速细胞模型的运算速度。总结扩展了心肌细胞模型静态和动态的分析方法,丰富了模型研究的手段。并应用细胞模型针对心力衰竭、短QT综合症、Brugada综合症等相关疾病进行了初步的探索研究。
     (3)基于MPI和OPENMP并行计算协议库,设计并实现了基于双域模型模拟的各向异性的心肌兴奋传播并行算法,实现了离子通道细胞模型和双域模型兴奋扩散方程的耦合,建立了从一维结构模型到三维解剖模型的各种层次的传导模型,仿真了正常心脏组织的兴奋传导时序,并对折返性心律失常的兴奋传导机制进行了模型研究。其中并行扩散算法属国际先进水平,国内虚拟器官建模领域还没有类似的研究工作。
     (4)构建了基于真实人体心脏解剖生理结构,具有仿真心肌缺血、多种心律失常、基因变异类离子通道疾病等功能的达到国际领先和先进水平的Cardiome-CN虚拟人体心脏模型。
     (5)基于美国虚拟人断层数据,构建了真实完整的男性和女性人体躯干结构模型。使用Cardiome-CN虚拟心脏模型,模拟了心电场分布,计算了体表电位、心电图和心电向量图。
     未来虚拟心脏模型具有很大的应用潜力,不仅仅在生物医学领域,还可以为临床服务,包括介入治疗,为病人定制个体化的心脏信息数据库等等。特别是对于临床需求迫切的房颤、室颤等心律失常疾病的诊断和导管介入消融治疗技术的提升具有直接的应用价值。虽然目前还无法针对个体案例进行实时重建,但随着计算能力的提高,基于病人个体化定制的虚拟心脏模型辅助治疗必将成为现实。
By setting electrophysiology, dynamics, fluid mechanics of blood, nerves and chemical biological control together within an extremely complex integrated system, virtual heart modeling can be used to simulate the structure and function of the real heart, which is a technical work with high degree of difficulty and complexity. At present, most pathologists study the mechanism of the heart from micro-level, such as physiological cardiac cells, genes, proteins, molecules, while the majority of the experiments can only reflect in single-cell or partial identity, which can not be used to well explain how the cardiac abnormalities in micro-pathological level evolved into the macro-pathological level, and clinical cardiac experts, however, pay more attention to the overall comprehension of macro cardiac performance characteristics, less concern the micro-origined cause of the heart diseases. Their decisions of the diagnosis and treatment on complex heart disease are largely depend on experience. The virtual heart model is the effective means of connection between the micro and macro level heart research. Based on virtual heart model, doctor can study the physiological and pathological quantitative changes of myocardial conveniently in micro level and also test how the micro changes develop into the overall macro-change, which can contribute to improve the diagnosis and treatment of heart disease and the development of innovative medicines. In recent years, with the rapid development of biomedical engineering and other disciplines, there are a lot of new methods and new theories are introduced in these fields. The introduction of these methods and theories to virtual heart modeling areas can help us set up more complex and sophisticated model and sequentially in-depth understand the laws and the nature of cardiovascular system, which can eventually contribute to promote the further developing of forward and inverse problem of heart modeling studies.
     In this paper, we will focus on the mathematical modeling of the anatomical structure and electrophysiology of the heart. Based on the original LFX virtual heart model, the first generation of virtual heart model of Zhejiang University, with comprehensive application of the Virtual Human technology, image processing, signal processing, parallel computing, three-dimensional scientific visualization and other technical means, we try to solve the key biological computing problems and set up the new generation of Cardiome-CN virtual heart electrophysiology model, which performance indicators is on the top of the international similar models and the related technology has an important influence on promoting the development of Cardiome project. The design and implementiaon of the parallel algorithms for ionic-channel based and bidomain model equations of myocardial excitation propagation can also be used for reference of other large-scale development of bio-computing technology. In this paper, the main research work and findings include:
     1. Based on medical image data, physiological data samples, virtual human project dataset, we construct the database of virtual heart anatomical structure, including rabbit, dog, and human heart models. For the human heart model as an example, the spatial resolution of data structure is 0.33mm, which contains a complete atrial and ventricular structure, stratification of ventricular wall, myocardial fiber orientation, conduction pathway settings, organizations such as the definition of functional classification of heart tissue, etc. The calculation method, visualization grid of these models was also set up. The constructed human virtual heart model is one of the best virtual heart models in the world with detailed anatomy structure.
     2. Based on experimental data of ion channels in cardiac myocytes, we pioneeringly set up the first cardiac myocyte action potential model library of dogs, human in the domestic, which contain the pacemaker cells, atrial myocytes, ventricular myocytes and other heterogeneous models with a complete cycle of calcium and excitation-contraction coupling mechanism. We carried out in-depth research on calculation and analysis for cell model. By using of non-standard finite difference method (NSFD) and operator DVODE, we accelerate cell model computational speed and sum up the expansion of the static and dynamic analysis methods, enriching the model means. The cell models have been used for simulation of heart failure, short-QT syndrome, Brugada syndrome-related diseases.
     3. Based on MPI and OpenMP parallel computing protocol library, we design and implement parallel algorithms of the bidomain model, and use them to simulate the anisotropic spread of the cardiac excitation propagation. By coupling ionic channel cell model and bidomain reaction and diffusion model, we setup the one-dimensional structural conduction models to the three-dimensional anatomical conduction models and simulate the normal heart tissue conduction sequences. Then, we study the mechanism of reentrant arrhythmia by using these conduction models, which is international advanced level in the field of domestic virtual organ modeling.
     4. Based on real physiological structures, a virtual human heart model, Cardiome-CN, has been constructed. This model can be used to simulate myocardial ischemia, a variety of arrhythmias, genetic variation, and ionic channel function diseases.
     5. Based on the US virtual human project data, we build both male and female human torso models. Together with the Cardiome-CN model, we simulate the cardiac electric field distribution and body surface potential, calculate electrocardiogram and vectorcardiogram, study the the cellular mechanism of ECG morphological characteristics in arrhythmia condition.
     In the future, virtual heart models have great potential applications not only in the biomedical field, bu also in clinical services, including interventional treatment, the individual custom database information and so on. Especially for the clinical diagnosis needs of atrial fibrillation, ventricular fibrillation and other arrhythmias diseases, the virtual heart model can help to enhance the application value of transcatheter interventional ablation techniques. Although it can not realize the real-time reconstruction of individual cases at the present, with the improvement of the calculation ability, the individual customized virtual heart model for clinical therapy application must become a reality in the future.
引文
1.Pol,B.v.d.and J.v.d.Mark,The heartbeat considered as a relaxation oscillation and an electrical model of the heart.Philos Mag,1928.6:p.763-775.
    2.Hodgkin,A.L.and A.F.Huxley,A quantitative description of membrane current and its application to conduction and excitation in nerve.J Physiol,1952.117(4):p.500-44.
    3.Noble,D.,Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations.Nature,1960.188:p.495-7.
    4.Beeler,G.W.and H.Reuter,Reconstruction of the action potential of ventricular myocardial fibres.J Physiol,1977.268(1):p.177-210.
    5.DiFrancesco,D.and D.Noble,A model of cardiac electrical activity incorporating ionic pumps and concentration changes.Philos Trans R Soc Lond B Biol Sci,1985.307(1133):p.353-98.
    6.Luo,C.H.and Y.Rudy,A model of the ventricular cardiac action potential.Depolarization,repolarization,and their interaction.Circ Res,1991.68(6):p.1501-26.
    7.Iyer,V.,R.Mazhari,and R.L.Winslow,A computational model of the human lefi-ventricular epicardial myocyte.Biophys J,2004.87(3):p.1507-25.
    8.Cortassa,S.,et al.,A computational model integrating electrophysiology,contraction,and mitochondrial bioenergetics in the ventricular myocyte.Biophys J,2006.91(4):p.1564-89.
    9.Nygren,A.,et al.,Mathematical model of an adult human atrial cell:the role of K+ currents in repolarization.Circ Res,1998.82(1):p.63-81.
    10.Hunter,P.J.,A.D.McCulloch,and H.E.ter Keurs,Modelling the mechanicalproperties of cardiac muscle.Prog Biophys Mol Biol,1998.69(2-3):p.289-331.
    11.Colli-Franzone,P.,L.Guerri,and B.Taccardi,Modeling ventricular excitation:axial and orthotropic anisotropy effects on wavefronts and potentials.Math Biosci,2004.188:p.191-205.
    12.Long,Q.,et al.,Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging.Proc Inst Mech Eng [H],2008.222(4):p.475-85.
    13.Smith,N.P.,A computational study of the interaction between coronary blood flow and myocardial mechanics.Physiological Measurement,2004.25(4):p.863-877.
    14.Matsuoka,S.,et al.,An in silico study of energy metabolism in cardiac excitation-contraction coupling.Jpn J Physiol,2004.54(6):p.517-22.
    15.Olufsen,M.S.,et al.,Modeling baroreflex regulation of heart rate during orthostatic stress.Am J Physiol Regul Integr Comp Physiol,2006.291(5):p.R1355-68.
    16.Wilson,F.N.,A.G.Macleod,and P.S.Barker,THE DISTRIBUTION OF THE ACTION CURRENTS PRODUCED BY HEART MUSCLE AND OTHER EXCITABLE TISSUES IMMERSED IN EXTENSIVE CONDUCTING MEDIA.J.Gen.Physiol.,1933.16(3):p.423-456.
    17.Seemann,G.,et al.,Modeling of IK1 mutations in human left ventricular myocytes and tissue.Am J Physiol Heart Circ Physiol,2007.292(1):p.H549-59.
    18.Rudy,Y.,From genome to physiome:integrative models of cardiac excitation.Ann Biomed Eng,2000.28(8):p.945-50.
    19.Hunter,P.J.,E.J.Crampin,and P.M.Nielsen,Bioinformatics,multiscale modeling and the IUPS Physiome Project.BriefBioinform,2008.9(4):p.333-43.
    20. 凌凤东,林.赵.,心脏解剖与临床.2005,北京:北京大学医学出版社.
    21. 吴恩惠,医学影像诊断学.2001,北京:人民卫生出版社.
    22.Buist,M.L.and A.J.Pullan,The effect of torso impedance on epicardial and body surface potentials:a modeling study.Biomedical Engineering,IEEE Transactions on,2003.50(7):p.816-824.
    23.Oster,H.S.,et al.,Noninvasive electrocardiographic imaging.:reconstruction of epicardial potentials,electrograms,and isochrones and localization of single and multiple electrocardiac events.Circulation,1997.96(3):p.1012-24.
    24.IAIZZO,P.A.,HANDBOOK OF CARDIAC ANATOMY,PHYSIOLOGY,AND DEVICES.2005,Totowa,New Jersey:Humana Press
    25.Lu,W.and L.Xia,Computer simulation of epicardial potentials using a heart-torso model with realistic geometry.Biomedical Engineering,IEEE Transactions on,1996.43(2):p.211-217.
    26.Seemann,G.,et al.,Heterogeneous three-dimensional anatomical and electrophysiological model of human atria.Philos Transact A Math Phys Eng Sci,2006.364(1843):p.1465-81.
    27.Kholova,I.and J.Kautzner,Anatomic characteristics of extensions of atrial myocardium into the pulmonary veins in subjects with and without atrial fibrillation.Pacing Clin Electrophysiol,2003.26(6):p.1348-55.
    28.Hayashi,H.,et al.,Relation of canine atrial activation sequence to anatomic landmarks.Am J Physiol,1982.242(3):p.H421-8.
    29.Khan,R.,Identifying and understanding the role of pulmonary vein activity in atrial fibrillation.Cardiovasc Res,2004.64(3):p.387-94.
    30.Harrild,D.and C.Henriquez,A computer model of normal conduction in the human atria.Circ Res,2000.87(7):p.E25-36.
    31.Ruchat,P.,et al.,A biophysical model of atrial fibrillation ablation:what can a surgeon learn from a computer model? Europace,2007.9 Suppl 6:p.vi71-6.
    32.Reumann,M.,J.Bohnert,and O.Doessel,Simulating pulmonary vein activity leading to atrialfibrillation using a rule-based approach on realistic anatomical data.Conf Proc IEEE Eng Med Biol Soc,2006.1:p.3943-6.
    33.Xia,L.,et al.,Motion analysis of right ventricular wall based on an electromechanical biventricular model.ConfProc IEEE Eng Med Biol Soc,2004.2:p.898-901.
    34.Sermesant,M.,H.Delingette,and N.Ayache,An electromechanical model of the heart for image analysis and simulation.IEEE Trans Med Imaging,2006.25(5):p.612-25.
    35.Cordeiro,J.M.,et al.,Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle.Am J Physiol Heart Circ Physiol,2004.286(4):p.H1471-1479.
    36.Seemann,G.,et al.,Quantitative reconstruction of cardiac electromechanics in human myocardium.:regional heterogeneity.J Cardiovasc Electrophysiol,2003.14(10 Suppl):p.S219-28.
    37.Antzelevitch,C.,et al.,Heterogeneity within the ventricular wall.Electrophysiology and pharmacology of epicardial,endocardial,andMcells.Circ Res,1991.69(6):p.1427-49.
    38.Antzelevitch,C.and J.Fish,Electrical heterogeneity within the ventricular wall.Basic Res Cardiol,2001.96(6):p.517-27.
    39.Xia,L.,et al.,[Three-dimensional motion analysis of right ventricular based on an electrophysiologic-mechanical composite heart model].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2007.24(1):p.110-5.
    40.Howden,L.,et al.,Three-dimensional cerebrospinal fluid flow within the human ventricular system.Comput Methods Biomech Biomed Engin,2008.11(2):p.123-33.
    41.David,M.M.and S.P.Charles,A three-dimensional computer model of the human heart for studying cardiac fluid dynamics.SIGGRAPH Comput.Graph.,2000.34(1):p.56-60.
    42.Kovacs,S.J.,D.M.McQueen,and C.S.Peskin,Modelling Cardiac Fluid Dynamics and Diastolic Function.Philosophical Transactions:Mathematical,Physical and Engineering Sciences,2001.359(1783):p.1299-1314.
    43.Cheng,Y.,H.Oertel,and T.Schenkel,Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase.Ann Biomed Eng,2005.33(5):p.567-76.
    44.Katritsis,D.G.and A.Becker,The atrioventricular nodal reentrant tachycardia circuit:a proposal Heart Rhythm,2007.4(10):p.1354-60.
    45.Weiss,D.L.,et al.,Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall.Europace,2005.7 Suppl 2:p.105-17.
    46.Li,J.,et al.,Computer three-dimensional reconstruction of the atrioventricular node.Circ Res,2008.102(8):p.975-85.
    47.Ho,S.Y.,R.H.Anderson,and D.Sanchez-Quintana,Atrial structure andfibres:morphologic bases of atrial conduction.Cardiovasc Res,2002.54(2):p.325-36.
    48.Streeter,D.D.,Jr.,et al.,Fiber orientation in the canine left ventricle during diastole and systole.Circ Res,1969.24(3):p.339-47.
    49.Drouin,E.,et al.,Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart:evidence for presence ofMcells.J Am Coil Cardiol,1995.26(1):p.185-92.
    50.Packer,D.L.,Three-dimensional mapping in interventional electrophysiology:techniques and technology.J Cardiovasc Electrophysiol,2005.16(10):p.1110-6.
    51.Ghanem,R.N.,et al.,Heart-surface reconstruction and ECG electrodes localization using fluoroscopy,epipolar geometry and stereovision:application to noninvasive imaging of cardiac electrical activity.IEEE Trans Med Imaging,2003.22(10):p.1307-18.
    52.Knisley,S.B.,Optical mapping of cardiac electrical stimulation.J Electrocardiol,1998.30 Suppl:p.11-8.
    53.Wolf,T.,et al.,Three-dimensional endocardial impedance mapping:a new approach for myocardial infarction assessment.Am J Physiol Heart Circ Physiol,200 1.280(1):p.H 179-88.
    54.Wilders,R.,Computer modelling of the sinoatrial node.Med Biol Eng Comput,2007.45(2):p.189-207.
    55.Dobrzynski,H.,et al.,Computer three-dimensional reconstruction of the sinoatrial node.Circulation,2005.111(7):p.846-54.
    56.Huang,X.,et al.,Age-related down-regulation of HCN channels in rat sinoatrial node.Basic Res Cardiol,2007.102(5):p.429-35.
    57.Pinto,D.S.,et al.,Sinus versus nonsinus tachycardia in the emergency department:importance of age and heart rate.BMC Cardiovasc Disord,2003.3:p.7.
    58.Kafer,C.J.,lnternodal pathways in the human atria:a model study.Comput Biomed Res,1991.24(6):p.549-63.
    59.Robert H.Anderson,S.Y.H.A.E.B.,Anatomy of the human atrioventricular junctions revisited.The Anatomical Record,2000.260(1):p.81-91.
    60.Dorveaux,L.,N.Twidale,and A.Tonkin,Direct identification of parameters in a mathematical model describing conduction through the atrioventricular node.Int J Biomed Comput,1988.23(1-2):p.69-76.
    61.Caro,J.,A.Ward,and J.Moller,Modelling the health benefits and economic implications of implanting dual-chamber vs.single-chamber ventricular pacemakers in the UK.Europace,2006.8(6):p.449-55.
    62.Tusscher,K.H.and A.V.Panfilov,Modelling of the ventricular conduction system.Prog Biophys Mol Biol,2008.96(1-3):p.152-70.
    63.Bialek,W.and D.Botstein,Introductory science and mathematics education for 21st-Century biologists.Science,2004.303(5659):p.788-90.
    64.Wong,K.C.,et al.,Integrating functional and structural images for simultaneous cardiac segmentation and deformation recovery.Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv,2007.10(Pt 1):p.270-7.
    65.Marani,E.,A method for orienting cryostat sections for three-dimensional reconstructions.Stain Technol,1978.53(5):p.265-8.
    66.Harris,L.D.,et al.,Display and visualization of three-dimensional reconstructed anatomic morphology:experience with the thorax,heart,and coronary vasculature of dogs.J Comput Assist Tomogr,1979.3(4):p.439-46.
    67.Spacek,J.,Personal microcomputer-aided three-dimensional reconstructions.Acta Morphol Hung,1988.36(1-2):p.47-52.
    68.Kriete,A.and G.Magdowski,Computerized three-dimensional reconstructions of serial sections in electron microscopy.Ultramicroscopy,1990.32(1):p.48-54.
    69.Zoumi,A.,et al.,lmaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy.Biophys J,2004.87(4):p.2778-86.
    70.Yamamoto,M.,et al.,Development of Digital Subtraction Angiography for Coronary Artery.J Digit Imaging,2008.
    71.Naito,H.,et al.,Significance of ultrafast computed tomography in cardiac imaging:usefulness in assessment of myocardial characteristics and cardiac function.Jpn Circ J,1990.54(3):p.322-7.
    72.Achenbach,S.,et al.,Visualization of the coronary arteries in three-dimensional reconstructions using respiratory gated magnetic resonance imaging.Coron Artery Dis,1997.8(7):p.441-8.
    73.Vahl,C.F.,C.F.Meinzer,and S.Hagl,Three-dimensional presentation of cardiac morphology.Thorac Cardiovasc Surg,1991.39 Suppl 3:p.198-204.
    74.Park,J.S.,et al.,Visible Korean Human:its techniques and applications.Clin Anat,2006.19(3):p.216-24.
    75.Ackerman,M.J.,The Visible Human Project.J Biocommun,1991.18(2):p.14.
    76.Slavin,K.V.,The Visible Human Project.Surg Neurol,1997.48(6):p.638-9.
    77.Zhang,S.X.,P.A.Heng,and Z.J.Liu,Chinese visible human project.Clin Anat,2006.19(3):p.204-15.
    78.Noble,D.,Modeling the heart-from genes to cells to the whole organ.Science,2002.295(5560):p.1678-1682.
    79.Goodyer,C.E.,et al.,3D visualization of cardiac anatomical MRl data with para-cellular resolution.Conf Proc IEEE Eng Med Biol Soc,2007.2007:p.147-51.
    80.Xu,J.,L.Gu,and W.Qi,Presentation and validation of an accurate and effective segmentation for dynamic heart modeling.Conf Proc IEEE Eng Med Biol Soc,2005.6:p.6460-3.
    81.Guo,Y.L.,et al.,Thin sectional anatomy,three-dimensional reconstruction and visualization of the heart from the Chinese Visible Human.Surg Radiol Anat,2005.27(2):p.113-8.
    82.Miquel,M.E.,et al.,Three- and four-dimensional reconstruction of intra-cardiac anatomy from two-dimensional magnetic resonance images.Int J Cardiovasc Imaging,2003.19(3):p.239-54;discussion 255-6.
    83.Nielsen,P.M.,et al.,Mathematical model of geometry and fibrous structure of the heart.Am J Physiol,1991.260(4 Pt 2):p.H1365-78.
    84.Garrido,L.,et al.,Anisotropy of water diffusion in the myocardium of the rat.Circ Res,1994.74(5):p.789-93.
    85.Helm,P.A.,R.L.Winslow,and E.R.McVeigh.http.://gforge.icm.jhu.edu/gf/project/dtmri_data_sets/docman/?subdir=41.2008 [cited.
    86.Wang,X.F.,et al.,Live three-dimensional echocardiography:imaging principles and clinical application.Echocardiography,2003.20(7):p.593-604.
    87.Mathematics and Physics of emerging Biomedical Imaging.1996,Washington.
    88.Legrice,I.J.,P.J.Hunter,and B.H.Smaill,Laminar structure of the heart.:a mathematical model Am J Physiol,1997.272(5 Pt 2):p.H2466-76.
    89.Lorange,M.and R.M.Gulrajani,A computer heart model incorporating anisotropic propagation.L Model construction and simulation of normal activation.J Electrocardiol,1993.26(4):p.245-61.
    90.Hren,R.,A realistic model of the human ventricular myocardium:Application to the study of ectopic activation.1996,Dalhousie University.
    91.Ten Tusscher,K.H.,R.Hren,and A.V.Panfilov,Organization of ventricular fibrillation in the human heart.Circ Res,2007.100(12):p.e87-101.
    92.Scollan,D.F.,et al.,Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging.Am J Physiol Heart Circ Physiol,1998.275(6):p.H2308-2318.
    93.Vetter,F.J.and A.D.McCulloch,Three-dimensional analysis of regional cardiac function:a model of rabbit ventricular anatomy.Prog Biophys Mol Biol,1998.69(2-3):p.157-83.
    94.Scollan,D.F.,et al.,Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging.Ann Biomed Eng,2000.28(8):p.934-44.
    95.Ayman,M.,et al.,Geometrical Modelling of the Fibre Organization in the Human Left Ventricle,in Proceedings of the First International Workshop on Functional Imaging and Modeling of the Heart.2001,Springer-Verlag.
    96.Blanc,O.,A computer model of human atrial arrhythmia.2002:Lausanne.
    97.Stevens,C.and P.J.Hunter,Sarcomere length changes in a 3D mathematical model of the pig ventricles.Prog Biophys Mol Biol,2003.82(1-3):p.229-41.
    98.Stevens,C.,et al.,Ventricular mechanics in diastole:material parameter sensitivity.J Biomech,2003.36(5):p.737-48.
    99.Jiang,Y.,et al.,Three-dimensional diffusion tensor microscopy offixed mouse hearts.Magn Reson Med,2004.52(3):p.453-60.
    100.Helm,P.A.,A novel technique for quantifying variability of cardiac anatomy:Application to the dyssynchronousfailing heart 2005,THE JOHNS HOPKINS UNIVERSITY.
    101. 彭维雪,DSA图像三维重建中的二维信息处理及三维表达.2006,华中科技大学.
    102.Salustri,A.and J.R.Roelandt,Ultrasonic three-dimensional reconstruction of the heart.Ultrasound Med Biol,1995.21(3):p.281-93.
    103. 沈显华,心脏超声图像三维分割方法.2006,四川大学.
    104. 何爱军,超声心脏图象的多维多参数功能重建.2002,四川大学.
    105.Goland,S.,et al.,Cardiac abnormalities as a new manifestation of nonalcoholic fatty liver disease:echocardiographic and tissue Doppler imaging assessment.J Clin Gastroenterol,2006.40(10):p.949-55.
    106.Little,S.H.,et al.,Three-dimensional ultrasound imaging model of mitral valve regurgitation:design and evaluation.Ultrasound Med Biol,2008.34(4):p.647-54.
    107.Sigurdsson,G.,CT for assessing ventricular remodeling:is it ready for prime time? Curr Heart Fail Rep,2008.5(1):p.16-22.
    108.Lopez Costa,I.and S.Bhalla,Computed tomography and magnetic resonance imaging of the pericardium.Semin Roentgenol,2008.43(3):p.234-45.
    109.Facciuto,M.E.,et al.,lntrapericardial control of the inferior vena cava from the abdominal cavity.J Hepatobiliary Pancreat Surg,2004.11(4):p.286-9.
    110. 刘世恩,64层螺旋CT冠状动脉成像技术的临床应用研究.2007,青岛大学:青岛.
    111.Piorkowski,C.,et al.,Computed tomography model-based treatment of atrial fibrillation and atrial macro-re-entrant tachycardia.Europace,2008.
    112.Mitchell,S.C.,et al.,3-D active appearance models:segmentation of cardiac MR and ultrasound images.IEEE Trans Med Imaging,2002.21(9):p.1167-78.
    113.Corsi,C.,et al.,Left ventricular volume estimation for real-time three-dimensional echocardiography.IEEE Trans Med Imaging,2002.21(9):p.1202-8.
    114.Zhong,L.,et al.,Regional assessment of left ventricular surface shape from magnetic resonance imaging.Conf Proc IEEE Eng Med Biol Soc,2007.2007:p.884-7.
    115. 朱近,基于加标记核磁共振成像的心肌形变与应变研究.2006,南京理工大学.
    116. 陈华富,磁共振弥散张量成像数据处理及临床应用研究.2007,电子科技大学.
    117.Geerts,L.,et al.,Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging.Am J Physiol Heart Circ Physiol,2002.283(1):p.H139-45.
    118.Mirza Faisal Beg,P.A.H.E.M.M.I.M.R.L.W.,Computational cardiac anatomy using MRI.Magnetic Resonance in Medicine,2004.52(5):p.1167-1174.
    119.Schmid,P.,et al.,Ventricular myocardial architecture as visualised in postmortem swine hearts using magnetic resonance diffusion tensor imaging.Eur J Cardiothorac Surg,2005.27(3):p.468-72.
    120.Martinek,M.,et al.,Accuracy of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping for real-time guided radiofrequency ablation of lefi atrial fibrillation-influence of heart rhythm and radiofrequency lesions.J Interv Card Electrophysiol,2006.17(2):p.85-92.
    121.Kelle,S.,et al.,Whole-heart coronary magnetic resonance angiography with MS-325 (Gadofosveset).Med Sci Monit,2007.13(11):p.CR469-474.
    122.Haber,I.,D.N.Metaxas,and L.Axel,Using tagged MRI to reconstruct a 3D heartbeat.Computing in Science & Engineering,2000.2(5):p.18-30.
    123.Helm,P.,et al.,Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging.Ann N Y Acad Sci,2005.1047:p.296-307.
    124.Park,J.S.,et al.,Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.Clin Anat,2007.20(8):p.871-9.
    125.Jin Seo Park,M.S.C.S.B.H.B.-S.S.H.S.P.,Visible Korean Human:lts techniques and applications.Clinical Anatomy,2006.19(3):p.216-224.
    126. 李增惠,中国数字化虚拟人体的科技问题——香山科学会议第174次学术讨论会.中国基础科学,2002.3:p.35—38.
    127.Zhang,S.X.,et al.,Creation of the Chinese visible human data set.Anat Rec B New Anat,2003.275(1):p.190-5.
    128.ter Haar Romeny,B.M.,et al.,Advances in three-dimensional diagnostic radiology.J Anat,1998.193 ( Pt 3):p.363-71.
    129.Ackerman,M.J.,The Visible Human Project:a resource for education.Acad Med,1999.74(6):p.667-70.
    130.Werner,C.D.,Simulation der elektrischen Erregungsausbreitung in anatomischen Herzmodellen mit adaptiven zellul(a|¨)iren Automaten,in IInstitut für Biomedizinische Technik.2001,University of the Karlsruhe (TH):Berlin.
    131.van Assen,H.C.,et al.,SPASM:a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data.Med Image Anal,2006.10(2):p.286-303.
    132.Mitchell,S.C.,et al.,Multistage hybrid active appearance model matching:segmentation of left and right ventricles in cardiac MR images.IEEE Trans Med Imaging,2001.20(5):p.415-23.
    133.Mikkel,B.S.and P.Dorthe.Bi-temporal 3D active appearance models with applications to unsupervised ejection fraction estimation.2005:SPIE.
    134.McInerney,T.and D.Terzopoulos,Deformable models in medical image analysis:a survey.Medical Image Analysis,1996.1(2):p.91-108.
    135.Montillo,A.,D.Metaxas,and L.Axel,Automated Model-Based Segmentation of the Left and Right Ventricles in Tagged Cardiac MRI,in Medical lmage Computing and Computer-Assisted Intervention - MICCAI2003.2003.p.507-515.
    136.Kaus,M.R.,et al.,Automated segmentation of the left ventricle in cardiac MRI.Med Image Anal,2004.8(3):p.245-54.
    137.Hong,H.,S.Grosskopf,and M.-H.Kim,Ventricular shape visualization using selective volume rendering of cardiac datasets.Computers in Biology and Medicine,2001.31(6):p.481-498.
    138.Fritscher,K.D.,R.Pilgram,and R.Schubert,Automatic Cardiac 4D Segmentation Using Level Sets,in Functional lmaging and Modeling of the Heart.2005.p.113-122.
    139.Peters,J.,et al.,Automatic Whole Heart Segmentation in Static Magnetic Resonance Image Volumes,in Medical Image Computing and Computer-Assisted lntervention- MICCAI2007.2007.p.402-410.
    140.Sampson,K.J.and C.S.Henriquez,Electrotonic influences on action potential duration dispersion in small hearts:a simulation study.Am J Physiol Heart Circ Physiol,2005.289(1):p.H350-60.
    141.Trudel,M.C.,et al.,Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing.IEEE Trans Biomed Eng,2004.51(8):p.1319-29.
    142.Drouin,E.,et al.,Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart:evidence for presence ofMcells.J Am Coll Cardiol,1995.26(1):p.185-192.
    143.Silverman,M.E.,D.Grove,and C.B.Upshaw,Jr.,Why Does the Heart Beat?:The Discovery of the Electrical System of the Heart.Circulation,2006.113(23):p.2775-2781.
    144.Durrer,D.,et al.,Total excitation of the isolated human heart.Circulation,1970.41(6):p.899-912.
    145.Miller,W.T.,3rd and D.B.Geselowitz,Simulation studies of the electrocardiogram.Ⅱ.Ischemia and infarction.Circ Res,1978.43(2):p.315-23.
    146.Miller,W.T.and D.B.Geselowitz,Simulation studies of the electrocardiogram.Ⅰ.The normal heart.Circ Res,1978.43(2):p.301-15.
    147.Aoki,M.,et al.,3-dimensional computer simulation of depolarization and repolarization processes in the myocardium.Jpn Heart J,1986.27 Suppl 1:p.225-34.
    148.Wei,D.,et al.,Computer simulation of the Wolff-Parkinson-White syndrome utilizing a human heart model.Jpn Heart J,1987.28(5):p.707-18.
    149.Wei,D.,et al.,Comparative simulation of excitation and body surface electrocardiogram with isotropic andanisotropic computer heart models.IEEE Trans Biomed Eng,1995.42(4):p.343-57.
    150.Abboud,S.,O.Berenfeld,and D.Sadeh,Simulation of high-resolution QRS complex using a ventricular model with a fractal conduction system.Effects of ischemia on high-frequency QRS potentials.Circ Res,1991.68(6):p.1751-1760.
    151.Pollard,A.E.and R.C.Barr,The construction of an anatomically based model of the human ventricular conduction system.Biomedical Engineering,IEEE Transactions on,1990.37(12):p.1173-1185.
    152.Pollard,A.E.and R.C.Barr,Computer simulations of activation in an anatomically based model of the human ventricular conduction system.Biomedical Engineering,IEEE Transactions on,1991.38(10):p.982-996.
    153.Lorange,M.,et al.,A computer heart model incorporating anisotropic propagation.Ⅱ.Simulations of conduction block.J Electrocardiol,1993.26(4):p.263-77.
    154.Xu,Z.,et al.,A computer heart model incorporating anisotropic propagation.Ⅲ.Simulation of ectopic beats.J Electrocardiol,1996.29(2):p.73-90.
    155.Dube,B.,et al.,A computer heart model incorporating anisotropic propagation.Ⅳ.Simulation of regional myocardial ischemia.J Electrocardiol,1996.29(2):p.91-103.
    156.Berenfeld,O.and J.Jalife,Purkinje-Muscle Reentry as a Mechanism of Polymorphic Ventricular Arrhythmias in a 3-Dimensional Model of the Ventricles.Circ Res,1998.82(10):p.1063-1077.
    157.Siregar,P.,et al.,An interactive 3D anisotropic cellular automata model of the heart.Comput Biomed Res,1998.31(5):p.323-47.
    158.Siregar,P.,et al.,A Cellular Automata Model of the Heart and Its Coupling with a Qualitative Model.Computers and Biomedical Research,1996.29(3):p.222-246.
    159.Kim Simeliusa,Jukka Nenonena,and M.Hor(f)ekb,Modeling Cardiac Ventricular Activation.International Journal of Bioelectromagnetism,2001.3(2):p.51-58.
    160.Edward,J.V.and C.Clyde,Construction of a Computer Model to Investigate Sawtooth Effects in the Purkinje System.Biomedical Engineering,IEEE Transactions on,2007.54(3):p.389-399.
    161. 蒋明峰,正则化技术与动态心电逆问题研究,in生物医学工程.2008,浙江大学:杭州.
    162. 黄兵 and陈雷,膜片钳技术在心血管及药理学研究中的应用.中国药学杂志,2002.37(6):p.406-409.
    163.Efimov,I.R.,V.P.Nikolski,and G.Salama,Opticallmaging of the Heart.Circ Res,2004.95(1):p.21-33.
    164.Hyatt,C.J.,et al.,Optical action potential upstroke morphology reveals near-surface transmural propagation direction.Circ Res,2005.97(3):p.277-84.
    165.Takahashi,T.,et al.,Optical mapping of the functional reentrant circuit of ventricular tachycardia in acute myocardial infarction.Heart Rhythm,2004.1(4):p.451-9.
    166. 张丙芳 and臧益民,体表电位标测.心功能杂志,1998.10(1):p.35-39.
    167. 侯月梅,临床心脏电生理标测技术及应用现状.中国心脏起搏与心电生理杂志,2004.18(1):p.1-8.
    168.Gepstein,L.,G.Hayam,and S.A.Ben-Haim,A novel method for nonfluoroscopic catheter-based  electroanatomical mapping of the heart.In vitro and in vivo accuracy results.Circulation,1997.95(6):p.  1611-22.
    169.Smeets,J.L.,et al.,New method for nonfluoroscopic endocardial mapping in humans:accuracy  assessment and first clinical results.Circulation,1998.97(24):p.2426-32.
    170.Schilling,R.J.,N.S.Peters,and D.W.Davies,Simultaneous endocardial mapping in the human left  ventricle using a noncontact catheter.:comparison of contact and reconstructed electrograms during sinus  rhythm.Circulation,1998.98(9):p.887-98.
    171.Strickberger,S.A.,et al.,Mapping and ablation of ventricular tachycardia guided by virtual electrograms  using a noncontact,computerized mapping system.JArn Coll Cardiol,2000.35(2):p.414-21.
    172.DSA.
    173.Burashnikov,A.,S.Mannava,and C.Antzelevitch,Transmembrane action potential heterogeneity in the  canine isolated arterially perfused right atrium:effect of IKr and IKur/Ito block.Am J Physiol Heart Circ  Physiol,2004.286(6):p.H2393-400.
    174.FitzHugh,R.,Impulses and Physiological States in Theoretical Models of Nerve Membrane.1961.1(6):p.  445-466.
    175.van Capelle,F.J.and D.Durrer,Computer simulation of arrhythmias in a network of coupled excitable  elements.Circ Res,1980.47(3):p.454-66.
    176.Hille,B.,Ionic channels of excitable membranes.2 ed.1992,Sunderland,Massachusetts:Sinauer  Associates.
    177.DeFelice,L.D.,Electrical properties of the cells.Patch clamp for biologists,.1997:Plenum Publishing  Corporation.
    178.Noble,D.,A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and  pace-makerpotentials.J Physiol,1962.160:p.317-52.
    179.McAllister,R.E.,D.Noble,and R.Tsien,W.,Reconstruction of the electrical activitity of cardiac purkinje  fibres.J.Physiol,1975.251:p.1-59.
    180.Drouhard,J.P.and F.A.Roberge,Revised formulation of the Hodgkin-Huxley representation of the sodium  current in cardiac cells.Comput Biomed Res,1987.20(4):p.333-50.
    181.Hilgemann,D.W.and D.Noble,Excitation-contraction coupling and extracellular calcium transients in  rabbit atrium:reconstruction of basic cellular mechanisms.Proc R Soc Lond B Biol Sci,1987.230(1259):  p.163-205.
    182.Yanagihara,K.,A.Noma,and H.Irisawa,Reconstruction ofsino-atrial node pacemaker potential based  on the voltage clamp experiments.Jpn J Physiol,1980.30(6):p.841-57.
    183.Irisawa,H.and A.Noma,Pacemaker mechanisms of rabbit sinoatrial node cells.Cardiac rate and rhythm:  physiological,1982:p.35-51.
    184.Bristow,D.G.and J.W.Clark,Jr.,A mathematical model of primary pacemaker cell in sa node of the heart.  Am J Physiol,1982.243(2):p.207-218.
    185.Noble,D.and S.J.Noble,A model of sino-atrial node electrical activity based on a modification of the  DiFrancesco-Noble (1984) equations.Proc R Soc Lond B Biol Sci,1984.222(1228):p.295-304.
    186.Noble,D.,A modification of the Hodgkin-Huxley equation applicable to Purkinje fibre action and  pacemaker potentials.J.Physiol,1962.160:p.317-352.
    187.Earm,Y.E.and D.Noble,A model of the single atrial cell:relation between calcium current and calcium  release.Proc R Soc Lond B Biol Sci,1990.240(1297):p.83-96.
    188.Luo,C.H.and Y.Rudy,A dynamic model of the cardiac ventricular action potential.Ⅰ.Simulations of  ionic currents and concentration changes.Circ Res,1994.74(6):p.1071-96.
    189.Luo,C.H.and Y.Rudy,A dynamic model of the cardiac ventricular action potential Ⅱ.  Afterdepolarizations,triggered activity,and potentiation.Circ Res,1994.74(6):p.1097-113.
    190.Demir,S.S.,et al.,A mathematical model of a rabbit sinoatrial node cell.Am J Physiol,1994.266(3 Pt 1):  p.C832-52.
    191.Dokos,S.,B.G.Celler,and N.H.Lovell,Vagal control of sinoatrial rhythm:a mathematical model J  Theor Biol,1996.182(1):p.21-44.
    192.Demir,S.S.,et al.,Action potential variation in canine ventricle:A modeling study.Computers in  Cardiology,1996.23:p.221-224.
    193.Lindblad,D.S.,et al.,A model of the action potential and underlying membrane currents in a rabbit atrial  cell.Am J Physiol,1996.271(4 Pt 2):p.H1666-96.
    194.Courtemanche,M.,R.J.Ramirez,and S.Nattel,Ionic mechanisms underlying human atrial action potentialproperties.:insights from a mathematical model Am J Physiol,1998.275(1 Pt 2):p.H301-21.
    195.Jafri,M.S.,J.J.Rice,and R.L.Winslow,Cardiac Ca2+ dynamics:the roles of ryanodine receptor adaptation andsarcoplasmic reticulum load Biophys J,1998.74(3):p.1149-68.
    196.Noble,D.,et al.,Improved guinea-pig ventricular cell model incorporating a diadic space,IKr and lKs,and length- and tension-dependentprocesses.Can J Cardiol,1998.14(1):p.123-34.
    197.Priebe,L.and D.J.Beuckelmann,Simulation study of cellular electric properties in heart failure.Circ Res,1998.82(11):p.1206-23.
    198.Winslow,R.L.,et al.,Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure,Ⅱ:model studies.Circ Res,1999.84(5):p.571-86.
    199.Ramirez,R.J.,S.Nattel,and M.Courtemanche,Mathematical analysis of canine atrial action potentials:rate,regional factors,and electrical remodeling.Am J Physiol Heart Circ Physiol,2000.279(4):p.H1767-85.
    200.Zhang,H.,et al.,Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node.Am J Physiol Heart Circ Physiol,2000.279(1):p.H397-421.
    201.Bernus,O.,et al.,A computationally efficient electrophysiological model of human ventricular cells.Am J Physiol Heart Circ Physiol,2002.282(6):p.H2296-308.
    202.Sachse,F.B.,et al.,Quantitative reconstruction of cardiac electromechanics in human myocardium:assembly of electrophysiologic and tension generation models.J Cardiovasc Electrophysiol,2003.14(10 Suppl):p.S210-8.
    203.ten Tusscher,K.H.,et al.,A model for human ventricular tissue.Am J Physiol Heart Circ Physiol,2004.286(4):p.H1573-89.
    204.Krogh-Madsen,T.,et al.,An ionic model for rhythmic activity in small clusters of embryonic chick ventricular cells.Am J Physiol Heart Circ Physiol,2005.289(1):p.H398-413.
    205.Kneller,J.,et al.,Time-dependent transients in an ionically based mathematical model of the canine atrial action potential.Am J Physiol Heart Circ Physiol,2002.282(4):p.H1437-51.
    206.Endresen,L.P.,et al.,A theory for the membrane potential of living cells.Eur Biophys J,2000.29(2):p.90-103.
    207.Potse,M.,et al.,A comparison of monodomain and bidomain reaction-diffusion models for action potentialpropagation in the human heart.IEEE Trans Biomed Eng,2006.53(12 Pt 1):p.2425-35.
    208.Ten Tusscher,K.H.,et al.,Comparison of electrophysiological models for human ventricular cells and tissues.Prog Biophys Mol Biol,2006.90(1-3):p.326-45.
    209.Shannon,T.R.,et al.,A Mathematical Treatment of Integrated Ca Dynamics within the Ventricular Myocyte.Biophys.J.,2004.87(5):p.3351-3371.
    210.Mazhari,R.,et al.,Molecular Interactions Between Two Long-QT Syndrome Gene Products,HERG and KCNE2,Rationalized by In Vitro and ln Silico Analysis.Circ Res,2001.89(1):p.33-38.
    211.Zaniboni,M.,et al.,Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling.Am J Physiol Heart Circ Physiol,2000.278(3):p.H677-87.
    212.Wilders,R.and H.J.Jongsma,Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node.Biophys J,1993.65(6):p.2601-13.
    213.Guevara,M.R.and T.J.Lewis,A minimal single-channel model for the regularity of beating in the sinoatrial node.Chaos,1995.5(1):p.174-183.
    214.Greenstein,J.L.and R.L.Winslow,An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.Biophys J,2002.83(6):p.2918-45.
    215.Cha,T.J.,et al.,Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure.Circulation,2004.110(12):p.1520-6.
    216.Li,D.,et al.,Potential Ionic Mechanism for Repolarization Differences Between Canine Right and Left Atrium.Circ Res,2001.88(11):p.1168-1175.
    217.Li,D.,et al.,Effects of experimental heart failure on atrial cellular and ionic electrophysiology.Circulation,2000.101(22):p.2631-8.
    218.Ehrlich,J.R.,et al.,Cellular electrophysiology of canine pulmonary vein cardiomyocytes:action potential andionic current properties.J Physiol,2003.551(Pt 3):p.801-13.
    219.Yue,L.,et al.,Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation.Circ Res,1997.81(4):p.512-25.
    220.Mangoni,M.E.,et al.,Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alphalG T-type calcium channels.Circ Res,2006.98(11):p.1422-30.
    221.Lovell,N.H.,et al.,A gradient model of cardiac pacemaker myocytes.Prog Biophys Mol Biol,2004.85(2-3):p.301-23.
    222.Reiner,V.S.and C.Antzelevitch,Phase resetting and annihilation in a mathematical model of sinus node.Am J Physiol,1985.249(6 Pt 2):p.H1143-53.
    223.Irisawa,H.,H.F.Brown,and W.Giles,Cardiacpacemaking in the sinoatrial node.Physiol Rev,1993.73(1):p.197-227.
    224.Wilders,R.,H.J.Jongsma,and A.C.van Ginneken,Pacemaker activity of the rabbit sinoatrial node.A comparison of mathematical models.Biophys J,1991.60(5):p.1202-16.
    225.Noble,D.,D.DiFrancesco,and J.Denyer,Ionic mechanisms in normal and abnormal cardiac pacemaker activity.Neuronal and Cellular Oscillators,1989.
    226.Demir,S.S.,J.W.Clark,and W.R.Giles,Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart:a unifying model.Am J Physiol,1999.276(6 Pt 2):p.H2221-44.
    227.Boyett,M.R.,et al.,Control of the pacemaker activity of the sinoatrial node by intracellular Ca~(2+).Experiments and modelling.philos Trans R Soc Lond A,2001.359:p.1091-1110.
    228.Zhang,H.,et al.,Analysis of the chronotropic effect of acetylcholine on sinoatrial node cells.J Cardiovasc Electrophysiol,2002.13(5):p.465-74.
    229.Kurata,Y.,et al.,Dynamical description of sinoatrial node pacemaking:improved mathematical model for primary pacemaker cell.Am J Physiol Heart Circ Physiol,2002.283(5):p.H2074-101.
    230.Sarai,N.,et al.,Role of individual ionic current systems in the SA node hypothesized by a model study.Jpn J Physiol,2003.53(2):p.125-34.
    231.Boyett,M.R.,H.Honjo,and I.Kodama,The sinoatrial node,a heterogeneous pacemaker structure.Cardiovasc Res,2000.47(4):p.658-87.
    232.Matsuoka,S.,et al.,Role of individual ionic current systems in ventricular cells hypothesized by a model study.Jpn J Physiol,2003.53(2):p.105-23.
    233.Garny,A.,et al.,Comparative study of rabbit sino-atrial node cell models.Chaos,Solitons & Fractals,2002.13(8):p.1623-1630.
    234.Shinagawa,Y.,H.Satoh,and A.Noma,The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node.J Physiol,2000.523 Pt 3:p.593-605.
    235.Zobel,C.,et al.,Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes:evidence for heteromeric co-assembly of Kir2.1 and Kir2.2.J Physiol,2003.550(2):p.365-372.
    236.Feng,J.,et al.,Ionic mechanisms of regional action potential heterogeneity in the canine right atrium.Circ Res,1998.83(5):p.541-51.
    237.Wang,Z.,et al.,Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes.Circ Res,1999.84(5):p.551-61.
    238.Dun,W.,et al.,Calcium and potassium currents in cells from adult and aged canine right atria.Cardiovasc Res,2003.58(3):p.526-34.
    239.Wang,Z.,B.Fermini,and S.Nattel,Sustained depolarization-induced outward current in human atrial myocytes.Evidence for a novel delayed rectifier K+ current similar to Kvl.5 cloned channel currents.Circ Res,1993.73(6):p.1061-1076.
    240.ten Tusscher,K.H.and A.V.Panfilov,Alternans and spiral breakup in a human ventricular tissue model.Am J Physiol Heart Circ Physiol,2006.291(3):p.H1088-100.
    241.Ling Xia,et al.,Simulation of the Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches.PHYSIOLOGICAL MEASUREMENT,2006.27 p.1125-1142.
    242.Brown,P.,G.Byrne,and A.Hindmarsh,VODE:A variable-coefficient ODE solver.SIAM J.Sci.Comput.,1989.10:p.1038-1051.
    243.Mickens,R.E.and A.Smith,Finite difference models of ordinary differential equations:influence of denominator functions.Journal of the Franklin Institute,1990.327:p.143-145.
    244.Lloyd,C.M.,M.D.Halstead,and P.F.Nielsen,CellML:its future,present and past.Prog Biophys Mol Biol,2004.85(2-3):p.433-50.
    245.Fenton,F.H.,et al.,Real-time computer simulations of excitable media:JAVA as a scientific language and as a wrapper for C and FORTRAN programs.Biosystems,2002.64(1-3):p.73-96.
    246.Demir,S.S.,Interactive cell modeling web-resource,iCell,as a simulation-based teaching and learning tool to supplement electrophysiology education.Ann Biomed Eng,2006.34(7):p.1077-87.
    247.Sarai,N.,S.Matsuoka,and A.Noma,simBio:a Java package for the development of detailed cell models.Prog Biophys Mol Biol,2006.90(1-3):p.360-77.
    248.Puglisi,J.L.and D.M.Bers,LabHEART.:an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport.Am J Physiol Cell Physiol,2001.281(6):p.C2049-60.
    249.Chevalier,P.and P.Touboul,[Idiopathic ventricularfibrillation].Arch Mal Coeur Vaiss,1999.92 Spee No 1:p.29-36.
    250.Chen,Y.H.,et al.,KCNQ1 gain-of-function mutation in familial atrial fibrillation.Science,2003.299(5604):p.251-4.
    251.Bellocq,C.,et al.,Mutation in the KCNQ1 Gene Leading to the Short QT-Interval Syndrome.Circulation,2004.109(20):p.2394-2397.
    252.Brugada,R.,et al.,Sudden Death Associated With Short-QT Syndrome Linked to Mutations in HERG.Circulation,2004.109(1):p.30-35.
    253.Hong,K.,et al.,De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero.Cardiovasc Res,2005.68(3):p.433-40.
    254.Priori,S.G.,et al.,A Novel Form of Short QT Syndrome (SQT3) Is Caused by a Mutation in the KCNJ2 Gene.Circ Res,2005.96(7):p.800-807.
    255.Bjerregaard,P.and I.Gussak,Short QT syndrome:mechanisms,diagnosis and treatment.Nat Clin Pract Cardiovasc Med,2005.2(2):p.84-7.
    256.Schimpf,R.,et al.,Short QTsyndrome.Cardiovasc Res,2005.67(3):p.357-66.
    257.Brugada,R.,et al.,Short QTsyndrome.CMAJ,2005.173(11):p.1349-1354.
    258.Wolpert,C.,et al.,Clinical characteristics and treatment of short QT syndrome.Expert Rev Cardiovasc Ther,2005.3(4):p.611-7.
    259.Xia,L.,et al.,Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches.Physiological Measurement,2006.27:p.1125-1142
    260.Cordeiro,J.M.,et al.,Modulation of l(Kr) inactivation by mutation N588K in KCNH2:a link to arrhythmogenesis in short QTsyndrome.Cardiovasc Res,2005.67(3):p.498-509.
    261.Brugada,P.and J.Brugada,Right bundle branch block,persistent ST segment elevation and sudden cardiac death:a distinct clinical and electrocardiographic syndrome.A multicenter report.J Am Coll Cardiol,1992.20(6):p.1391-6.
    262.Benito,B.,et al.,Brugada syndrome.Prog Cardiovasc Dis,2008.51(1):p.1-22.263.Antzelevitch,C.,et al.,Brugada syndrome:from cell to bedside.Curr Probl Cardiol,2005.30(1):p.9-54.
    264.Wilde,A.A.,et al.,Proposed diagnostic criteria for the Brugada syndrome.Eur Heart J,2002.23(21):p.1648-54.
    265.Dumaine,R.,et al.,Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent.Circ Res,1999.85(9):p.803-9.
    266.Miyoshi,S.,et al.,A mathematical model of phase 2 reentry:role of L-type Ca current.Am J Physiol Heart Circ Physiol,2003.284(4):p.H1285-1294.
    267.Fenton,F.H.,et al.,Modeling wave propagation in realistic heart geometries using the phase-field method Chaos,2005.15(1):p.13502.
    268.McCulloch,A.,et al.,Large-scale finite element analysis of the beating heart.Crit Rev Biomed Eng,1992.20(5-6):p.427-49.
    269.Lesh,M.D.,M.Pring,and J.F.Spear,Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium.A computer modeling study.Circ Res,1989.65(5):p.1426-40.
    270.Plonsey,R.and R.C.Barr,Mathematical modeling of electrical activity of the heart.J Electrocardiol,1987.20(3):p.219-26.
    271.Tung,L.,A bi-domain model for describing cardiac ischemic potentials.,in Dept.Electrical and Computer Engineering.1978,M.I.T.,Cambridge,:MA,.
    272.Henriquez,C.S.,A.L.Muzikant,and C.K.Smoak,Anisotropy,fiber curvature,and bath loading effects on activation in thin and thick cardiac tissue preparations:simulations in a three-dimensional bidomain model.J Cardiovasc Electrophysiol,1996.7(5):p.424-44.
    273.Saleheen,H.I.,P.D.Claessen,and K.T.Ng,Three-dimensional finite-difference bidomain modeling of homogeneous cardiac tissue on a data-parallel computer.IEEE Trans Biomed Eng,1997.44(2):p.200-4.
    274.Vigrnond,E.J.,et al.,Solvers for the cardiac bidomain equations.Prog Biophys Mol Biol,2008.96(1-3):p.3-18.
    275.Spach,M.S.,The discontinuous nature of electrical propagation in cardiac muscle.Consideration of a quantitative model incorporating the membrane ionic properties and structural complexities.The ALZA distinguished lecture.Ann Biomed Eng,1983.11(3-4):p.209-61.
    276.de Bakker,J.M.and H.M.van Rijen,Continuous and discontinuous propagation in heart muscle.J Cardiovasc Electrophysiol,2006.17(5):p.567-73.
    277.Saxberg,B.E.and R.J.Cohen,Cellular automata models for reentrant arrhythmias.J Electrocardiol,1990.23 Suppl:p.95.
    278.Wach,P.,et al.,A computer model of human ventricular myocardium for simulation of ECG,MCG,and activation sequence including reentry rhythms.Basic Res Cardiol,1989.84(4):p.404-13.
    279.Killmann,R.,P.Wach,and F.Dienstl,Three-dimensional computer model of the entire human heart for simulation of reentry and tachycardia:gap phenomenon and Wolff-Parkinson-White syndrome.Basic Res Cardiol,1991.86(5):p.485-501.
    280.Rogers,J.M.,Modeling the cardiac action potential using B-spline surfaces.Biomedical Engineering,IEEE Transactions on,2000.47(6):p.784-791.
    281.Rogers,J.M.and A.D.McCulloch,A collocation-Galerkin finite element model of cardiac action potential propagation.Biomedical Engineering,IEEE Transactions on,1994.41(8):p.743-757.
    282.Henriquez,C.S.and R.Plonsey.A biodomain model for simulating propagation in multicellular cardiac tissue.in Engineering in Medicine and Biology Society,1989.lmages of the Twenty-First Century.,Proceedings of the Annual International Conference of the IEEE Engineering in.1989.
    283.Nestor G.Sepulveda,J.P.W.,Jr.,Bipolar Stimulation of Cardiac Tissue Using an Anisotropic Bidomain Model Journal of Cardiovascular Electrophysiology,1994.5(3):p.258-267.
    284.Schmitt,O.H.,Biological information processing using the concept of interpenetrating domains.In:Information Processing in the Nervous System,K.N.Leibovic,ed.,1969:p.325-331.
    285.Kim,J.and S.Y.Cho,Computation accuracy and efficiency of the time-splitting method in solving atmospheric transport/chemistry equations.Atmospheric Environment,1997.31(15):p.2215-2224.
    286.Verwer,J.G.,et al.,A comparison of stiff ODE solvers for atmospheric chemistry problems.Atmospheric Environment,1996.30(1):p.49-58.
    287.Lanser,D.and J.G.Verwer,Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling.J.Comput.Appl.Math.,1999.111(1-2):p.201-216.
    288.Qu,Z.and A.Garfinkel,An advanced algorithm for solving partial differential equation in cardiac conduction.IEEE Trans Biomed Eng,1999.46(9):p.1166-8.
    289.Knio,O.M.,H.N.Najm,and P.S.Wyckoff,A semi-implicit numerical scheme for reacting flow.Ⅱ.Stiff,operator-split formulation.Journal:Journal of Computational Physics;Journal Volume:154;Journal Issue:2;Other Information:PBD:20 Sep 1999,1999:p.Size:page 428-467.
    290.Najim,H.N.,P.S.Wyckoff,and O.M.Knio,A semi-implicit numerical scheme for reacting flow.1:Stiff chemistry.Journal of Computational Physics ;VOL.143 ;ISSUE:2 ;PBD:1 Jul 1998,1998:p.pp.381-402 ;PL:.
    291.Kleber,A.G.and Y.Rudy,Basic mechanisms of cardiac impulse propagation and associated arrhythmias.Physiol Rev,2004.84(2):p.431-88.
    292.Tranquillo,J.V.,J.Hlavacek,and C.S.Henriquez,An integrative model of mouse cardiac electrophysiologyfrom cell to torso.Europace,2005.7 Suppl 2:p.56-70.
    293.Qu,Z.,et al.,Effects of Na(+) channel and cell coupling abnormalities on vulnerability to reentry:a simulation study.Am J Physiol Heart Circ Physiol,2004.286(4):p.H1310-21.
    294.Costa,K.D.,et al.,Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium.Am J Physiol,1999.276(2 Pt 2):p.H595-607.
    295.Roth,B.J.,Electrical conductivity values used with the bidomain model of cardiac tissue.Biomedical Engineering,IEEE Transactions on,1997.44(4):p.326-328.
    296.Hansson,A.,et al.,Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery.Eur Heart J,1998.19(2):p.293-300.
    297.Cox,J.L.,R.B.Schuessler,and J.P.Boineau,The surgical treatment of atrial fibrillation.I.Summary of the current concepts of the mechanisms of atrial flutter and atrial fibrillation.J Thorac Cardiovasc Surg,1991.101(3):p.402-5.
    298.Spach,M.S.,P.C.Dolber,and J.F.Heidlage,Interaction of inhomogeneities of repolarization with anisotropic propagation in dog atria:a mechanism for both preventing and initiating reentry.Circ Res,1989.65:p.1612-1631.
    299.Lemery,R.,et al.,Human study of biatrial electrical coupling:determinants of endocardial septal activation and conduction over interatrial connections.Circulation,2004.110(15):p.2083-9.
    300.Witkowski,F.X.,et al.,Spatiotemporal evolution of ventricular fibrillation.Nature,1998.392(6671):p.78-82.
    301.Winfree,A.T.,Electrical instability in cardiac muscle:phase singularities and rotors.J Theor Biol,1989.138(3):p.353-405.
    302.Zykov,V.S.and A.T.Winfree,Simulation of Wave Processes in Excitable Media.1992:John Wiley \&Sons,Inc.270.
    303.Obel,O.A.and A.J.Camm,Supraventricular tachycardia.ECG diagnosis and anatomy.Eur Heart J,1997.18 Suppl C:p.C2-11.
    304.Allessie,M.A.,F.I.Bonke,and F.J.Schopman,Circus movement in rabbit atrial muscle as a mechanism oftrachycardia.Circ Res,1973.33(1):p.54-62.
    305.Davidenko,J.M.,et al.,Sustained vortex-like waves in normal isolated ventricular muscle.Proc Natl Acad Sci U S A,1990.87(22):p.8785-9.
    306.Davidenko,J.M.,et al.,Stationary and drifting spiral waves of excitation in isolated cardiac muscle.Nature,1992.355(6358):p.349-51.
    307.Pertsov,A.M.,et al.,Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle.Circ Res,1993.72(3):p.631-50.
    308.Moe,G.K.,W.C.Rheinboldt,and J.A.Abildskov,A Computer Model of Atrial Fibrillation.Am Heart J,1964.67:p.200-20.
    309.Rogers,J.M.,et al.,Incidence,evolution,and spatial distribution of functional reentry during ventricular fibrillation inpigs.Circ Res,1999.84(8):p.945-54.
    310.Weiss,J.N.,et al.,Electrical restitution and cardiac fibrillation.J Cardiovasc Electrophysiol,2002.13(3):p.292-5.
    311.Choi,B.R.,et al.,Life span of ventricular fibrillation frequencies.Circ Res,2002.91(4):p.339-45.
    312.Jalife,J.,et al.,Self-organization and the dynamical nature of ventricular fibrillation.Chaos,1998.8(1):p.79-93.
    313.Jalife,J.,Ventricularfibrillation:mechanisms of initiation and maintenance.Annu Rev Physiol,2000.62:p.25-50.
    314.Ten Tusscher,K.H.,Spiral wave dynamics and ventricular arrhythmias.2004,Utrecht university.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700