用户名: 密码: 验证码:
基于AFLP标记技术的几种海洋经济鱼类分子系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用AFLP标记技术进行花鲈、刀鲚、梭鱼、棘头梅童鱼、大泷六线鱼、太平洋鲱鱼和斑头鱼七种海洋鱼类的群体遗传结构和遗传多样性研究,并探讨了花鲈和鲈鱼、棘头梅童鱼和黑鳃梅童鱼种间分化,得出了如下结论:
     (1)对采自中国沿海的花鲈3个群体和日本沿海的鲈鱼4个群体进行了AFLP分析,结果表明日本有明海鲈鱼群体的Nei遗传多样性指数和Shannon多样性指数略高于其他6个群体的遗传多样性指数,且都处于中等程度偏下水平;UPGMA树显示来自中国的3个花鲈群体和来自日本的4个鲈鱼群体分别聚类;花鲈两两群体的F_(st)值(0.084-0.140)和鲈鱼两两群体之间的F_(st)值(0.045-0.153)明显低于花鲈群体和鲈鱼群体之间的F_(st)值(0.283-0.556);花鲈群体之间和鲈鱼群体之间的基因流均大于1,而花鲈与鲈鱼群体之间的基因流均小于1。因此,本研究的结果也支持中日鲈鱼属于不同物种这一结论。
     (2)为进一步分析中国沿海与日本沿海的刀鲚群体间遗传分化水平,本研究采用AFLP标记技术对中日刀鲚群体的遗传多样性和群体遗传结构进行了研究。UPGMA树结果显示日本两个群体的所有个体在系统树上形成了一个小的分支,但是整体上仍然与中国群体形成了一个大支;中国群体之间的F_(st)值以及日本群体之间的F_(st)值显著小于中日群体之间的F_(st)值,中日刀鲚群体之间存在较为显著的遗传分化,但刀鲚中日种群间的遗传分化指数远小于刀鲚与凤鲚之间的遗传分化指数;研究结果显示中日刀鲚群体间的基因交流可能十分有限。
     (3)对来自中日沿海的8个地理群体的91尾梭鱼样品进行了AFLP分析,从核基因角度探讨梭鱼不同地理群体的遗传变异,结果显示梭鱼群体的多态位点比例仅为22.73%-38.46%,相对较低;UPGMA聚类树显示梭鱼8个群体分为两个不同的地理组群,南方群体和北方群体,南方群体包括珠江和云林群体,北方群体包括其余的6个群体;两两群体之间的遗传分化指数F_(st)也显示南方群体与北方群体存在较大的遗传分化,暗示其分布范围内的南海海区群体与北方群体(包括东海、黄渤海和日本沿海)存在较大的遗传分化;研究结果认为梭鱼线粒体所揭示的3个支系不是代表了3个隐蔽种,而南北两个群体可能代表两个隐蔽种。
     (4)石首鱼科是自上新世至今十分繁盛的海洋鱼类,广泛分布于热带、亚热带的近海水域。本研究以黑鳃梅童鱼为外群,对采自中国沿海的棘头梅童鱼5个地理群体进行了AFLP分析,同时探讨两种梅童鱼种间遗传差异,研究结果显示,棘头梅童鱼60个个体中共扩增出458条清晰的条带,多态位点比例为95.85%;两种梅童鱼UPGMA聚类树的结果表明两种梅童鱼明显分为两个支,在棘头梅童鱼5个群体中,舟山和上海聚为一支,温州和厦门聚为一支,最后与深圳聚为一支;棘头梅童鱼5个群体之间的遗传分化指数均较大,从0.1648(舟山和上海)到0.3074(深圳和上海);5个群体间的基因流系数均远小于1,表明各个群体间基因流受阻;研究结果支持棘头梅童鱼与黑鳃梅童鱼为2种不同的梅童鱼的观点,并认为棘头梅童鱼不同地理群体之间的基因交流非常有限。
     (5)针对线粒体DNA和微卫星研究结果的差异,采用AFLP标记技术对采自中国沿海的5个地理群体以及日本沿海1个地理群体的大泷六线鱼进行补充研究。结果显示日本青森群体的Nei遗传多样性指数和Shannon遗传多样性指数最高,丹东群体最低;UPGMA聚类树的结果显示大泷六线鱼的拓扑结构比较简单,虽然存在两个分支,但是没有检测到与采样地点相对应的分支;两两群体的Fst值较小,仅为0.016-0.122;基于Fst值计算两两群体之间的基因流,结果显示每组基因流都大于1,并且有5组群体之间的基因流都大于4;AFLP标记技术的研究结果支持大泷六线鱼是一个随机交配的群体。
     (6)采用AFLP标记技术对采自整个分布范围的太平洋鲱鱼开展了分子系统地理学研究。8个群体的遗传多样性指数都比较相近,并无明显差异;UPGMA树结果显示所有个体分为两大支,其中一支由希托克岛的个体组成,另一支由其他七个群体组成,除鄂霍次克海群体存在一个小的分支外,不同的地理群体间无明显的分支,存在一定程度的交叉;托克岛群体与其他群体的遗传分化指数Fst较大,西勘察加与石狩湾群体之间的遗传分化指数最小;两两群体之间的基因流的计算结果显示希托克岛群体与其他群体的基因流均小于1,而其他两两群体之间的基因流均大于1。本研究结果支持其他学者的分支A起源于西北太平洋某处避难所、而分支B应该位于东太平洋避难所的结论。
     (7)对采自中国青岛和威海俚岛近海的两个斑头鱼群体进行了AFLP比较分析。结果显示两群体的遗传多样性指数水平都比较相近,并无明显差异;UPGMA树上存在两个分支,但是两个群体的个体相互混杂,并没有与采样地点相对应的分支的存在;两群体之间的F_(st)值为0.056,且统计检验结果显著;两群体之间的基因流大于4。AFLP标记技术的研究结果认为斑头鱼与大泷六线鱼具有十分相似的遗传多样性水平和遗传结构差异,并支持斑头鱼是一个随机交配的群体。
In the present study, AFLP molecular marker was used to estimate thepopulation genetic diversity and genetic structure of Lateolabrax maculates, Coilianasus, Liza haematocheilus, Collichthys lucidus, Hexagrammos otakii, Clupeapallasii and H. agrammus. Phylogenetic relationships between L. maculates and L.japonicus, C. lucidus and C. niveatus were also discussed. The results of the presentstudy were as follow:
     (1) To examine population genetic structure and phylogenetic relationship of L.maculates and L. japonicus, samples of L. maculates from Chinese Coast andsamples of L. japonicus from Japanese Coast were collected and analyzed by AFLP.The results showed that Nei gene diversity and Shannon’s information index ofAriake Sea were higher than the other6populations. Two clades were detected byUPGMA tree were, which were Chinese clade and Japanese clade, respectively.Pairwise F_(st)between L. maculates and L. japonicus was significantly higher thanthat between populations of L. maculates and between populations of L. japonicus.Gene flow values between populations of L. maculates and between populations of L.maculates were higher than1, while gene flow between these two species was lowerthan1. The results of present study supported that the L. maculates and L. japonicuswere different speices.
     (2) AFLP marker was used to examine the genetic diversity and geneticstructure of Coilia nasus and to analyze the genetic differentiation between Chineseand Japanese populations. The results showed that all individuals from Japanesecoast were clustered into one clade, but this clade was still surrounded by Chineseindividuals on the whole and no obvious differentiation was detected by UPGMA.Pairwise F_(st)values between Chinese populations and Japanese populations were higher than those between Chinese populations and between Japanese populations,but significantly lower than that between C. nasus and C. mystus. The results ofpresent study indicated limited gene flow between Chinese populations and Japanesepopulations, but did not supported they were different species.
     (3) Eight populations from Chinese and Japanese coast were analyzed by AFLP.The results showed that proportion of polymorphic loci were very low, only22.73%-38.46%. These8populations were clustered into two clades, namely,southern group including populations from Zhujiang and Yunlin and northern groupincluding the other6populations. AMOVA and pairwise F_(st)also supported theseparation of north and south populations of L. haematocheilus. The present studydemonstrated that L. haematocheilus was indeed composed of at least twogenetically divergent species, but not three cryptic species in the NorthwesternPacific.
     (4) In the present study, the genetic diversity and population genetic structure ofC. lucidus were examined by AFLP marker. C. niveatus was collected as theoutgroup to discuss the differentiation between these two species. A total of458bands were identified from60individuals and the percentage of polymorphic bandswas95.85%. These two species clustered into two clades. Among the5populationsfor C. lucidus, populations from Zhoushan and Shanghai clustered into one clade,populations from Wenzhou and Xiamen clustered into another clade, and these twoclades subsequently clustered with Shenzhen population. The pairwise F_(st)rangedfrom0.1648(between populations from Zhoushan and Shanghai) to0.3074(betweenpopulations from Shenzhen and Shanghai). Gene flow values among differentpopulations were lower than1. The results of present study indicated the limitedgene flow among different geographic populations, in conformity with the point thatC. lucidus and C. niveatus were different species.
     (5) Six geographic populations of H. otakii from Chinese and Japanese coastawere further analyzed to estimate the population genetic structure, due to thedifference of results between morphological and microsatellite DNA analysis. Theresults showed that the genetic diversity of Hachinohe population was the highest and the lowest occurred in Dandong population. Two clades were detected byUPGMA tree, but no significant genealogical branches or clusters corresponding tosampling localities were detected. Pairwise F_(st)values (0.016-0.122) showed nogenetic divergence among different geographic populations and gene flow valueswere high among5populations. The results of the present study supposed that H.otakii was a random mating population.
     (6) AFLP marker was used to estimate the population structure andphylogeographic pattern of Clupea pallasii in North Pacific. The genetic diversityindices of8populations were similar to each other. Two branches were detected, oneof which consisted of all individuals from Sitka Island and another consisted of theother7populations. All individuals of Okhotsk Sea formed into one small clade andno significant genealogical branches or clusters corresponding to sampling localitieswere detected. The pairwise F_(st)values between Sitka Island and other populationswere higher and the lowest differentiation was observed between populations ofWest Kamchatka and Ishikari Bay. Gene flow values between Sitka Island and otherpopulations were less than1, contrary to the other combinations. The results ofpresent study supported the opinion that clade A should originate from some refugeof the Northwestern Pacific and clade B should originate from some refuge of theEast Pacific.
     (7) Two populations of H. agrammus from Qingdao and Lidao of Weihai coastwere analyzed by AFLP marker. The results showed that genetic diversity of the twopopulations was similar to each other. Two branches were detected by UPGMA treewith no significant genealogical branches or clusters corresponded to samplinglocalities. The pairwise F_(st)value between the two populations was0.056and geneflow was more than4. The results of the present study indicated that H. agrammuswas a random mating population and showed the similar genetic diversity with H.otakii.
引文
陈大刚.黄渤海渔业生态学.北京:海洋出版社,1991.
    陈省平,胡晓丽,刘涛.赤点石斑鱼七个地理群体的AFLP分析.中山大学学报,2009,48(1):56-61.
    高天翔,任桂静,刘进贤,等.海洋鱼类分子系统地理学研究进展.中国海洋大学学报,2009,39:897-902.
    高泽霞,王卫民,周小云.DNA分子标记技术及其在水产动物遗传上的应用研究.生物技术通报,2007,2(2):108-113.
    韩志强,高天翔,王志勇,等.黄姑鱼群体遗传多样性的AFLP分析.水产学报,2006,30(5):640-646.
    胡志昂,王洪新.研究遗传多样性的原理与方法.杭州:浙江科学技术出版社,1998.
    小林時正.石狩湾に出現する遺伝学的に異なる産卵ニシンの2群とその考察.北水研報告,1983,48:11-19.
    李珊,赵桂仿.AFLP分子标记及其应用.西北植物学,2003,23(5):830—836.
    李国庆,伍育源,秦志峰,等.鱼类遗传多样性研究.水产科学,2004,23(8):42-44.
    林忠平,陈章良,许智宏,等.走向21世纪的植物分子生物学.北京:科学出版社,2000:348-358.
    刘必谦,董闻琦,王亚军,等.岱衢族大黄鱼种质的AFLP分析.水生生物学报,2005,29(4):413-416.
    刘名.太平洋鲱和大头鳕的群体遗传学研究.中国海洋大学博士毕业论文.2010.
    刘子藩,熊国强,黄克勤,等.东海带鱼种群鉴别研究.水产学报,1997,21(3):282-287.
    马克平.试论生物多样性的概念.生物多样性,1993,1(1):20-22.
    彭志兰,柳敏海,傅荣兵,等.舟山鱼群体遗传多样性的AFLP研究.上海海洋大学学报,2010,19(2):172-177.
    钱迎倩,马克平.生物多样性研究原理与方法.中国科学技术出版社,1994,123-140.
    权洁霞,戴继勋,尚迅.海洋生物遗传多样性研究现状.青岛海洋大学学报,1999,29(2):283-288.
    宋娜.西北太平洋两种海洋鱼类的分子系统地理学研究及分子标记在褐牙鲆增殖放流中的应用.中国海洋大学博士毕业论文.2011.
    孙冬芳,李永振,董丽娜.AFLP技术在鱼类种群分析中的应用.南方水产,2009,5(6):71-75.
    孙儒泳,李庆芬,牛翠娟,等.基础生态学.北京:高等教育出版社,2002.
    王静,李明,魏辅文,等.分子系统地理学及其应用.动物分类学报,2001,26:431-440.
    王伟继,岳志芹,孔杰,等.AFLP分子标记技术的发展及其在海洋生物中的应用.海洋水产研究,2005,26(1):80-85.
    王志勇,王艺磊,林利民,等.福建官井洋大黄鱼AFLP指纹多态性的研究.中国水产科学,2002,9:198-202.
    王志勇,王艺磊,林利民,等.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异.水产学报,2001,25:289-294.
    杨东,余来宁.RAPD和AFLP在分析尼罗罗非鱼遗传多样性研究中的应用比较.江西农业学报,2006,18(2):1-4.
    张俊彬,黄良民,陈真然.AFLP技术在笛鲷的仔鱼鉴定及其分类学上的研究.海洋学报,2005,27(2):165-171.
    张俊彬,黄良民.紫红笛鲷遗传多样性的AFLP分析.热带海洋学报,2004,23(5):50-55.
    张民照,康乐.AFLP标记的特点及其在昆虫学研究中的应用.昆虫学报,2002,45(4):538-543.
    张全启,徐晓斐,齐洁,等.牙鲆野生群体与养殖群体的遗传多样性分析.中国海洋大学学报,2004,34(5):816-820.
    Avise J.C., Arnold J., Ball, R.M., et al. Intraspecific phylogeography: the mitochondrial DNAbridge between population genetics and systematics. Annu. Rev. Ecol. Evol. Syst.,1987,18:489–522.
    Avise, J.C. The history and preview of phylogeography: a personal reflection. Molecular Ecology.1998,7,371-379.
    Bernatchez, L., Wilson, C.C. Comparative phylogeography of Nearctic and Palearctic fishes.Molecular Ecology,1998,7:431-452.
    Congiu L., Dupanloup I., Patamello T., et a1. Identification of interspeeific hybrids by amplifiedfragment length polymorphism:the case of sturgeon. Mol Eeol,2001,10(9):2355-2359.
    David L., Jinggui F., Palanisamy R., et a1. Polymorphism in ornamentaland common carp strains(Cyprinus carpio L.) as revealed by AFLP an alysis and a new set of microsatellite markers.Mol Genet Genomics,2001,266(3):353-362.
    Dorenbosch, M., Pollux, B.J.A., Pustjens, A.Z., et al. Population structure of the Dory snapper,Lutjanus fulviflamma, in the western Indian Ocean revealed by means of AFLPfingerprinting. Hydrobiologia,2006,568:43-53.
    Hewitt, G.M. Post-glacial re-colonization of European biota. Biological Journal of the LinneanSociety,1999,68:87-112.
    Hewitt, G.M. Some genetic consequences of ice ages and their role in divergence andspeciation. Biological Journal of the Linnean Society,1996,58:247-276.
    Hewitt, G.M. The structure of biodiversity insights from molecular phylogeography. Frontiers inZoology,2004,1:4.
    Jin Koo Km, Yoshiaki Kai, Tetsuji Nakabo. Genetic diversity of Salanx ariakensis (Salangidae)from Korea and Japan inferred from AFLP. Ichthyol Res,2007,54(4):416-419.
    Lambeck, K., Esat, T.M., Potter, E.K. Links between climate and sea levels for the past threemillion years. Nature,2002,419:199-206.
    Liu, J.X., Gao T.X., Zhuang, Z.M., et al. Late Pleistocene divergence and subsequent populationexpansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) andAustralian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution,2006,40:712-723.
    Liu, J.Y., Lun Z.R., Zhang, J.B., et al. Population genetic structure of striped mullet, Mugilcephalus, along the coast of China, inferred by AFLP fingerprinting. BiochemicalSystematics and Ecology,2009,37:266-274.
    Mickett, K., Morton C., Feng J., et al. Assessing genetic diversity of domestic populations ofchannel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture,2003,228:91-105.
    Miggiano E., Deinnocentiis S., Ungaro A., et a1.AFLP and mierosateHites as genetic tags toidentify cultured gihhead seabream escapees:data from a simulated floating cage breakingevent Aquac lnti2005,13(1/2):137-146.
    Odum E P.1971.生态学基础.孙儒泳等译.北京:人民教育出版社,1982.
    Palumbi, S.R. Genetic divergence, reproductive isolation, and marine speciation. The AnnualReview of Ecology, Evolution, and Systematics,1994,25:547-572.
    Repaci V., Stow A.J., Briscoe D.A. Fine-scale genetic structure, co-founding and multiple matingin the Australian allodapine bee (Ramphocinclus brachyurus). J.Zool.,2007,270:687–691.
    Santos S., Hrbek, T., Farias, I.P., et al. Population genetic structuring of Macrodon ancylodon(Sciaenidae) in Atlantic coastal waters of South America: deep genetic divergence withoutmorphological change. Molecular Ecology,2006,15:4361-4373.
    Schaal, B.A., Hayworth, D.A., Olsen, K.M., et al. Phelogeographic studies in plants: problemsand prospects. Molecular Ecology,1998,7:465-474.
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends.Frontiers in Zoology,2007,4:11.
    Slatkin M.. Gene flow and the geographic structure of populations. Science,1987,236:787-792.
    Vos P., Hogers R., Bleeker M., et al. AFLP: a new technique for DNA fingerprinting. NucleicAcids Research,1995,23:4407.
    Wan C L, Tan Y D. An improvemental method of AFLP. Journal of Nanjing NormalUniversity.1999,22(2):87-91.
    Zardoya R., Castilho R., Grande C., et al. Differential population structuring of two closelyrelated fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomberjaponicus) in the Mediterranean Sea. Mol. Ecol.,2004,13:1785-1798.
    Zhang Y P, Wang X X, Ryder O A, et al. Genetic diversity and conservation of endangeredanimal species. Pure and Applied Chemistry,2002,74:575-584.
    Han, Z.Q., GAO T.X., Yanagimoto T., et al. Deep phylogeographic break among whitecroaker Pennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific.Fisheries Science,2008,74:770-780.
    Crosetti D., Nelso W.S., Avise J.C. Pronounced genetic structure of mitochondrial DNA amongpopulations of the circumglobally distributed grey mullet (Muril cephalus). J. Fish. Biol.,1993,44:47–58.
    Liu, J.X., GAO T.X., Wu S.F., et al. Pleistocene isolation in the Northwestern Pacific marginalseas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck&Schlegel,1845). Molecular Ecology,2007,16:275-288.
    Liu, J.X., Gao T.X., Zhuang Z.M., et al. Late Pleistocene divergence and subsequentpopulation expansion of two closely related fish species, Japanese anchovy (Engraulisjaponicus) and Australian anchovy (Engraulis australis). Molecular Phylogenetics andEvolution,2006,40:712-723.
    Xiao, Y.S., Zhang, Y., Gao, T.X., et al. Genetic diversity in the mtDNA control region andpopulation structure in the small yellow croaker Larimichthys polyactis. EnvironmentalBiology of Fishes,2009,85:303-314.
    Scoles D.R., Graves J.E. Genetic analysis of the population structure of yellowfin tuna Thunnusalbacares in the Pacific Ocean. Fish. Bull.,1993,91:690-698.
    Shen K.N., Jamandre B.W., Hsu C.C., et al. Plio-Pleistocene sea level and temperaturefluctuations in the northwestern Pacific promoted speciation in the globally-distributedflathead mullet Mugil cephalus. BMC Evol Biol,2011,11:83.
    陈大刚.鲈鱼.水产科技情报.1976,10.
    胡自民,高天翔,韩志强,等.花鲈和鲈鱼群体的遗传分化研究.中国海洋大学学报,2007,37(3):413~418.
    江鑫.花鲈和日本鲈群体遗传结构和多样性研究.博士毕业论文.中国海洋大学,2009.
    李明云,赵明忠,钟爱华,等.山东日照和福建厦门沿海花妒同工酶的遗传变异分析.浙江海洋学院学报:自然科学版,2003,22(2):121-124.
    李明云,赵明忠,钟爱华,等.山东日照和福建厦门沿海花鲈遗传差异对的同工酶和RAPD分析.海洋学报,2005,27(3):119-123.
    廖国璋.花鲈的生态特性及池塘养殖问题.水产科技情报,1998,25(3):130-132.
    楼东,高天翔,张秀梅,等.中日花鲈生化遗传变异的初步研究.青岛海洋大学学报,2003,33(1):22-28.
    楼东.花鲈群体形态学、遗传学研究.硕士毕业论文.中国海洋大学,2002.
    楼东,高天翔,张秀梅,等.中日花鲈生化遗传变异的初步研究.青岛海洋大学学报:自然科学版,2003,33(1):22-28.
    卢圣栋.现代分子生物学实验技术(第二版).北京:中国协和医科大学出版社,1999,9:101-104.
    宋林,肖永双,高天翔. S7核糖体蛋白基因片段序列变异与花鲈属鱼类系统发育研究.海洋湖沼通报,2008,2:152-158.
    苏传福.花鲈营养需求研究进展.渔业经济研究,2005,4:35-38.
    王艳,胡先成,罗颖.盐度对鲈鱼稚鱼的生长及脂肪酸组成的影响.重庆师范大学学报:自然科学版,2007,24(2):62-66.
    王远红,吕志华,高天翔,等.中国花鲈与日本花鲈营养成分的研究.海洋水产研究,2003,24(2):35-39.
    王志勇,王艺磊,林利民,等.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异.水产学报,2001,25(4):289-293.
    叶振江,孟晓梦,高天翔,等.两种花鲈(Lateolabrax sp.)耳石形态的地理变异.海洋与湖沼,2007,38:356-360.
    张春丹,李明云.花鲈的繁殖生物学及繁育技术研究进展.宁波大学学报,2005,18(3):400-403.
    张俊彬,黄良民.紫红笛鲷遗传多样性的AFLP分析.热带海洋学报,2004,23(5):50-55.
    张美昭,高天翔,阮树会,等.花鲈亲鱼人工培育与催产技术研究.青岛海洋大学学报,2001a,31(2):196-200.
    张美昭,高天翔,阮树会,等.花鲈人工育苗技术的研究.青岛海洋大学学报:自然科学版,2001b,31(3):339-344.
    张全启,徐晓斐,齐洁,等.牙鲆野生群体与养殖群体的遗传多样性分析.中国海洋大学学报,2004,34(5):816-820.
    Bleeker P.. Nieuwe Nalezingen op de Ichthyologie van Japan. Verh Batav Genootsch Kunst Wet,1854-1857,26:1-132.
    Excoffier L., Smouse P. E., Quattro J. M.. Analysis of molecular variance inferred from metricdistances among DNA haplotypes: application to human mitochondrial DNA restriction data.Genetics,1992,131:479.
    Gao T. X., Lou D., Liu J. X., et al. Genetic variation among sea bass populations. ActaHydrobiological Sinica,2004,28(1):69-73.
    Gao T. X., Watanabe S.. Genetic variation among local populations of the Japanese mitten crabEriocheir japonica De Haan. Fisheries Science,1998,64(2):198-205.
    Haldimann P., Steinger T., Müller-Sch rer H.. Low genetic differentiation among seasonal cohortsin Senecio vulgaris as revealed by amplified fragment length polymorphism analysis.Molecular Ecology,2003,12:2541-2551.
    Han Z. Q., Gao T. X., Yanagimoto T., et al. Deep phylogeographic break among white croakerPennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific.Fisheries Science,2008,74(4):770-780.
    Huenneke L. F.. Ecological implications of genetic variation in plant populations. Genetics andConservation of Rare Plants,1991:31-44.
    Kai Y., Nakayama K., Nakabo T.. Genetic differences among three colour morphotypes of theblack rockfish, Sebastes inermis, inferred from mtDNA and AFLP analyses. MolecularEcology,2002,11:2591-2598.
    Katayama M.. Four new species of Scrranid fishes from Japan. Journal of Ichthyology,1957,6:153-159.
    Kim C., Jun J.. Provisional classification of temperate sea bass, the genus Lateolabrax (Pisces:Moronidae) from Korea. Korean Journal of Ichthyology,1997,9:108-113.
    Kim Y., Myoung J., Kim Y., et al. The marine fishes of Korea. Hanguel, Pusan,2001,222.
    Kj lner S., Sstad S. M., Taberlet P., et al. Amplified fragment length polymorphism versusrandom amplified polymorphic DNA markers: clonal diversity in Saxifraga cernua.Molecular Ecology,2004,13:81-86.
    Lambeck K., Esat T. M., Potter E. K. Links between climate and sea levels for the past threemillion years. Nature,2002,419:199-206.
    Liu J. X., Gao T. X., Yokogawa K., et al. Differential population structuring and demographichistory of two closely related fish species, Japanese sea bass (Latolabrax japonicus) andspotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogeneticsand Evolution,2006,39:799-811.
    Mickett K., Morton C., Feng J., et al. Assessing genetic diversity of domestic populations ofchannel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture,2003,228:91-105.
    Seki S., Agresti J. J., Gall G. A., et al. AFLP analysis of genetic diversity in three populations ofayu Plecoglossus altivelis. Fisheries Science,1999,65:888-892.
    Soltis P. S., Soltis D. E.. Genetic variation in endemic and widespread plant species examples fromSaxifragaceae and Polystichum (Dryopteridaceae). Aliso,1991,13(1):215-223.
    Takami Y., Koshio C., Ishii M., et al. Genetic diversity and structure of urban populations ofPieris butterflies assessed using amplified fragment length polymorphism. MolecularEcology,2004,13:245-258.
    Takita T.. Identification of a species of Coilia (Engraulidae) distributed in Ariake Sound. JapaneseJournal of Ichthyology,1978,25:223–226.
    Vos P., Hogers R., Bleeker M., et al. AFLP: a new technique for DNA fingerprinting. NucleicAcids Research,1995,23:4407-4414.
    Wang Z., Jayasankar P., Khoo S. K., et al. AFLP fingerprinting reveals genetic variability incommon carp stocks from Indonesia. Asian Fisheries Science,2000,13:139-147.
    Weir B. S., Cockerham C. C.. Estimating F-statistics for the analysis of population structure.Evolution,1984,38:1358-1370.
    Yeh F. C., Yang R., Boyle T.. Popgene version1.32: Microsoft Windows-Based Freeware forPopulation Genetic Analysis. University of Alberta, Edmonton, Alberta,1999.
    Yokogawa K., Seki S.. Morphological and genetic differences between Japanese and Chinese seabass of the genus Lateolabrax. Ichthyology,1995,41(4):437-445.
    Yokogawa K., Taniguchi N., Seki S.. Morphological and genetic characteristics of sea bass,Lateolabrax japonicus, from the Ariake Sea, Japanese Ichthyology Research,1997,44(1):51-60.
    Yokogawa K.. Genetic divergence of fishes in genus Lateolabrax (Perciformes: Percichthyidae).Suisanzoshoku,1998,46(3):315-320.
    Yokogawa K.. Morphological and genetic differences between Japanese and Chinese red ark shellScapharca broughtonii. Fisheries Science,1997,63(3):332-337.
    Young W. P., Wheeler P. A., Coryell V. H., et al. A detailed linkage map of rainbow troutproduced using doubled haploids. Genetics,1998,148:839.
    陈艳翠.刀鲚(Coilia ectenes)与日本鲚(C. nasus)群体的形态学、遗传学研究:[硕士学位论文].青岛:中国海洋大学水产学院,2006.
    程起群,温俊娥,王云龙,等.刀鲚与湖鲚线粒体细胞色素b基因片段多态性及遗传关系.湖泊科学,2006,18(4):425-430
    冯昭信.鱼类学(第二版).北京:中国农业出版社,1997.
    福永剛,浜崎稔洋.有明海地域特産種増殖事業エツ種苗生産技術開発.平成11年度福岡県水産海洋技術センター事業報告,2001,329-330.
    福永剛,濱崎稔洋.エツの受精、孵化および初期飼育と塩分濃度.福岡県水産海洋技術センター研究報告,1988,8:67-71.
    石田宏一,塚原博.有明海および筑後川下流域におけるエツの生態について.九州大学農学部学芸雑誌,1972,26(1-4):217-221.
    石田宏一.有明海エツ(Coilia nasus Temminck et Schlegel)の成長について.水産増殖,1990,38(2):135-145.
    環境庁(編).日本の絶滅のおそれのある野生生物-レッドデータブック-脊椎動物編.日本野生生物研究センター,1991,331.
    施德龙,龚洪新.关于保护长江口刀鲚资源的建议.海洋渔业,2003,2:96-97
    松井誠一,富重信一,塚原博.エツCoilia nasus Temminck et Schlegelの生態学的研究I:溯上群の生態に関する予報.九州大学農学部学芸雑誌,1986a,40:221-228.
    松井誠一,富重信一,塚原博.エツCoilia nasus Temminck et Schlegelの生態学的研究II:卵発生及び子魚に及ぼす塩分濃度の影響.九州大学農学部学芸雑誌,1986b,40:229-234.
    松井誠一,中川清,富重信一.エツCoilia nasus Temminck et Schlegelの生態的研究III:筑後川における仔稚魚の出現生態と食性.九州大学農学部学芸雑誌,1987,41:55-62.
    马春艳,刘敏,马凌波,等.长江口刀鲚遗传多样性的随机扩增多态DNA(RAPD)分析.海洋水产研究,2004,25(5):19-25
    孟庆闻,苏锦祥,缪学祖.鱼类分类学.北京:中国农业出版社,1995.
    田島正敏.佐賀県の淡水魚.佐賀新聞社,1995,272.
    田北徹.有明海産エツCoilia sp.の産卵および初期生活史.長崎大学水産学部研究報告,1967,23:107-122.
    田北徹,増谷英雄.エツCoilia nasusの産卵域.長崎大学水産学部研究報告,1979,46:7-10.
    田北徹.有明海の魚類.月刊海洋科学有明海,1980,24:105-115.
    唐文乔,胡雪莲,杨金权.从线粒体控制区全序列变异看短颌鲚和湖鲚的物种有效性.生物多样性.2007,15(3):224-231.
    内田恵太郎,塚原博.有明海の魚類相について.日本生物地理学会会報,1955,1619:292302.
    山田梅芳,入江隆彦,時村宗春.東黄海並びに隣接海域の魚類2エツ類3種.西海区水産研究所ニュース,1995,82:13-15.
    吉田裕.本邦近海に産するエツ属のCoiliaの種の異同に関する考察並びに稚仔の同定に就いて.動物学雑誌,1935,47:784-789.
    袁传宓,秦安舲,刘仁华,等.关于长江中下游及东南沿海各省的鲚属鱼类中下分类的探讨.南京大学学报,1980,3:67-82.
    袁传宓,林金榜,秦安舲,等.关于我国鲚属鱼类分类的历史和现状.南京大学学报,1976,2:1-12.
    张世义.中国动物志—硬骨鱼纲:鲟形目海鲢目鲱形目鼠鱚目.北京:科学出版社,2001.
    张媛,胡则辉,周志刚,等.利用RAPD-PCR与ISSR-PCR标记技术分析长江口刀鲚的群体遗传结构.上海水产大学学报,2006,15(4):390—397.
    Avise J C. Phylogeography: the history and formation of species. Harvard Univisity Press,Cambridge, USA.2000.
    Cowen R K, Lwiza K M, Sponaugle S, et al. Connectivity of marine populations: Open or closed?.Science,2002,287:857-859.
    Gao T. X., Watanabe S.. Genetic variation among local populations of the Japanese mitten crabEriocheir japonica De Haan. Fisheries Science,1998,64(2):198-205.
    Han Z. Q., Gao T. X., Yanagimoto T., et al. Deep phylogeographic break among white croakerPennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific.Fisheries Science,2008,74(4):770-780.
    Hewitt G M. The genetic legacy of the Quaternary ice ages. Nature,2000,405:907-913.KitamuraA, Takano O, Takata H, et al. Late Pliocene-early Pleistocene paleoceanographic evolution ofthe Japan Sea. Palaeogeography,2001,172:81-98.
    Kitamura, A., Takano, O., Takata, H., Omote, H.,2001. Late Pliocene-early Pleistocenepaleoceanographic evolution of the Japan Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol.172,81-98.
    Lambeck K., Esat T. M., Potter E. K.. Links between climate and sea levels for the past threemillion years. Nature,2002,419:199-206.
    Liu J. X., Gao T. X., Yokogawa K., et al. Differential population structuring and demographichistory of two closely related fish species, Japanese sea bass (Latolabrax japonicus) andspotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogeneticsand Evolution,2006a,39:799-811.
    Liu, J.X., Gao, T.X., Zhuang, Z.M., et al. Late Pleistocene divergence and subsequentpopulation expansion of two closely related fish species, Japanese anchovy (Engraulisjaponicus) and Australian anchovy (Engraulis australis). Molecular Phylogenetics andEvolution,2006b,40:712-723.
    Liu, J.X., Gao, T.X., Wu, S.H.I.F., et al. Pleistocene isolation in the Northwestern Pacificmarginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck&Schlegel,1845). Molecular Ecology,2007,16:275-288.
    Palumbi S R. Population genetics, demographic connectivity, and the design of marine reserves.Ecological applications,2003,13(1):146-158.
    Slatkin M. Gene flow and the geographic structure of populations. Science,1987,236:787-792.
    Swearer S E, Caselle J E, Lea D W, et al. Larval retention and recruitment in an island populationof a coral-reef fish. Nature,1999,402:799-802.
    Takita T.. Identification of a species of Coilia (Engraulidae) distributed in Ariake Sound. Japanese.Journal of Ichthyology,1978,25:223–226.
    Yokogawa K.. Morphological and genetic differences between Japanese and Chinese red ark shellScapharca broughtonii. Fisheries Science,1997,63(3):332-337.
    韩志强,高天翔,王志勇,等.黄姑鱼群体遗传多样性的AFLP分析.水产学报,2006,30(5):640-646.
    李明德,王祖望.渤海梭鱼的年龄与生长.海洋学报,1982,4(4):508-515.
    孟玮,高天翔,宋林,等.三种鲻科鱼的同工酶分析及鉴别研究.中国海洋大学学报,2007,37(Sup):181-184.
    权洁霞,戴继勋,沈颂东,等.梭鱼人工养殖群体与自然群体的随机扩增多态(RAPD)分析.海洋学报,2000,22:82-87.
    宋佳坤.我国三种常见的鲻类鱼的名称订正.动物学报,1982:7-12.
    杨锐,庄志猛,喻子牛,等.梭鱼养殖群体与自然群体等位基因酶的遗传变异.海洋水产研究,2002,23:15-19.
    王志勇,王艺磊,林利民,等.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异.水产学报,2001,25(4):289-293.
    吉松隆夫,林雅弘,戸田享次.メナダ仔魚の必須脂肪酸要求と飼育槽へのナンノクロロプシスの添加効果.日本水産學會誌,1995,61(6):912-918.
    吉松隆夫.メナダ仔稚魚における鰭と鱗の発達.九州大學農學部學藝雜誌,1996a,50(3-4):163-171.
    吉松隆夫,古市政幸.飼育水温がメナダの成長,体成分および飼料利用効率に与える影響.水産増殖,1996b,43(3):363-368.
    张俊彬,黄良民.紫红笛鲷遗传多样性的AFLP分析.热带海洋学报,2004,23(5):50-55.
    张全启,徐晓斐,齐洁,等.牙鲆野生群体与养殖群体的遗传多样性分析.中国海洋大学学报,2004,34(5):816-820.
    朱元鼎,张春霖,成庆泰.东海鱼类志.北京:科学出版社,1963:98-102.
    Avise J. C.. Phylogeography: the history and formation of species. Harvard University Press,Cambridge, MA, USA,2000.
    Dynesius M., Jansson R.. Evolutionary Consequences of Changes in Species' GeographicalDistributions Driven by Milankovitch Climate Oscillations. Proceedings of the NationalAcademy of Sciences of the United States of America,2000,97:9115.
    Huenneke L. F.. Ecological Implications of Genetic Variation in Plant Populations. OxfordUniversity Press, New York, USA,1991:31-44.
    Liu J. X., Gao T. X., Zhuang Z. M., et al. Late Pleistocene divergence and subsequent populationexpansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) andAustralian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution,2006,40:712-723.
    Liu, J.X., Gao, T.X., Wu, S.H.I.F., et al. Pleistocene isolation in the Northwestern Pacificmarginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck&Schlegel,1845). Molecular Ecology,2007,16:275-288.
    Liu J. Y., Lun Z. R., Zhang J. B., et al. Population genetic structure of striped mullet, Mugilcephalus, along the coast of China, inferred by AFLP fingerprinting. BiochemicalSystematics and Ecology,2009,37:266-274.
    Meng W., Gao T. X., Zheng B.. Genetic analysis of four populations of redlip mullet (Chelonhaematocheilus) collected in China seas. Journal of Ocean University of China,2007,6:72-75.
    Shen K. N., Jamandre B. W., Hsu C. C., et al. Plio-Pleistocene sea level and temperaturefluctuations in the northwestern Pacific promoted speciation in the globally-distributedflathead mullet Mugil cephalus. BMC Evolutionary Biology,2011,11:83-90.
    Soltis P. S., Soltis D. E.. Genetic variation in endemic and widespread plant species examplesfrom Saxifragaceae and Polystichum. Aliso,1991,13:215-223.
    Tamaki K., Honza E.. Global tectonics and formation of marginal basins: role of the westernPacific. Episodes,1991,14:224-230.
    Xu X., Oda M.. Surface-water evolution of the eastern East China Sea during the last36000years.
    Marine Geology,1999,156:285-304.
    陈泉梅.中国石首鱼科鱼类分子系统学研究.广州:暨南大学,2007.
    程济生.东、黄海冬季底层鱼类群落结构及其多样性.海洋水产科学,2000,3:1-8
    韩志强,高天翔,王志勇,等.黄姑鱼群体遗传多样性的AFLP分析.水产学报,2006,30:640-646.
    黄良敏,谢仰杰,李军,等.闽江口及附近海域棘头梅童鱼的生物学特征.集美大学学报,2010,4:248-253.
    柳淑芳,陈亮亮,戴芳群,等.基于线粒体COI基因的DNA条形码在石首鱼科(Sciaenidae)鱼类系统分类中的应用.海洋与湖沼,2010,2:223-232.
    马国强,高天翔,孙典荣.基于16S rRNA和Cyt b基因序列探讨2种梅童鱼的遗传分化.南方水产,2010,6:13-20.
    蒙子宁,庄志猛,丁少雄,等.中国近海8种石首鱼类的线粒体16S rRNA基因序列变异及其分子系统进化.自然科学进展,2004,5:514-521.
    宋娜.西北太平洋两种海洋鱼类的分子系统地理学研究及分子标记在褐牙鲆增殖放流中的应用:[博士毕业论文].青岛:中国海洋大学水产学院,2011.
    单乐州,邵鑫斌,谢起浪,等.棘头梅童鱼人工繁殖及育苗技术研究.浙江海洋学院学报,2006,3:266-271.
    单乐州,邵鑫斌,闫茂仓.棘头梅童鱼幼鱼生物学特性的初步观察.水产养殖,2007,6:4-5.
    吴振兴,陈贤亮.棘头梅童鱼年龄与阶段生长的初步研究.浙江水产学院学报,1991,2:140-143.
    张永,马春艳,马凌波,等.基于16SrRNA部分序列探讨中国近海十三种石首鱼类的分子系统进化关系.海洋渔业,2010,3:276-282.
    郑德锋,赵金良,周文玉.棘头梅童鱼线粒体控制区的序列变异与群体遗传结构.渔业科学进展,2011,32:34-40.
    Cheng J., Ma G. Q., Miao Z. Q., et al. Complete mitochondrial genome sequence of thespinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogeneticconsiderations. Molecular Biology Reports,2011b,39(4):4249-4259.
    Cheng J., Ma G. Q., Song N., et al. Complete mitochondrial genome sequence of bighead croakerCollichthys niveatus (Perciformes, Sciaenidae): a mitogenomic perspective on thephylogenetic relationships of pseudosciaeniae. Gene,2011a,491(2):210–223.
    Grant W. S., Bowen B. W.. Shallow population histories in deep evolutionary lineages of marinefishes: insights from sardines and anchovies and lessons for conservation. The Journal ofHeredity,1989,89(5):415-426.
    Han Z. Q., Gao T. X., Yanagimoto T., et al. Deep phylogeographic break among white croakerPennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific. FishScience,74:770-780.
    Lin L. S., Ying Y. P., Han Z. Q., et al. AFLP analysis on genetic diversity and population structureof small yellow croaker Larimichthys polyactis. African Journal of Biotechnology,2009,8:2700-2706.
    Liu J. X., Gao T. X., Yokogawa K. J., et al. Differential population structuring and demographichistory of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) andspotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogeneticsand Evolution,39:799-811.
    Taylor M. S., Hellber M. E.. Genetic evidence for local retention of pelagic larvae in a Caribbeanreef fish. Science,2003,299:107-109.
    Ward R. D., Woodwark M., Skibinski D. O. F., et al. A comparison of genetic diversity levels inmarine, freshwater, and anadromous fishes. Journal of Fish Biology,1994,44(2):213-232.
    Wirth T., Bernatchez L.. Genetic evidence against panmixia in the European eel. Nature,2001,409:1037-1040.
    Xu T. J., Cheng Y. Z., Sun Y. N., et al. The complete mitochondrial genome of bighead croaker,Collichthys niveatus (Perciformes, Sciaenidae): structure of control region and phylogeneticconsiderations. Molecular Biology Reports,2011,38(7):4673-4685.
    Zhang Y. P., Wang X. X., Ryder O. A., et al. Genetic diversity and conservation of endangeredanimal species. Pure and Applied Chemistry,2002,74:575-584.
    冯昭信,韩华.大泷六线鱼资源合理利用的研究.大连水产学院学报,1998,13(2):24-28.
    浜井生三,久新健一郎.アイナメ(Hexagrammos otakii Jordan et Starks)の卵、仔魚期における形態変異と死亡に及ぼす温度の影響について.北海道大學水産學部研究彙報,1966,17(1):1-32.
    金鑫波.中国动物志(硬骨鱼纲鮋形目).北京:科学出版社,2006,550-561.
    金本自由生.アイナメ科魚類の生態III磯魚類の生活様式とクジメ、アイナメの地位.日本生態学会誌,1977,27(3):215-226.
    康斌,武云飞.大泷六线鱼的营养成分分析.海洋科学,1999,6:23-25.
    小林徳光,小林一郎,菊地喜彦,等.仙台湾におけるアイナメの年齢と成長.宮城水試研報,1990,13:1-9.
    刘奇,王亮,高天翔,等.北黄海大泷六线鱼主要生物学特征比较研究.中国海洋大学学报,2009,39:13-18.
    刘奇.大泷六线鱼(Hexagrammos otakii)生物学特征与遗传多样性研究:[博士学位论文].青岛:中国海洋大学,2010.
    宗原弘幸,竹中修.アイナメにおけるマイクロサテライトDNA多型を利用した父子判定.DNA多型,1997,5:218-222.
    中坊徹次.日本産魚類検索(中坊徹次編).東京:東海大学出版会,2000:624-625.
    大島泰雄,中村中六.アイナメ(Hexagrammos otakii Jordan et Starks)の生活史に就いて.水産学会報,1942,9:81-89.
    邱丽华,姜志强,秦克静.大泷六线鱼仔鱼摄食及生长的研究.中国水产科学,1999,6(3):1-4.
    邱丽华,秦克静,吴立新,等.光照对大泷六线鱼仔鱼摄食量的影响.动物学杂志,1999,34(5):4-8.
    関河武史,高橋豊美,高津哲也,等.北海道木古内湾におけるアイナメHexagrammos otakii雌の成熟.日本水産学会誌,2003,69(3):380-386.
    関河武史,高橋豊美,髙津哲也.北海道木古内湾におけるアイナメHexagrammos otakiiの年齢と成長.水産増殖,2002,54(4):395-400.
    柳本卓,小林敬典.日本産アイナメ類7種のミトコンドリアDNAによる系統関係の検討.DNA多型,2004,12:87-89.
    王书磊,姜志强,苗治欧.大连海区大泷六线鱼生物学指标的季节变化.水产科学,2005,24(5):1-3.
    温海深,王连顺,牟幸江,等.大泷六线鱼精巢发育的周年变化研究.中国海洋大学学报,2007,37(4):581-585.
    徐长安,李军,张士璀.激素诱导欧氏六线鱼性腺发育的初步研究.海洋科学,1998,3:4-5.
    山本護太郎,西岡丑三.アイナメの産卵習性並びに発生経過.生物,1948,3(5):167-17.
    叶青,郑家声.青岛近海欧氏六线鱼食性的研究.海洋湖沼通报,1992,4:50-55.
    叶青.青岛近海欧氏六线鱼Hexagrammos otakii Jordan et Starks年龄和生长的研究.青岛海洋大学学报,1993,23(2):59-68.
    喻子牛,孔晓瑜,冯东岳,等.许氏平鮋Sebastes schlegeli(Hilgendorf)及欧式六线鱼Hexagrammos otakii Jordan et Starks核型研究.青岛海洋大学学报,1992,22(2):118-124.
    郑家声,王梅林,史小川,等.欧氏六线鱼Hexagrammos otakii Jordan et Starks性腺发育的周年变化研究.青岛海洋大学学报,1997,27(4):497-503.
    庄虔增,于鸿仙,刘岗,等.六线鱼苗种生产技术研究.中国水产科学,1999,6(1):103-106.
    庄虔增,于鸿仙,刘岗,等.山东沿岸六线鱼早期发育的研究.海洋学报,1998,20(6):139-144.
    Balanov A. A., Antonenko D. V.. First finding of Hexagramos agrammus X H. Octogrammushybrids and new data about occurrence of H. agrammus (Hexagrammidae) in Peter the GreatBay (the Sea of Japan). Journal of Ichthyology,1999,39:149-156.
    Chen S., Miao G., Shao C., et al. Isolation and characterization of polymorphic microsatellite locifrom fat greenling (Hexagrammos otakii). Conservation Genetic,2008:53-54.
    Crow K., Munehara H., Kanamoto Z., et al. Maintenance of species boundaries despite rampanthybridization between three species of reef fishes (Hexagrammidae): implications for the roleof selection. Biological Journal of the Linnean Society,2007,91:135-147.
    Fukuhara O., Fushimi O.. Development and early life history of the greenlings H. otakii reared inthe laboratory. Bulletin of Japanese Society of Scientific Fisheries,1983,49(12):1842-1848.
    Kimura M. R., Yanagimoto T., Munehara H.. Maternal identification of hybrid eggs inHexagrammos spp. by means of multiplex amplified product length polymorphism ofmitochondrial DNA. Aquatic Biology,2007,1:187-194.
    Lin L. S., Ying Y. P., Han Z. Q., et al. AFLP analysis on genetic diversity and population structureof small yellow croaker Larimichthys polyactis. African Journal of Biotechnology,2009,8:2700-2706.
    Liu J. Y., Lun Z. R., Zhang J. B., et al. Population genetic structure of striped mullet, Mugilcephalus, along the coast of China, inferred by AFLP fingerprinting. BiochemicalSystematics,2009,37(4):266-274.
    Masatoshi N., Sudhir K.. Molecular Evolution and Phylogenetics. Beijing: High Education Press,2002.
    Munehara H., Kanamoto Z., Miura T.. Spawning behavior and interspecific breeding in threeJapanese greenlings (hexagrammidae). Ichthyological Research,2000,47(3-4):287-292.
    Munehara H., Takenaka O.. Microsatellite markers and multiple paternity in a paternal care fish,Hexagrammos otakii. Journal of Ethology,2000,18:101-104.
    Shinohara G.. Comparative morphology and the phylogeny of the suborder Hexagrammoidei andrelated taxa (Pisces: Scorpaeniformes). Memoirs of the Faculty of Fisheries, HokkaidoUniversity,1994,41(1):1-97.
    Song N., Zhang X. M., Gao T. X.. Genetic diversity and population structure of spottedtail goby(Synechogobius ommaturus) based on AFLP analysis. Biochemical Systematics Ecology,2010,38:1089-1095.
    Wang W., Chen L. Q., Yang P., et al. Assessing genetic diversity of populations of topmouthculter (Culter alburnus) in China using AFLP markers. Biochemical Systematics andEcology,2007,35:662-669.
    Zhang Y., Wang X., Ryder O. A., et al. Genetic diversity and conservation of endangered animalspecies. Pure and Applied Chemistry,2002,74:575-584.
    韩志强,高天翔,王志勇,等.黄姑鱼群体遗传多样性的AFLP分析.水产学报,2006,30(5):640-646.
    堀田卓朗,松石隆,坂野博之,等.北海道東部沿岸域に産卵するニシンの系群判別.日本水産学会誌,1999,65:655–660.
    石田昭夫.ニシン漁業とその生物学的考察.漁業科学叢書,1952,4:24~27.
    菅野泰次.オホーツク海北海道近海におけるニシンClupea pallasiの系群構造.日本水産学会誌,1982,48:755–762.
    川名武.北海道鰊資源の研究(第2報)稚魚発生量と太陽活動との関係.日本水産学会誌,1949,4:181-183.
    北浜仁.北海道産春ニシンClupea pallasii C. et V.の全長の経年変化.日本水産学会誌,1955,8:915-920.
    小林時正.石狩湾に出現する遺伝学的に異なる産卵ニシンの2群とその考察.北水研報告,1983,48:11–19.
    小林時正.太平洋ニシンの集団遺伝学的特性と種内分化に関する研究.遠洋水研報,1993,30:1–77.
    刘名.太平洋鲱鱼和大头鳕的群体遗传学研究:[博士学位论文].青岛:中国海洋大学水产学院,2010.
    孟庆闻.鱼类分类学.北京:农业出版社,1995.
    中坊徹次.日本産魚類検索全種の同定(第二版).東海大学出版会,2000.
    Svetovidov A. N..太平洋産ニシンの若干の生物学的特徴とそれを条件づける諸原因.ソ連北洋漁業関係文献集,1949,13:1–9.
    唐启升.黄海鲱(邓景耀等,海洋渔业生物学).北京:农业出版社,1991:296–356.
    唐启升.黄海鲱的性成熟、生殖力和生长特性的研究.海洋水产研究,1980,1:59–76.
    唐启升.应用VPA方法概算黄海鲱鱼的渔捞死亡和资源量.海洋学报,1986,8:476–486.
    阎淑珍.黄海北部青鱼资源考证.海洋科学,2006,30:88–92.
    叶昌臣,唐启升,秦裕江.黄海鲱鱼和黄海鲱鱼渔业.水产学报,1980,4:339~352.
    张世义.中国动物志(硬骨鱼纲鲱形目).北京:科学出版社,1997.
    Dahle G., Erikison A.. Spring and autumn spawners of herring (Clupea harengus) in the North Sea,Skagerrak and Kattegat, population genetic analysis. Fisheries Research,1990,9:131-141.
    Excoffier L., Smouse P. E., Quattro J. M.. Analysis of molecular variance inferred from metricdistances among DNA haplotypes: application to human mitochondrial DNA restriction data.Genetics,1992,131:479.
    Grant W. S., Utter F. M.. Biochemical population genetics of Pacific herring (Clupea pallasi).Canadian Journal of Fisheries and Aquatic Sciences,1984,41:856–864.
    Grant W. S.. Biochemical genetic divergence between Atlantic, Clupea harengus, and Pacific, C.pallasi, herring. Copeia,1986,3:714–719.
    Liu M., Gao T., Sakurai Y., et al. Mitochondrial DNA control region diversity and populationstructure of Pacific herring (Clupea pallasii)in the Yellow Sea and the Sea of Japan. ChineseJournal of Oceanology and Limnology,2011,29(2):317-325.
    McHugh J. L.. Geographic variation in the Pacific herring. Copeia,1954,1:139~151.
    Jorstad K. E., Dahle G., Paulsen O. I.. Genetic comparison between Pacific herring (Clupea pallasi)and a Norwegian fjord stock of Atlantic herring (Clupea harengus). Canadian Journal ofFisheries Aquatic Sciences,1994,51:233~239.
    Kijima A., Nakajima M., Fujio Y.. Genetic differentiation among localities in the natural Pacificherring around Japan and genetic characterization of the artificial seeds compared with thenatural population. Tohoku Journal of Agricultural Research,1992,42:83–93.
    Lambeck K., Esat T. M., Potter E. K.. Links between climate and sea levels for the past threemillion years. Nature,2002,419:199-206.
    Lassuy D. R.. Species profiles: life histories and environmental requirements of coastal fishes andinvertebrates (Pacific Northwest)-Pacific herring. United States Fish and Wildlife Service,Biology Report,1989,82(11.126). United States Army Corps of Engineers, TR-EL-82-4:1–18.
    Motoda S., Hirano Y.. Review of Japanese herring investigations. Rapports et Proces-Verbaux desReunions, Conseil Permanent International pour Exploitation de la Mer,1963,154:249~261.
    O'Connell M., Dillon M. C., Wright J. M., et al. Genetic structuring among Alaskan Pacificherring populations identified using microsatellite variation. Journal of Fish Biology,1998,1:150–163.
    O'Connell M., Dillon M. C., Wright J. M.. Development of primers for polymorphic microsatelliteloci in the Pacific herring (Clupea harengus pallasi). Molecular Ecology,1998,7(3):358–360.
    Rabin D. J., Barnhart R. A.. Fecundity of Pacific herring, Clupea harengus pallasii, in HumboldtBay, California. California Fish and Game,1977,3:193~196.
    Rabin D. J., Barnhart R.A.. Population characteristics of Pacific herring, Clupea harengus pallasii,in Humboldt Bay, California. California Fish and Game,1986,1:4~16.
    Wang P. X.. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic andsedimentological features. Marine Geology,1999,156:5-39.
    Ware D. M.. Life history characteristics, reproductive value, and resilience of Pacific herring(Clupea harengus pallasi). Canadian Journal of Fisheries Aquatic Sciences,1985,42:127–137.
    Yeh F. C., Yang R., Boyle T.. Popgene version1.32: Microsoft Windows-Based Freeware forPopulation Genetic Analysis. University of Alberta, Edmonton, Alberta,1999.
    Zhang Y., Wang X., Ryder O. A., et al. Genetic diversity and conservation of endangered animalspecies. Pure and Applied Chemistry,2002,74:575-584.
    金鑫波.中国动物志(硬骨鱼纲鮋形目).北京:科学出版社,2006:550-561.
    李明德,康洁,王迎.中国鱼类名录Ⅷ——鲉形目.海洋通报,2003,22:57-62.
    中坊徹次.日本産魚類検索全種の同定(第二版).东京:東海大学出版社,2000:624-625.
    任桂静,刘奇,高天翔,等.基于线粒体DNA序列探讨斑头鱼分类地位.动物分类学报,2011,36:332-340.
    柳本卓,小林敬典.日本産アイナメ類7種のミトコンドリアDNAによる系統関係の検討.DNA多型,2004,12:87-89.
    郑家声,王梅林,戴继勋.斑头鱼的核型及性染色体研究.遗传,1997,19:61~62.
    郑家声,王梅林,朱丽岩,等.斑头鱼Agrammus agrammus(Temminck et Schlegel)和铠平鮋Sebastes hubbsi(Matsubara)核型研究.中国海洋大学学报,1997,27:333-338.
    Chung E. Y., Lee T. Y.. Studies on the reproductive cycle of greenling Agrammus agrammus(Temminck et Schlegel). Bulletin of the National Fisheries University of Pusan,1985,25(1):26-42.
    Crow K., Munehara H., Kanamoto Z., et al. Maintenance of species boundaries despite rampanthybridization between three species of reef fishes (Hexagrammidae): implications for the roleof selection. Biological Journal of the Linnean Society,2007,91:135-147.
    Kanamoto Z.. Habitats and behaviors of Agrammus agrammus (Temminck et Schlegel) andHexagrammos otakii (Jordan et Starks). Japanese Journal of Ecology,1976,26:1–12.
    Kimura M. R., Munehara H.. Spawning substrata are important for breeding habitat selection butdo not determine premating reproductive isolation in three sympatric Hexagrammos species.Journal of Fish Biology,2011,78:112–126.
    Lin L. S., Ying Y. P., Han Z. Q., et al. AFLP analysis on genetic diversity and population structureof small yellow croaker Larimichthys polyactis. African Journal of Biotechnology,2009,8:2700-2706.
    Liu J. Y., Lun Z. R., Zhang J. B., et al. Population genetic structure of striped mullet, Mugilcephalus, along the coast of China, inferred by AFLP fingerprinting. BiochemicalSystematics,2009,37(4):266-274.
    Masatoshi N., Sudhir K.. Molecular Evolution and Phylogenetics. Beijing: High Education Press,2002.
    Masuda H., Amaoka K., Araga G., et al. The Fishes of the Japanese Archipelago (Second Edition).Tokai University Press, Tokyo,1984:320.
    Matsumiya T., Sakamoto K., Nishikawa S., et al. Karyotype of Agrammus agrammus. Journal ofIchthyology,1980,27(3):273-276.
    Seok N. K., Gun W. B., David W. K.. Comparative feeding ecology of two sympatric greenlingspecies, Hexagrammos otakii and Hexagrammos agrammus in eelgrass Zostera marina beds.Environmental Biology of Fishes,2005,74:129–140.
    Song N., Zhang X. M., Gao T. X.. Genetic diversity and population structure of spottedtail goby(Synechogobius ommaturus) based on AFLP analysis. Biochemical Systematics Ecology,2010,38:1089-1095.
    Wang W., Chen L. Q., Yang P., et al. Assessing genetic diversity of populations of topmouthculter (Culter alburnus) in China using AFLP markers. Biochemical Systematics andEcology,2007,35:662-669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700