用户名: 密码: 验证码:
FDTD算法的网络并行研究及其电磁应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种强有力的数值计算技术,时域有限差分法(FDTD)被广泛应用于光子晶体仿真、生物电磁剂量计算等各类电磁研究领域。但由于FDTD的离散必须满足Courant稳定条件和一定的精度保证,这使得FDTD法在解决电大尺寸复杂结构问题时需划分数量庞大的网格,带来计算耗时过长和计算机内存不足的难题。
     随着个人计算机性能的不断提高和网络技术的飞速发展,FDTD结合网络并行技术,可将大规模计算划分成小块任务分配给各台计算机分别处理,既解决了大内存的需求又缩短了计算时间,从而为运用FDTD方法进行电大尺寸复杂电磁问题的模拟提供了一条有效的途径。FDTD网络并行计算现已成为电磁场数值模拟的一个研究热点,但现阶段已有的网络并行FDTD算法,往往随着计算节点的增多,各项性能指标(如并行效率、计算稳定性等)下降明显,这严重制约了并行FDTD算法的实际应用。
     与传统的网络集群相比,现代局域网系统具有一系列新的软硬件特性,主要表现为:1)硬件支持多任务的超线程、多核处理器(CPU)的迅速普及;2)可编程图形处理器(GPU)的广泛应用;3)局域网操作系统的互操作协议进一步完善。
     本论文研究了如何将这些新的软硬件特性融入FDTD算法,有针对性的改进并行FDTD算法的设计与实现,以提高网络并行运算的各项性能,降低网络并行FDTD算法实现的复杂度,从而促进并行技术在电磁数值计算中的应用。
     本文的主要工作如下:
     (1)引入局域网两层并行能力的概念,首次在普通局域网上利用数据一任务两级混合并行技术实现网络并行FDTD计算。数值实验表明,两级并行化策略不仅能够大幅提高FDTD算法的并行可扩展性与并行效率,使得网络并行计算能够很好地适用于细粒度的域分解FDTD算法,而且可以降低域分解拓扑结构对并行性能的影响。
     (2)研究了并行FDTD计算中的子域插值技术以及基于超吸收边界原理的插值误差修正算法,这样域分解后的子域可以根据求解问题的几何特征,在局部坐标系中实施独立的网格划分,相邻子域间的场值交换通过插值方法实现,由此可以极大地提高并行FDTD建模的便利性与灵活性。数值结果表明,使用并行插值技术能够保证FDTD迭代的精确性与稳定性。
     (3)提出了FDTD计算的时间与空间容错概念,并基于内存映射文件原理,创新性的研究了网络并行FDTD系统的简化与扩展技术。作为算法应用,模拟研究了两种光子晶体波导结构:对于耦合型光子晶体波导,计算了耦合区域内介质柱的半径比变化与波导耦合长度的关系;对于直角弯曲结构光子晶体波导,研究了其传输效率特点。数值实验表明,利用本文提出的这种新方法能够有效降低并行FDTD算法设计的复杂度,增加其与常用计算软件的协同工作能力,从而进一步提高FDTD系统的计算效率。
     (4)首次利用GPU—CPU协同计算实现了交变方向隐式时域有限差分法(ADI-FDTD)的模拟,给出了GPU通用数值计算的一种方案框架,并对协同计算中的一些细节问题,如GPU线性方程组求解进行了详细分析,性能测试结果表明,协同算法的性能在同等条件下相对于普通CPU-ADI-FDTD算法有明显提高。
     (5)利用插值并行FDTD技术对不同的人体姿势建模,在此基础上,研究了在“标准站立”与“举起手臂”两种不同的姿势下,手机射频辐射对人体头部电磁能量分布的影响。数值结果表明,头部重要器官大脑的比吸收率(SAR)值对姿势的改变非常敏感,与“标准站立”相比,“举起手臂”时大脑SAR值有明显的上升。
As a powerful numerical technique, The FDTD (Finite Difference Time Domain)method has been widely applied to various electromagnetic problems, such as thesimulation of photonic crystals, the calculation of bioelectromagnetic dosimetry, and soon. However, in order to meet the requirement of precision and Courant stabilitycondition, the FDTD method have to generate enormous grids when simulating theelectrically-large-size or complex objects. Hence two problems have to be confronted:huge memory consumption and long execution time.
     With the rapid development of the personal computer and the network technique,the FDTD method combined with the parallel technique divides the wholecomputational space into some subspaces and assigns every subspace to one node in aparallel system. Thus, the requirements of the huge memory and CPU time can besharply decreased, which provides a feasible approach for simulating theelectrically-large-size or complex objects. The research for the parallel FDTDcomputing based on network has become a hotspot in numerical applications forelectromagnetic field now, nevertheless, for the existing parallel FDTD algorithm, theperformance indexes, such as parallel efficiency and computation stability, will dropobviously with the quantity of computers increasing. This constrains heavily thepractical application of the parallel FDTD algorithm.
     As compared to the traditional cluster, the modern LAN (local area network)possesses a series of new hardware and software features, which are as follows:
     1) The CPUs with hyper-threading or multi-core technology have becomewidespread, which can give directly support to multiple tasks from the hardware.
     2) The programmable GPU (Graphics Processing Unit) is widely adopted.
     3) The interoperability protocol for the LAN operating system is more perfect.
     To improve the parallel performance, and reduce the complexity of implementationfor parallel FDTD algorithm, this dissertation studies how to apply the new softwareand hardware characteristic in FDTD algorithm, and improve the design andimplementation for parallel FDTD algorithm, so as to promote the application of the parallel technique in the electromagnetic computation.
     The major achievements of this dissertation are as follows:
     (1) The concept of "two level parallelization on PC cluster" is presented. Byusing two-level parallelization of the data and tasks, a high performance MPI-OpenMPhybrid FDTD algorithm is developed on PC cluster for the first time. The numericalresults show the strategy of two level parallelization can improve substantially thescalability and efficiency of parallel FDTD algorithm, which is well suited for the finegrained parallel FDTD computing on PC cluster, and moreover, it can also lessen theinfluence of the subspaces virtual topology on the parallel FDTD performance.
     (2) A universal and efficient interpolation technique based on the superabsorbingboundary principle is studied, which can improve the interpolation accuracybetween subdomains and ensure the stability of the parallel FDTD iterative procedure.Thus, the computational space is divided mostly according to the features of the originalproblem, and the meshes are created in local coordinates. During the iteration process ofparallel FDTD, the data are exchanged between adjacent subdomains with theinterpolation technique, which can largely enhance the convenience and flexibility ofthe parallel FDTD for building the model.
     (3) The concepts of time and space fault-tolerance are presented, and by usingthe principle of the memory-mapped file, the simplifying and extending technique basedon the LAN characteristic is studied for the parallel FDTD system. Besides, severalstructures of the photonic crystal waveguides are investigated in virtue of this approach.For the electromagnetic coupling effect of photonic crystal waveguide, the relationshipbetween the different radius ratio of dielectric cylinders and the coupling length of thewaveguide is discussed. For the photonic crystal 90°waveguide bend, the characteristicof transmission efficiency is calculated. The numerical experiments confirm the fact thatthe approach proposed can reduce availably the complexity of the algorithm design forparallel FDTD system, and enhance the capacity of cooperating well with the commoncomputing software, which further improves the efficiency of the FDTD computing.
     (4) For the first time, the collaborative computation of the GPU and CPU isachieved for the Alternative Direction Implicit Finite Difference Time Domain(ADI-FDTD) algorithm. An implementation frame for the general purpose computationon GPU is given, and a detail analysis for solving linear equations system on GPU is presented. The performance test results show that the collaborative algorithm is moreefficient as compared to the general CPU-ADI-FDTD algorithm under the sameconditions.
     (5) Using the interpolation technique, the human models in the different postureare built for the parallel FDTD computation. The SAR (Specific Absorption Rate)values in the head are calculated, and the effect of human-body posture on the SAR isanalyzed for two different postures: the standard standing and arms stretching up, whenthe human body is exposed to the electromagnetic radiation from a mobile phone. Theresults show that the SAR values in the brain, as a critical organ in the head, aresensitive to the change of the body posture, and increase obviously in arms up postureas compared with those in standard standing posture.
引文
[1] Shlager K L and Schneider J B. A Selective Survey of the Finite-Difference Time-Domain Literature. IEEE Antennas and Propagation Magazine, 1995, 37(4): 39-56
    [2] 周晓明,赖声礼.手机与人体系统近场的研究综述.安全与电磁兼容,2002,55(6):43-48
    [3] 薛正辉,杨仕明,高本庆,等.FDTD算法的网络并行运算实现.电子学报,2003,31(12):1839-1843
    [4] Guiffaut C and Mahdjoubi K. A parallel FDTD algorithm using the MPI library. IEEE Antennas and Propagation Magazine, 2001, 43(2): 94-103
    [5] 高本庆,刘波.电磁场时域数值技术新进展.北京理工大学学报,2002,22(4):401-406
    [6] Yee K S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media. IEEE Trans. Antennas Propagation, 1966, 17(5): 302-307
    [7] Keshvari J and Lang S. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz. Physics in Medicine and Biology, 2005, 50: 4355-4369
    [8] Gianluca Lazzi and Om P Gandhi. On Modeling and Personal Dosimetry of Cellular Telephone Helical Antennas with the FDTD Code. IEEE Trans. Antennas Propagation, 1998, 46(4): 525-530
    [9] 闫敦豹,袁乃昌,付云起,等.基于FDTD的1-D和2-DPGB结构的研究.红外与毫米波学报,2002,21(4):281-284
    [10] Ian Rumsey, Melinda Piket-May, and P. Keith Kelly. Photonic Bandgap Structures Used as Filters in Microstrip Circuits. IEEE Microwave and Guided Wave Letters, 1998, 8(10): 336-338
    [11] 吴锋涛,尹家贤,袁乃昌.FDTD中近远场变换计算天线方向图的新方法.微波学报,2005,21(2):1-3
    [12] Dmitry Labukhin, Xun Li. Three-Dimensional Finite-Difference Time-Domain Simulation of Facet Reflection Through Parallel Computing. Journal of Computational Electronics, 2005, 4:15-19
    [13] Barlow R H. A parallel organisation of the bisection algorithm. Computer Journal, 1979, 22(3): 267-269
    [14] 张林波,迟学斌,莫则尧,等.并行计算导论.北京:清华大学出版社,2006,9-19
    [15] 李国杰.高速科学计算与大规模并行机.计算物理,1992,41(9):346-350
    [16] 陈星,黄卡玛.构建基于Windows和MPI的Beowulf并行计算系统.计算机工程与应用,2003, 39(4): 59-61
    [17] Michael J Quinn. Parallel Programming in C with MPI and OpenMP. Beijing: Tsinghua University Press, 2005, 3-8
    [18] 王鼎兴,郑纬民,沈美明.并行机群的若干关键技术.清华大学学报(自然科学版),1998,38(S1):15-22
    [19] Wenhua Yu, Yongjun Liu, Tao Su, et al. A Robust Parallel Conformal Finite-Difference Time-Domain Processing Package Using the MPI Library. IEEE Antennas and Propagation Magazine, 2005, 47(3): 39-59
    [20] Schiavone Guy A, Codreanu Iulian, Palaniappan Ravishankar, et al. FDTD Speedups Obtained in Distributed Computing on a Linux Workstation Cluster. IEEE Antennas and Propagation Society International Symposium, Salt Lake, UT, USA, 2000, Vol.3: 1336-1339
    [21] Varadarajan V and Mittra R. Finite-Difference Time-Domain (FDTD), Analysis Using Distributed Computing. IEEE Microwave and Guided Wave letters, 1994, 4(5): 144-145
    [22] Gedney S. Finite Difference Time Domain Analysis of Microwave Circuit Devices in High Performance Vector/Parallel Computers. IEEE Trans. on Microwave Theory and Techniques, 1995, 43(10): 2510-2514
    [23] Chew K and Fusco V. A parallel Implementation of the Finite Difference Time Domain Algorithm. International journal of Numerical Modeling Electronic Networks, Devices and Fields, 1995, 8(2): 293-299
    [24] 文舸一.计算电磁学的进展与展望.电子学报,1995,23(10):62-69
    [25] 郑奎松,葛德彪,葛宁.三维电磁散射的网络并行FDTD计算和加速比分析.电波科学学报,2004,19(6):767-771
    [26] 杨利霞,葛德彪,郑奎松.电各向异性介质FDTD并行算法的研究.电波科学学报,2006,21(1):43-48
    [27] Zhang Y, Ding W, Liang C H. Study on the optimum virtual topology for MPI based parallel conformal FDTD algorthm on PC clusters. Journal of Electromagnetic Waves and Applications, 2005, 19(13): 1817-1831
    [28] 冯峰,逯贵祯,关亚林.用MPI实现FDTD网络并行电磁散射运算.微波学报,2006,22(2):11-16
    [29] 张玉,宋健,梁昌洪.并行共形FDTD算法及其在PBG结构仿真中的应用.电子学报,2003,31(12A):2142-2144
    [30] 张玉,李斌,梁昌洪.PC集群系统中MPI并行FDTD性能研究.电子学报,2005,33(9): 1694-1697
    [31] Zhang Y, Song J, Liang C H. MPI based parallelized locally conformal FDTD for modeling slot antennas and new periodic structures in microstrip. Journal of Electromagnetic Waves and Applications, 2004, 18(10): 1321-1335
    [32] Barry Wilkinson. Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers. Beijing: China Machine Press, 2002, 6-25
    [33] Shameem Akhter, Jason Roberts. Multi-Core Programming: Increasing Performance through Software Multi-threading. Beijing: Publishing House of Electronics Industry, 2007, 5-19
    [34] Hesham Ei-Rewini, Mostafa Abd-Ei-Barr. Advanced Computer Architecture and Parallel Processing. Beijing: Publishing House of Electronics Industry, 2005, 113-128
    [35] 陈向群,向勇,王雷,等.Windows操作系统原理.北京:机械工业出版社,2001,321-354
    [36] Daniel P Bovet, Marco Cesati. Understanding the Linux Kernel, Second Edition. Cambridge: O'Reilly Media, Inc., 2003, 436-455
    [37] Matt Pharr. GPU Gems2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Boston: Addison-Wesley Pub. Co., 2006, 457-491
    [38] James C Lin. Personal Telecommunication Radiation Safety and the Precautionary Principle. IEEE Antennas and Propagation Magazine, 2003, 45(2): 142-145
    [39] J E Moulder, L S Erdreich, R S Malyapa, et al. Cell Phones and Cancer: What Is the Evidence for a Connection. Radiation Research, 1999, 15(1): 513-531
    [40] James C Lin. Risks to Children from Cellular Telephone Radiation. IEEE Microwave Magazine, 2003, 15(3): 20-26
    [41] Jian-qing Wang, Osamu Fujiwara, Soichi Watanabe, et al. Computation with a parallel FDTD system of human-body effect on electromagnetic absorption for portable telephones. IEEE Trans. on Microwave Theory and Techniques, 2004, 52(1): 53-58
    [42] L Catarinucci, P Palazzari, and L Tarricone. Human exposure to the near field of radiobase antennas: A full-wave solution using parallel FDTD. IEEE Trans. on Microwave Theory and Techniques, 2003, 51(3): 935-940
    [43] Findlay R P and Dimbylow P J. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the humanbOdy. Physics in Medicine and Biology, 2005, 50:3825-3835
    [44] 窦维苹,张林昌.暴露于手机下45°人体模型内外场和能量分布的研究.微波学报,2000,16(9):265-271
    [45] 周晓明,赖声礼,倪新蕾.螺旋天线手机与30°人头模型系统的数值模拟.电波科学学报, 2004, 19(3): 329-332
    [46] Mekis A. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett., 1996, 77(18): 3787-3790
    [47] 付云起,袁乃昌.用FDTD分析光晶带隙结构散射特性.电子学报,2001,29(12):1729-1730
    [48] 闫敦豹,袁乃昌,付云起.基于FDTD的波导介质层PBG结构的研究.电子与信息学报,2004,26(1):118-123
    [49] Miller E K. Solving Bigger Problems by Decreasing the Operation Count and Increasing the Computation Bandwidth. Proceedings of IEEE Special issue of Electromagnetic, 1991, 79(10): 1493-1504
    [50] Jensen M A, Fi jany A, and Rahmat-Samii Y. Time-Parallel Computational Strategy for FDTD Solution of Maxwell Equations. IEEE Antennas and Propagation Society International Symp., 1994, Vol.1: 380-383
    [51] Su Mehmet F, El-Kady Ihab, Bader David A. et al. A novel FDTD application featuring OpenMP-MPI hybrid parallelization. Proceedings of International Conference on Parallel Processing, Aug 15-18 2004, Montreal, Que, Canada, 373-379
    [52] Werthua Yu, Hashemi M R, Raj Mittra, et al. Massively Parallel Conformal FDTD on a BlueGene Supercomputer. IEEE Trans. on Advanced Packaging, 2007, 30(2): 335-341
    [53] 梁丹,冯菊,陈星.高效率FDTD网络并行计算研究.四川大学学报(自然科学版),2006,43(3):549-554
    [54] 韩林.基于GPU的光波导器件FDTD并行算法研究:[硕士学位论文].济南:山东大学,2007
    [55] N. Kuster, R. Ballisti. MMP method simulation of antennas with scattering objects in closer nearfield. IEEE Trans. on MAG, 1989, 25(4): 2881-2883
    [56] 焦培南,李乐伟,肖抗抗,等.长椭球介质人头模型中的场分布.电波科学学报,2000,15(1):60-64
    [57] Sinha B P and MacPhie R H. Electromagnetic scattering by prolate spheroids for plane waves with arbitrary polarization and angle of incidence. Radio Sci., 1977, 12(12): 171-184
    [58] Cooray M F R and Icric I R. Scattering of electromagnetic waves by a coated dielectric spheroid. Electromagn. Waves Applic., 1992, 6:1491-1507
    [59] P. J. Dimbylow. FDTD caculatioins of the SAR for a dipole closely coupled to the head at 900MHz and 1.9GHz. Physics in Medicine and Biology, 1993, 38:361-368
    [60] P. J. Dimbylow, S. M. Mann. SAR calculations in an anatomically based realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz. Physics in Medicine Biology, 1994, 39: 1537-1553
    [61] Wolker Hombach, Klaus Meier, Michael Burkhardt. The Dependence of EM Energy Head Modeling at 900MHz. IEEE Trans. on Microwave Theory and Techniques, 1996, 44(10): 1865-1873
    [62] M. Okoniewski, M. A. Stuchly. A study of the handset antenna and human body interaction. IEEE Trans. on Microwave Theory and Techniques, 1996, 44(10): 1855-1864
    [63] Gianluca Lazzi, Shyam S. Pattuailc, OmP. Gandlii. Experimental and FDTD-Computed Radiation Patterns of Cellular Telephones Held in Slanted Operational Conditions. IEEE Trans. on EC. 1999, 41(12): 141-145
    [64] Protocol for the computational comparison of the SAM phantom to anatomically correct models of the human head. IEEE SCC34/SC2/WG2, Nov. 14, 2004
    [65] 康刚,祝西里,王长清,等.单极天线手机对人体作用的电磁剂量学分析.北京大学学报,1996,32(5):635-641
    [66] 康刚,祝西里,王长清,等.移动通信手机天线对人体作用的温度分布研究.中国生物医学工程学报,2000,19(4):441-448
    [67] 闻映红,张林昌.在手机辐射作用下人体内外的场强分布.电波科学学报,1998,13(1):97-100
    [68] 张玉.FDTD与矩量法的关键技术及并行电磁计算应用研究:[博士学位论文].西安:西安电子科技大学,2004
    [69] Flynn Michael J. Some computer organizations and their effectiveness. IEEE Trans. on Computers, 1972, 21(9): 948-960
    [70] Flynn Michael J, Kevin W Rudd. Parallel architectures. ACM Computing Surveys, 1996, 28(1): 67-70
    [71] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns for Parallel Programming. Boston: Addison-Wesley Pub. Co., 2005, 5-17
    [72] 车静光.微机集群组建、优化和管理.北京:机械工业出版社,2004,14-33
    [73] 都志辉.高性能计算并行编程技术:MPI并行程序设计.北京:清华大学出版社,2001
    [74] 莫则尧,袁国兴.消息传递并行编程环境.北京:科学出版社,2001
    [75] 冯菊.FDTD的网络并行计算研究:[硕士学位论文].成都:四川大学,2005
    [76] 陈国良 .行计算:结构、算法、编程.北京:高等教育出版社,1999,335-347
    [77] Nikolaos Drosinos, Nectarios Koziris. Performance Comparison of Pure MPI vs Hybrid MPI-OpenMP Parallelization Models on SMP Clusters. 18th International Parallel and Distributed Processing Symposium, Apr 26-30 2004, Santa Fe, NM, United States, 193-202
    [78] 多核系列教材编写组.多核程序设计.北京:清华大学出版社,2007,159-200
    [79] R.F Harrington. Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill Book Company, 1961
    [80] 盛新庆.电磁波述论.北京:科学出版社,2007,1-21
    [81] 葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社,2005,14-20
    [82] Y Taflove A., and Susan C. Hagness. Computational Electrodynamics: The Finite Difference Time Domain Method, Second Ed. Boston: Artech House, 2000, 109-131
    [83] 王秉中.计算电磁学.北京:科学出版社,2002,98-152
    [84] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations. IEEE Trans. on EMC., 1981, 23(4): 377-382
    [85] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 1994, 114(2): 185-200
    [86] Berenger J P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 1996, 127(2): 363-379
    [87] Berenger J P. Perfectly matched layer for the FDTD solution of wave-structure interaction problem. IEEE Trans. Antennas Propagation, 1996, 44(1): 110-117
    [88] Gedney S D. An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices. IEEE Trans. Antennas Propagation, 1996, 44 (12): 1630-1639
    [89] Gedney S D. An anisotropic PML absorbing media for the FDTD simulation for fields in lossy and dispersive media. Electromagnetics, 1996, 16(4): 399-415
    [90] Mei K. K., and Fang J. Superabsorption: a method to improve absorbing boundary conditions. IEEE Trans. Antennas Propagation, 1992, 40(9): 1001-1010
    [91] Y Liu, Z Liang, and Z Q Yang. Computation of Electromagnetic Dosimetry for Human Body Using Parallel FDTD Algorithm Combined with Interpolation Technique. Progress In Electromagnetics Research, 2008, 82:95-107
    [92] Harry F. Jordan, Gita Alaghband. Fundamentals of Pallel Processing. Beijing: Tsinghua University Press, 2004, 230-263
    [93] Yu Liu, Ziqiang Yang, and Zheng Liang. Parallel computation strategy for the FDTD algorithm applied to HPM problems. Proceedings of the First Euro-Asian Pulsed Power Conference, Chengdu, China, Sep. 18-22, 2006, Vol.2, 717-720
    [94] 黄铠,徐志伟.可扩展并行计算技术、结构与编程.北京:机械工业出版社,2000,86-95
    [95] Yang Dan, Xiong Jie, Liao Cheng, et al. A Parallel FDTD Algorithm Based on Domain Decomposition Method Using the MPI Library. Parallel and Distributed Computing, Applications and Technologies, PDCAT 2003 Proceedings, Aug 27-29 2003, Chengdu, 730-733
    [96] 余文华,苏涛,Raj Mittra,等.并行时域有限差分.北京:中国传媒大学出版社,2005,32-37
    [97] 胡明昌,史岗,胡伟武,等.通信对机群并行计算性能的影响.小型微型计算机系统,2003,24(9):1569-1573
    [98] John L Hennessy, David A Patterson. Computer Architecture: A Quantitative Approach, Third Edition. Beijing: Publishing House of Electronics Industry, 2004, 353-445
    [99] Y Liu, Z Liang, and Z Q Yang. A Novel FDTD Approach Featuring Two-Level Parallelization on PC Cluster. Progress In Electromagnetics Research, 2008, 80:393-408
    [100] K. S. Yee, J. S. Chen, and A. H. Chang. Conformal finite-difference time-domain (FDTD) with overlapping grids. IEEE Trans. Antennas Propagation, 1992, 40(9): 1068-1075
    [101] 许锋,洪伟,周后型.求解三维问题的区域分解时域有限差分方法.电子与信息学报,2003,25(8):1114-1119
    [102] Xu F, and Hong W. Domain decomposition FDTD algorithm for the analysis of a new type of E-plane sectorial horn with aperture field distribution optimization. IEEE Trans. Antennas Propagation, 2004, 52(2): 426-434
    [103] Batchelor J C, Langley R J, Endo H. On-glass mobile antenna performance modelling. IEE Proc Microw Antennas Propag, 2001, 148(4): 233-238
    [104] Yablonviteh E. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059-2062
    [105] John S. Strong localization of photons in certain disordered dielectric super-lattices. Phys. Rev. Lett., 1987, 58(23): 2486-2489
    [106] Bill Blunden. Memory Management: Algorithms and Implementation in C/C++. Plano, Texas: Wordware Publishing, Inc, 2003, 112-147
    [107] Steven S Muchnick. Advanced Compiler Design and Implementation. New York: Elsevier Science, Inc, 1997, 157-192
    [108] Jeffrey Richter. Programming Applications for Microsoft Windows, Fourth Edition. Washington: Microsoft Press, 1999, 299-460
    [109] 刘瑜,梁正,杨梓强.基于映射文件的电磁并行FDTD算法实现研究.电波科学学报,2008,23(4):634-639
    [110] 刘瑜,梁正,杨梓强.电磁场FDTD算法的容错分析与实现.电子学报,(已录用)
    [111] 薛正辉,高本庆.空间分割的FDTD方法.微波电磁兼容第四届全国学术会议论文集,2000, 144-146
    [112] Karri R, and Kim K. Computer aided design of fault-tolerant application specific programmable processors. IEEE Trans. on Computers, 2000, 49(11): 1272-1284
    [113] 鲁士文.计算机网络协议和实现技术.北京:清华大学出版社,2000,495-573
    [114] 刘瑜,袁宏春,梁正.SMB协议在异构网络并行FDTD计算中的应用研究.计算机应用,2008,28(2):279-282
    [115] David A. Solomon, Mark E. Russinovich. Inside Microsoft Windows 2000,Third Edition. Washington: Microsoft Press, 2000, 369-412
    [116] Randall Hyde. Write Great Code, Vol.2: Thinking Low-Level, Writing High-Level. San Francisco: No Starch Press, Inc. 2006, 189-280
    [117] G.卡特,R.夏普.Samba 24学时教程.北京:机械工业出版社,2000,27-86
    [118] Liu Chen-yang, Chen Lien-wen. The analysis of interaction region of elliptical pillars of a directional photonic crystal waveguide coupler. Physica E: low-Dimensional Systems and Nanostructures, 2005, 28(3): 185-190
    [119] S.Kuchinsky, V. Y. Golyatin, A.Y.Kutikov, et al.. Coupling between photonic crystal waveguides. IEEE Journal of Quantum Electronics, 2002, 38:1349-1352
    [120] A. Melds, S. Fan, and J. D. Joannopoulos. Bound states in photonic crystal waveguides and waveguide bends. Phys. Rev. B, 1998, 58:4809-4813
    [121] 张晓帆.光子晶体的数值计算与近红外波段实验研究:[硕士学位论文].天津:天津大学,2005
    [122] Jowens J D, Luebke D, Gov Indaraju N, et al. A survey of general-purpose computation on graphics hardware, the 26th annual conference of the European Association for Computer Graphics, Dublin: EUROGRAPHICS, 2005:21-51
    [123] 吴恩华.图形处理器用于通用计算的技术、现状及其挑战.软件学报,2004,15(10):1493-1504
    [124] 柳有权.基于物理的计算机动画及其加速技术的研究:[博士学位论文].北京:中国科学院软件研究所,2005
    [125] 郑奎松.FDTD网络并行计算及ADI-FDTD方法研究:[博士学位论文].西安:西安电子科技大学,2005
    [126] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture: Programming Guide. http://www.nvidia.com.
    [127] Markwr, Glanv Ille Rs, Akeley K, et al. Cg: a system for programming graphics hardware in a C-like language. ACM Transactions on Graphics, 2003, 22 (3): 896-907
    [128] 刘瑜,袁宏春,梁正.图形处理器对ADI-FDTD算法的加速作用研究.计算机应用,2008,28(7): 1882-1885
    [129] Randi J Rost. OpenGL Shading Language, Second Edition. Boston: Pearson Education, Inc., 2006, 96-273
    [130] Randima Fernando. GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics. Boston: Addison-Wesley Pub. Co., 2004, 637-665
    [131] Gandhi O P, Lazzi G; Tinniswood A D, et al. Numerical experimental methods for determination of SAR and radiation patterns handheld wireless telephones. Bioelectromagnetics, 1999, 20(5): 93-101
    [132] Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) Associated with the Use of Wireless Handsets - Computational Techniques. IEEE 1529, New York,(draft standard)
    [133] 李缉熙,牛中奇.生物电磁学概论,第一版.西安:西安电子科技大学出版社,1990,73-92
    [134] 刘亚宁.电磁生物效应.北京:北京邮电大学出版社,2002,214-234
    [135] Frohlich H. What are non-thermal electric biological effects. Bioelectromagnetics, 1982, 3(1): 45-46
    [136] Frohlich H. Coherent electric vibrations in biological systems and cancer problem. IEEE.Trans. on Microwave Theory and Techniques, 1978, 26(8): 613-617
    [137] K Caputa, M Okoniewski, and M A Stuchly. An algorithm for computations of the power deposition in human tissue. IEEE Antennas and Propagation Magazine, 1999, 41(8): 102-107
    [138] N Kuster, Q Balzano, and J. C. Lin. Mobile Communications Safety. London: Chapman and Hall, 1997
    [139] ICNIRP (International Commission on Non-Ionizing Radiation Protection). Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (Up to 300 GHz). Health Physics, 1998, 74:494-522
    [140] IEEE Std C95.1-1999. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE, 1992, New York
    [141] D R White, H Q Woodard, and S M Hammond. Average soft-tissue and bone models for use in radiation dosimetry. British J. Radiol., 1987, 60(7): 907-913
    [142] Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Brooks Air Force, San Antonio, TX, AL/OE-TR-1996-0037, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700