用户名: 密码: 验证码:
基于钎料球重熔的MEMS微部件自组装及熔滴激光驱动行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于微钎料熔滴表面张力的MEMS部件自组装技术能够自行实现对微机械部件的组装,形成具有高深宽比的三维复杂微结构,对微机械部件的制造具有重要意义。与此同时,微液滴的驱动行为则为MEMS微开关及微流体器件提供了关键技术,能够启发新型MEMS器件的研发。本文基于激光重熔工艺开发了一种新型的MEMS自组装技术,并搭建了高精度的自组装微操作平台;通过数值方法与试验相结合对影响自组装静平衡位置及精度的各因素进行了系统的研究;并基于计算流体力学方法对自组装的动态翻转过程、钎料同微部件之间的流固耦合机制进行了深入分析;同时,还首次对固体基板上微钎料熔滴的激光驱动行为进行了探索。
     自组装精度影响因素研究表明,自组装角度偏差小于2.5o;随着焊盘尺寸和长宽比的增大,自组装静平衡角度越小;同时,自组装中使用的钎料体积越小,静平衡角度越小,越利于自组装系统保持其静平衡位置;而在假设完全铺展润湿的前提下,钎料的表面张力及接触角变化对自组装静平衡位置几乎不会产生影响;在焊盘尺寸/钎料球直径一定时,其静平衡位置几乎相同,这一比值可定义为自组装尺寸因子η。
     对无铰链自组装结构的能量分析表明,系统具有减小固定和活动微部件之间间距的趋势(由此提出了“虚铰链”的概念),该趋势会逐渐随着活动微部件接近于静平衡位置而减小,当活动微部件达到静平衡位置时,间距闭合趋势消失。针对无铰链结构基于引线键合工艺,开发了一种新型的MEMS自组装限位结构,在引入该限位结构后,自组装角度偏差小于0.5o。
     基于数值研究方法探寻了微钎料熔滴的动态润湿行为,结果表明动态润湿角模型更适合于对快速润湿铺展过程进行拟合,随着润湿铺展时间的加大,会降低拟合准确性。在润湿铺展的初期快速铺展阶段,Rw(t)~tn(n=0.32~0.45)关系能很好的拟合润湿半径随时间的变化,但当钎料趋于平衡状态时,拟合出现偏差。进一步研究表明,钎料的润湿铺展过程可以通过两段Rw(t)~tn关系进行拟合,n值的差异意味着润湿铺展机制的转变。
     自组装动态过程的研究结果表明,自组装中钎料熔滴优先铺展翻转的活动微部件,之后才在固定微部件上快速铺展。翻转过程具有增大同一时刻下钎料熔滴在活动微部件上的动态接触角的趋势,增大润湿驱动力,使得活动微部件上熔滴润湿速率更快,呈现出优先铺展的不对称现象。转矩分析表明,自组装动态过程中净转矩Mnet上下振荡,接触线的前进会加剧Mnet的复杂性。平衡位置附近,Mnet会一直保持在0值附近波动,且正负两边的波动接近对称。能量分析表明,自组装钎料熔滴及微部件动能相对于减少的钎料表面能而言十分微小,能量转换效率较低,大部分能量通过转化为内能的方式耗散。
     对影响自组装动态过程的各因素分析表明,随着钎料熔滴体积的减小,自组装翻转的速度也越快;钎料润湿铺展速度较慢时,自组装过程呈现出明显的“快-慢-快”的三阶段,这是钎料不对称铺展的结果。而钎料润湿铺展速度较快时,翻转作用对于润湿力的增强效应减弱,钎料熔滴呈现对称铺展的趋势。对于自组装翻转速度而言,当翻转速度较慢时,钎料熔滴自由表面能最低。翻转速度较快时,钎料熔滴自由表面能会出现升高的趋势,之后随着固定微部件上接触线的快速前进,又会急剧降低。
     最后,使用激光偏置局部加热方法在开放的固体基板上成功实现了微钎料熔滴的驱动,熔滴总是向着激光中心一侧(热端)移动,之后当激光束中心线同钎料熔滴对称中心重合时,熔滴停止前进。这同一般的液滴热致驱动方向(向冷端移动)正好相反。定性及定量分析结果表明微钎料熔滴驱动过程中,Marangoni对流及钎剂蒸汽反冲作用力会推动熔滴向偏离激光束中心一侧移动(冷端),减弱熔滴向激光束中心靠拢的趋势,钎料熔滴在基板上的热致润湿性变化才是驱动熔滴前进的主要机制。
MEMS self-assembly, which utilizes molten solder surface tension forces to self-assemble MEMS microcomponents, can successfully fabricate sophisticated3-D microstructures with high aspect-ratio. It is significant for MEMS manufacturing. Moreover, actuation of microdroplet is a critical technique for microswithes and microfluidic devices, inspiring the developments of novel MEMS devices. This dissertation presented a new self-assembly method using laser reflowing, and a micromanipulation prototype was developed. Systematic studies were conducted on the factors affecting the equilibrium position and precision of self-assembly via the combined experimental and numerical approaches. Dynamic self-assembly process and solder-microcomponents interactions were also investigated. In addition, a pioneer research was conducted on actuating a microscale solder droplet on an open surface.
     Studies on the factors affecting the self-assembly precision show that variations of the equilibrium angle can be controlled within±2.5o; the increasing of pad size and aspect-ratio decrease the equilibrium angle; with smaller solder volume, the equilibrium angle is also smaller and the tendency restoring the microcomponents to equilibrium position is stronger; based on the assumption that the pads can be completely wetted, the variations of solder surface tension and contact angle have no effects on the equilibrium position; a parameter η representing the combination of pad size and solder volumes is proposed and the same η value almost achieves the same equilibrium angle. Energy investigations on the hingeless self-assembly structures demonstrate
     that the self-assembly system has the tendency decreasing the gap between the microcomponents (a visual hinge definition is proposed). This tendency decreases with the free microcomponent approaching the equilibrium position, and it vanishes at the equilibrium position. For hingeless structures, a wire limiter, which optimized the self-assembly precision to±0.5o, was developed. Based on the numerical method, dynamic wetting of a microscale solder
     droplet was studied. It shows that the dynamic contact angle model is more appropriate for describing the initial fast wetting process, and has a poor accuracy in the vicinity of the equilibrium position. Moreover, the prediction shows that the relations between wetting radius and time can be perfectly described by Rw(t)~tn (n=0.32~0.45) in the initial fast wetting process. A further study indicates that the overall process of wetting can be described by the combined of two Rw(t)~tn relations, in which the change of n represents the difference of wetting mechanisms.
     Studies were conducted on the dynamic self-assembly process. The results show that the solder droplet tends to spreading on the free microcomponent firstly, and then spreads on the fixed microcomponent. The self-assembly rotation has the tendency increasing the dynamic contact angle of solder on the free microcomponent. This tendency can increase the wetting force, leading a fast and asymmetric spreading process. A torque analysis show that the net torque of self-assembly oscillates. The advancing of the contact line will increase the complexity of net torque. In the vicinity of the equilibrium position, the net torque oscillates between zero-value and almost presents same amplitudes at positive and negative sides. Energy analysis shows that the kinetic energies of the microcomponent and solder are small compared with the decease of the solder surface energy, which indicates the energy conversion efficiency is low and most of the energy needs to be dissipated.
     Analysis on the factors affecting the dynamic self-assembly process shows that the microcomponent rotates faster with the decrease of solder volume. For the slow spreading solder, self-assembly shows obvious “fast-slow-fast” three-stage, which is induced by asymmetric wetting. For the fast spreading solder, the wetting force enhancing effect induced by rotation is weakened, and the solder tends to spreading symmetrically. Investigation on the rotating rate shows that the smaller rate leads to a smaller solder surface energy. With a high rotating rate, the solder surface energy may increase during the self-assembly, and then decreases fast when the contact line advancing on the fixed microcomponent.
     In addition, microscale solder droplets were successfully actuated by laser offset-heating on an open surface. The actuations always allow the microdroplet moving to the center of laser beam (hot side), and then trap the droplet when the center of the laser beam and droplet coincides. This movement is opposite to the common thermally induced microdroplet actuations. Qualitative and quantitative analyses demonstrate that Marangoni flow and the vapor recoil forces of the soldering flux lead a movement towards the cold regions, weakening the driving tendency. Whereas, thermally induced wettability alternation is the main mechanism driving the droplet forward.
引文
[1] Maluf N, Williams K. An Introduction to Microelectromechanical SystemsEngineering, Second Edition[M]. Boston: Artech House,2004:1-11.
    [2] Tummala N R R. Fundamentals of Microsystems Packaging[M]. Mcraw-Hill,2001:542-578.
    [3] Tien N C, Kiang M H, Daneman M J, et al. Actuation of PolysiliconSurface-Micromachined Mirrors[C]. Miniaturized Systems with Micro-Opticsand Micromechanics, San Jose, CA, USA,1996,2687:53-59.
    [4] Muller R S, Lau K Y. Surface-Micromachined Microoptical Elements andSystems[C]. Proceedings of the IEEE,1998,86(8):1705-1720.
    [5] Friedberger A, Muller R S. Improved Surface-Micromachined Hinges forFold-Out Structures[J]. Journal of Microelectromechanical Systems,1998,7(3):315-319.
    [6] Wang M-F, Maleki T, Ziaie B, et al. Enhanced3-D Folding of SiliconMicrostructures via Thermal Shrinkage of a Composite Organic/InorganicBilayer[J]. Journal of Microelectromechanical Systems,2008,17(4):882-889.
    [7] Bassik N, Stern G M and Gracias D H. Microassembly Based on Hands FreeOrigami with Bidirectional Curvature[J]. Applied Physics Letters,2009,95(9):091901-3.
    [8] Jun Z, Chang L, Trainor D R, et al. Development of Three-DimensionalInductors Using Plastic Deformation Magnetic Assembly (PDMA)[J]. IEEETransactions on Microwave Theory and Techniques,2003,51(4):1067-1075.
    [9] Syms R R A, Yeatman E M, Bright V M, et al. The State-of-the-Art of SurfaceTension-Powered Self-Assembly of Microstructures[J]. Journal ofMicroelectromechanical Systems,2003,12(4):387-417.
    [10] Morris C J, Dubey M. Microscale Self-Assembly Using Molten Alloys withDifferent Melting Points[J]. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures,2008,26(6):2534-2538.
    [11] Teh S Y, Lin R, Hung L H, et al. Droplet Microfluidics[J]. Lab Chip,2008,8(2):198-220.
    [12] Sen P, Kim C J. A Fast Liquid-Metal Droplet Microswitch UsingEWOD-Driven Contact-Line Sliding. Journal of MicroelectromechanicalSystems[J],2009,18(1):174-185.
    [13] Mastrangeli M, Abbasi S, Varel C, et al. Self-Assembly from Milli-toNanoscales: Methods and Applications[J]. Journal of Micromechanics andMicroengineering,2009,19(8):083001-37.
    [14] Srinivasan U, Liepmann D and Howe R T. Microstructure to SubstrateSelf-Assembly Using Capillary Forces[J]. Journal of MicroelectromechanicalSystems[J],2001,10(1):17-24.
    [15] Syms R R A, Yeatman E M. Self-Assembly of Three-DimensionalMicrostructures Using Rotation by Surface Tension Forces[J]. ElectronicsLetters,1993,29(8):662-664.
    [16] Syms R R A. Equilibrium of Hinged and Hingeless Structures Rotated UsingSurface Tension Forces[J]. Journal of Microelectromechanical Systems,1995,4(4):177-184.
    [17] Harsh K F, Lee Y C. Modeling for Solder Self-Assembled MEMS[C].Micro-Optics Integration and Assemblies, San Jose, CA, USA,1998:177-184.
    [18] Harsh K F, Bright V M and Lee Y C. Solder Self-Assembly forThree-Dimensional Microelectromechanical Systems[J]. Sensors and ActuatorsA: Physical,1999,77(3):237-244.
    [19] Harsh K F, Kladitis P E, Michalicek M A, et al. Solder Self-Alignment forOptical MEMS[C]. IEEE Lasers and Electro-Optics Society199912th AnnualMeeting,1999,2:860-861.
    [20] Harsh K F, Irwin R S and Lee Y C. Solder Self-Assembly for MEMS[C].44thInternational Instrumentation Symposium, Reno, NV, USA,1998:249-255.
    [21] Brakke K. The Surface Evolver. Exper. Math[J],1992,1:141-165.
    [22] Pan K, Yan Y, Zhou B, et al. Modeling for Solder Self-Assembly of MEMSMicrostructure Powered by Surface Tension[C]. IEEE7th InternationalConference on Electronic Packaging Technology, Shanghai, China,2006:4198910-4.
    [23] Chiang K N, Yuan C A. An Overview of Solder Bump Shape PredictionAlgorithms with Validations[J]. IEEE Transactions on Advanced Packaging,2001,24(2):158-162.
    [24] Goldmann L S. Geometric Optimization of Controlled Collapse Inter-Connections[J]. IBM Journal of Research and Development,1969,13(3):251-265.
    [25] Pfeifer M J. Solder Bump Size and Shape Modeling and ExperimentalValidation[J]. IEEE Transactions on Advanced Packaging,1997,20(4):452-457.
    [26] Satoh R, Ohshima M, Hirota K, et al. Optimum Bonding Shape Control ofMicro-Solder Joint of IC and LSI[J]. J. Japan Inst. Metals,1987,51(6):553-560.
    [27] Ohshima M, Kenmotsu A, and Ishi L. Optimization of Micro-Solder ReflowBonding for the LSI Flip Chip[C]. Proc.2nd Annual Intl. ElectronicsPackaging Soc. Conf.,1982:481-488.
    [28] Heinrich S M, Liedtke P E, Nigro N J, et al. Effect of Chip and Pad Geometryon Solder Joint Formation in SMT[J]. Journal of Electronic Packaging,1993,115(4):433-439.
    [29] Heinrich S M, Schaefer M, Schroeder S A, et al. Prediction of Solder JointGeometries in Array-Type Interconnects[J]. Journal of Electronic Packaging,1996,118(3):114-121.
    [30] Heinrich S M, Shakya S, Liang J, et al. An Analytical Model forTime-Dependent Shearing Deformation in Area-Array Interconnects[J].Journal of Electronic Packaging,2000,122(4):328-334.
    [31] Chiang K N, Chen W L. Electronic Packaging Reflow Shape Prediction for theSolder Mask Defined Ball Grid Array[J]. Journal of Electronic Packaging,1998,120(2):175-178.
    [32] Chen W H, Lin S R and Chiang K N. Predicting the Liquid Formation for theSolder Joints in Flip Chip Technology[J]. Journal of Electronic Packaging,2006,128(4):331-338.
    [33] Nigro N J, Heinrich S, Elkouh A, et al. Finite Element Method for PredictingEquilibrium Shapes of Solder Joints[J]. Journal of Electronic Packaging,1993,115:141-146.
    [34] Nigro N J, Zhou F J, Heinrich S M, et al. Parametric Finite Element Methodfor Predicting Shapes of Three-Dimensional Solder Joints[J]. Journal ofElectronic Packaging,1996,118(3):142-147.
    [35] Chiang K N, Lin Y T and Cheng H C. On Enhancing Eutectic Solder JointReliability Using a Second-Reflow-Process Approach[J]. IEEE Transactionson Advanced Packaging,2000,23(1):9-14.
    [36] Mui G K, Wu X H, Hu K X, et al. Solder Joint Formation Simulation andFinite Element Analysis[C].47th Electronic Components and TechnologyConference,1997:436-443.
    [37] Wu X, Dou X, Yeh C P, et al. Solder Joint Formation Simulation andComponent Tombstoning Prediction During Reflow[J]. Journal of ElectronicPackaging,1998,120(2):141-144.
    [38] Singler T J, Zhang X and Brakke K A. Computer Simulation of SolderBridging Phenomena[J]. Journal of Electronic Packaging,1996,118(3):122-126.
    [39] Wei L, Patra S K and Lee Y C. Design of Solder Joints for Self-AlignedOptoelectronic Assemblies[J]. IEEE Transactions on Advanced Packaging,1995,18(3):543-551.
    [40]周文凡,田艳红,王春青. BGA焊点的形态预测及可靠性优化设计[J].电子工艺技术,2005,26(4):187-196.
    [41] Wang G Z, Cheng Z N and Wang C Q. Computer Simulation ofThree-Dimensional Castellated Solder Joint Geometry in Surface MountTechnology[J]. Modeling and Simulation in Materials Science and Engineering,1998,6(5):557-565.
    [42] Li M Y, Wang C Q. Solder Joints Design Attribute to No Solder Bridge forFine Pitch Device[C]. IEEE2003International Conference on ElectronicPackaging Technology,2003:70-75.
    [43] Yu L M, Sur B H, Pyo K Y, et al. Simulative Analysis on Factors InfluencingSolder Joint Bridging of Fine Pitch Devices[J]. Journal of ElectronicPackaging,2004,126(1):22-25.
    [44] Zhang W, Wang C Q and Tian Y H. Modeling of Three-Dimensional Geometryof Solder Joint in Fiber Attachment Soldering[C].2006InternationalConference on Electronic Materials and Packaging (EMAP),2006:1-4.
    [45] Zhang W, Wang C Q and Tian Y H. Design of Solder Joint for Self-Alignmentin Optical Fiber Attachment Soldering[C]. IEEE2007InternationalConference on Electronic Packaging Technology,2007:1-5.
    [46] Zhang W, Wang C Q and Tian Y H. Numerical and Experimental Analysis ofSolder Joint Self-Alignment in Fiber Attachment Soldering[J]. Journal ofElectronic Packaging,2008,130(1):011009-9.
    [47] Nagata T, Kobayashi T and Sakuta H. Prediction of Equilibrium and Stabilityof Molten Solder Profiles by Finite Element Analysis[C]. Proceedings ofIMECE2002, New Orleans,2002:39680.
    [48] Nagata T, Kobayashi T. Prediction of Equilibrium and Stability of MoltenSolder Geometries by Finite Element Analysis[C]. ASME InterPACK05,2005,2005(42002):1181-1186.
    [49] Ahmad M, Hubbard K and Hu M. Solder Joint Shape Prediction Using aModified Perzyna Viscoplastic Model[J]. Journal of Electronic Packaging,2005,127(3):290-298.
    [50] Wang W, Hong F J and Qiu H H. Prediction of Solder Bump Formation inSolder Jet Packaging Process[J]. IEEE Transactions on Components andPackaging Technologies,2006,29(3):486-493.
    [51] Takagi K, Qiang Y, Shibutani T, et al. Study on High Reliable Design Methodfor Lead-Free Solder Joints on Electronic Components[C].201012th IEEEIntersociety Conference on Thermal and Thermomechanical Phenomena inElectronic Systems (ITherm),2010:1-8.
    [52]田德文.熔滴与平面和角形结构碰撞的动态行为及形态[D].哈尔滨:哈尔滨工业大学工学博士学位论文,2009:75-96.
    [53] Tian D W, Tian Y H, Wang C Q, et al. Three-Dimensional Modelling of SolderDroplet Impact onto A Groove[J]. Journal of Physics D: Applied Physics,2008,41(24):245503.
    [54] Tian D W, Wang C Q and Tian Y H. Effect of Solidification on Solder BumpFormation in Solder Jet Process: Simulation and Experiment[J]. Transactionsof Nonferrous Metals Society of China,2008,18(5):1201-1208.
    [55] Tian D W, Tian Y H, Wang C Q, et al. Modeling of an Oblique Impact ofSolder Droplet onto a Groove with the Impact Point to be Offset from theGroove Surfaces Interface[J]. Journal of Materials Science,2009,44(7):1772-1779.
    [56]郑智文.直立式可旋转微光学镜片之制作与测试[D].台湾:台湾国立成功大学硕士学位论文,2004:15-33.
    [57] Dahlmann G W, Yeatman E M. High Q Microwave Inductors on Silicon bySurface Tension Self-Assembly[J]. Electronics Letters,2000,36(20):1707-1708.
    [58] Syms R R A. Operation of Surface-Tension Self-Assembled3DMicro-Optomechanical Torsion Mirror Scanner[J]. Electronics Letters,1999,35(14):1157-1158.
    [59] Pister K S J, Judy M W, Burgett S R, et al. Microfabricated Hinges[J]. Sensorsand Actuators A: Physical,1992,33(3):249-256.
    [60] Friedberger A, Muller R S. Improved Surface-Micromachined Hinges forFold-Out Structures[J]. Journal of Microelectromechanical Systems,1998,7(3):315-319.
    [61] McCarthy B, Bright V M and Neff J A. A Solder Self-Assembled LargeAngular Displacement Torsional Electrostatic Micromirror[C].2002The15thIEEE International Conference on Micro Electro Mechanical Systems,2002:499-502.
    [62] McCarthy B, Bright V M and Neff J A. A Multi-Component SolderSelf-Assembled Micromirror[J]. Sensors and Actuators A: Physical,2003,103(1-2):187-193.
    [63] McCarthy B, Bright V M and Neff J A. A Solder Self-Assembled TorsionalMicromirror Array[C]. IEEE2003The16th Annual International Conferenceon Micro Electro Mechanical Systems,2003:215-218.
    [64] Dahimann G W, Yeatman E M. Microwave Characteristics of MeanderInductors Fabricated by3D Self-Assembly[C].20008th IEEE InternationalSymposium on High Performance Electron Devices for Microwave andOptoelectronic Applications,2000:128-133.
    [65] Dahlmann G W, Yeatman E M, Young P R, et al. Mems High Q MicrowaveInductors Using Solder Surface Tension Self-Assembly[C].2001IEEE MTT-SInternational Microwave Symposium Digest,2001,1(1):329-332.
    [66] Dahlmann G W, Yeatman E M, Young P R, et al. Fabrication, RfCharacteristics and Mechanical Stability of Self-Assembled3D MicrowaveInductors[J]. Sensors and Actuators A: Physical,2002,97-98:215-220.
    [67] Mukherjee A G, Vatti S, Kiziroglou M E, et al. Integration of Self-AssembledInductors with CMOS LC Oscillators[C].2009European MicrowaveIntegrated Circuits Conference(EuMIC2009),2009:523-526.
    [68] Kladitis P E, Bright V M. Prototype Microrobots for Micro-Positioning andMicro-Unmanned Vehicles[J]. Sensors and Actuators A: Physical,2000,80(2):132-137.
    [69] Kladitis P E, Linderman R J and Bright V M. Solder Self-Assembled MicroAxial Flow Fan Driven by A Scratch Drive Actuator Rotary Motor[C].2001The14th IEEE International Conference on Micro Electro Mechanical Systems,2001:598-601.
    [70] Linderman R J, Kladitis P E and Bright V M. Development of the MicroRotary Fan[J]. Sensors and Actuators A: Physical,2002,95(2-3):135-142.
    [71] Syms R R A, Gormley C and Blackstone S. Improving Yield, Accuracy andComplexity in Surface Tension Self-Assembled MOEMS[J]. Sensors andActuators A: Physical,2001,88(3):273-283.
    [72] Harsh K F, Bright V M and Lee Y C. Study of Micro-Scale Limits of SolderSelf-Assembly for MEMS[C].200050th Electronic Components andTechnology Conference,2000:1690-1695.
    [73] Harsh K F, Kladitis P E, Zhang Y, et al. Tolerance and Precision Study forSolder Self-assembled MEMS[C]. Proceedings of SPIE inMicro-Opto-Electro-Mechanical Systems, Glasgow, United Kingdom,2000,4075(2000):173-184.
    [74] Kladitis P E, Bright V M and Kharoufeh J P. Uncertainty in Manufacture andAssembly of Multiple-Joint Solder Self-assembled MicroelectromechanicalSystems (MEMS)[J]. Journal of Manufacturing Processes,2004,6(1):32-50.
    [75] Huebner A, Sharma S, Srisa-Art M, et al. Microdroplets: A Sea of Applications?[J]. Lab Chip,2008,8(8):1244-54.
    [76] Yang C G, Xu Z R and Wang J H. Manipulation of Droplets in MicrofluidicSystems[J]. Trends in Analytical Chemistry,2010,29(2):141-157.
    [77] Garstecki P, Fuerstman M J, Stone H A, et al. Formation of Droplets andBubbles in a Microfluidic T-Junction—Scaling and Mechanism of Break-up[J].Lab Chip,2006,6:437-446.
    [78] Hung L H, Choi K M, Tseng W Y, et al. Alternating Droplet Generation andControlled Dynamic Droplet Fusion in Microfluidic Device for CdsNanoparticle Synthesis[J]. Lab Chip,2006,6:174-178.
    [79] Velev O D, Prevo B G and Bhatt K H. On-Chip Manipulation of FreeDroplets[J]. Nature,2003,426(6966):515-516.
    [80] McHale G, Brown C, Newton M I, et al. Dielectrowetting Driven Spreading ofDroplets[J]. Physical Review Letters,2011,107(18):186101-4.
    [81] Darhuber A A, Valentino J P, Davis J M, et al. Microfluidic Actuation byModulation of Surface Stresses[J]. Applied Physics Letters,2003,82(4):657-659.
    [82] Ohashi T, Kuyama H, Hanafusa N, et al. A Simple Device Using MagneticTransportation for Droplet-Based PCR[J]. Biomedical Microdevices,2007,9(5):695-702.
    [83] Lippmann M G. Relatlons Entre les Phénomènes Electriques et Capillaries[J].Ann. Chim. Phys.,1875,5:494-549.
    [84] Pollack M G, Shenderov A D and Fair R B. Electrowetting-based Actuation ofDroplets for Integrated Microfluidics[J]. Lab Chip,2002,2:96-101.
    [85] Colgate E, Matsumoto H. An Investigation of Electrowetting BasedMicroactuation[J]. Journal of Vacuum Science&Technology A: Vacuum,Surfaces, and Films,1990,8(4):3625-3633.
    [86] Masuda S, Washizu M and Nanba T. Novel Method of Cell Fusion in FieldConstriction Area in Fluid Integration Circuit[J]. IEEE Trans. on IndustryApplications,1989,25(4):732-737.
    [87] Sen P, Kim C J. A Fast Liquid-Metal Droplet Microswitch Using Ewod-DrivenContact-Line Sliding[J]. Journal of Microelectromechanical Systems,2009,18(1):174-185.
    [88] Sen P, Kim C J. Microscale Liquid-Metal Switches—A Review[J]. IEEE Trans.on Industrial Electronics,2009,56(4):1314-1330.
    [89] Wan Z, Zeng H and Feinerman A. Reversible Electrowetting of Liquid-MetalDroplet[J]. Journal of Fluids Engineering,2007,129(4):388-394.
    [90] Kim J, Shen W, Latorre L, et al. A Micromechanical Switch withElectrostatically Driven Liquid-Metal Droplet[J]. Sensors and Actuators A:Physical,2002,97-98(0):672-679.
    [91] Latorre L, Joonwon K, Junghoon L, et al. Electrostatic Actuation of MicroscaleLiquid-Metal Droplets[J]. Journal of Microelectromechanical Systems,2002,11(4):302-308.
    [92] Baroud C N, Vincent M R S and Delville J P. An Optical Toolbox for TotalControl of Droplet Microfluidics[J]. Lab Chip,2007,7(8):1029-33.
    [93] Darhuber A A, J P Valentino, Davis J M, et al. Microfluidic Actuation byModulation of Surface Stresses[J]. Applied Physics Letters,2003,82(4):657-659.
    [94] Baroud C N, Delville J P, Gallaire F, et al. Thermocapillary Valve for DropletProduction and Sorting[J]. Physical Review E,2007,75(4):046302.
    [95] Verneuil E, Cordero M, Gallaire F, et al. Laser-Induced Force on AMicrofluidic Drop: Origin and Magnitude[J]. Langmuir,2009,25(9):5127-5134.
    [96] Baroud C N, Gallaire F and Dangla R. Dynamics of Microfluidic Droplets[J].Lab Chip,2010,10(16):2032-2045.
    [97]赖日飞.激光植球系统设计及实验研究.哈尔滨:哈尔滨工业大学工学硕士学位论文,2010:25-47.
    [98] De Gennes P G. Wetting: Statics and Dynamics[J]. Review of Moden Physics,1985,57(3):827-861.
    [99] Gasior W, Moser Z, Pstru J, et al.(Sn-Ag)eut+Cu Soldering Materials, Part I:Wettability Studies[J]. Journal of Phase Equilibria and Diffusion,2004,25(2):115-121.
    [100] Harsh K F. Design Optimization of MEMS Solder Self-Assembly[D]. UnitedStates: Ph.D Dissertation of University of Colorado at Boulder,2001:225.
    [101] Toyozawa K, Fujita K, Minamide S, et al. Development of Copper WireBonding Application Technology[J]. IEEE Trans. on Components, Hybrids,and Manufacturing Technology,1990,13(4):667-672.
    [102]杭春进.铜球可变形性在线测量方法及Cu/Al焊点可靠性研究.哈尔滨:哈尔滨工业大学工学博士学位论文,2008:1-30.
    [103] Yost F G, Hosking F M and Frear D R. The Mechanics of Solder Alloy Wettingand Spreading[M]. New York: Van Nostrand Reinhold,1993:1-69.
    [104] Gao Y X, Fan H and Xiao Z. A Thermodynamics Model for Solder ProfileEvolution[J]. Acta Materialia,2000,48(4):863-874.
    [105] Kim C, Kang S C and Baldwin D F. Experimental Evaluation of WettingDynamics Models for Sn63Pb37And SnAg4.0Cu0.5Solder Materials[J].Journal of Applied Physics,2008,104(3):033537.
    [106] Voinov O. Hydrodynamics of Wetting[J]. Fluid Dynamics,1976,11(5):714-721.
    [107] Tanner L. The Spreading of Silicone Oil Drops on Horizontal Surfaces[J].Journal of Physics D: Applied Physics,1979,12:1473-1484.
    [108] Huh C, Scriven L. Hydrodynamic Model of Steady Movement of aSolid/Liquid/Fluid Contact Line[J]. Journal of Colloid and Interface Science,1971,35(1):85-101.
    [109] Dussan V. The Moving Contact Line: the Slip Boundary Condition[J]. Journalof Fluid mechanics,1976,77(4):665-684.
    [110] Cox R. The Dynamics of the Spreading of Liquids on a Solid Surface Part1:Viscous Flow[J]. Journal of Fluid mechanics,1986,168(1):169-194.
    [111] Kwok D, Neumann A. Contact Angle Measurement and Contact AngleInterpretation[J]. Advances in Colloid and Interface Science,1999,81(3):167-249.
    [112] ikalo S, Wilhelm H D, Roisman I V, et al. Dynamic Contact Angle ofSpreading Droplets: Experiments and Simulations[J]. Physics of Fluids,2005,17(6):062103.
    [113] Hoffman R L. A Study of the Advancing Interface I: Interface Shape inLiquid-Gas Systems[J]. Journal of Colloid and Interface Science,1975,50(2):228-241.
    [114] Jiang T S, Gun O S and Slattery J C. Correlation for Dynamic ContactAngle[J]. Journal of Colloid and Interface Science,1979,69(1):74-77.
    [115] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics ofFree Boundaries[J]. Journal of Computational Physics,1981,39(1):201-225.
    [116] Noh W F, Woodward P. SLIC (Simple Line Interface Calculation)[C].Proceedings of the Fifth International Conference on Numerical Methods inFluid Dynamics,1976,59:330-340.
    [117] Gueyffier D, Li J, Nadim A, et al. Volume-of-Fluid Interface Tracking withSmoothed Surface Stress Methods for Three-Dimensional Flows[J]. Journal ofComputational Physics.1999,152(2):423-456.
    [118] Brackbill J U, Kothe D B and Zemach C. A Cotinuum Method for ModelingSurface Tension[J]. Journal of Computational Physics,1992,100:335-354.
    [119] Dussan V and Davis S H. On the Motion of a Fluid-Fluid Interface along aSolid Surface[J]. J. Fluid Mech.1974,65:71-95.
    [120] Sheng P, Zhou M. Immiscible-Fluid Displacement: Contact-Line Dynamicsand the Velocity-Dependent Capillary Pressure[J]. Physical Review A,1992,45(8):5694-5708.
    [121] Annapragada S R, Murthy J Y and Garimella S V. Prediction of DropletDynamics on an Incline[J]. International Journal of Heat and Mass Transfer,2012,55(5-6):1466-1474.
    [122] W rner M. Numerical Modeling of Multiphase Flows in Microfluidics andMicro Process Engineering: A Review of Methods And Applications[J].Microfluidics and Nanofluidics,2012,12(6):841-886.
    [123] Kang S C, Kim C, Muncy J, et al. Experimental Wetting Dynamics Study ofEutectic and Lead-Free Solders with Various Fluxes, Isothermal Conditions,and Bond Pad Metallizations[J]. IEEE Trans.on Advanced Packaging,2005,28(3):465-474.
    [124] Kim H Y, Lee H J and Kang B H. Sliding of Liquid Drops Down an InclinedSolid Surface[J]. Journal of Colloid and Interface Science,2002,247(2):372-380.
    [125] Alla H, Freifer S and Roques-Carmes T. A Computational Fluid DynamicsModel Using the Volume of Fluid Method for Describing the Dynamics ofSpreading of Newtonian Fluids[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2011,386(1-3):107-115.
    [126] Afkhami S, Zaleski S and Bussmann M. A Mesh-Dependent Model forApplying Dynamic Contact Angles to Vof Simulations[J]. Journal ofcomputational Physics,2009,228(15):5370-5389.
    [127] Mortensen A, Hodaj F and Eustathopoulos N. On Thermal Effects in ReactiveWetting[J]. Scripta Materialia,1998,38(9):1411-1417.
    [128] De Ruijter M J, De Coninck J and Oshanin G. Droplet Spreading: PartialWetting Regime Revisited[J]. Langmuir,1999,15(6):2209-2216.
    [129] Kumar G, Prabhu K N. Review of Non-Reactive and Reactive Wetting ofLiquids on Surfaces[J]. Advances in Colloid and Interface Science,2007,133(2):61-89.
    [130] Blake T D. The Physics of Moving Wetting Lines[J]. Journal of Colloid andInterface Science,2006,299(1):1-13.
    [131] De Ruijter M J, Charlot M, Voué M, et al. Experimental Evidence of SeveralTime Scales in Drop Spreading[J]. Langmuir,2000,16(5):2363-2368.
    [132] Zhao H, Nalagatla D R and Sekulic D P. Wetting Kinetics of Eutectic Leadand Lead-Free Solders: Spreading over the Cu Surface[J]. Journal ofElectronic Materials,2009,38(2):284-291.
    [133] Zhao H, Wang H Q, Sekulic D P, et al. Spreading Kinetics of Liquid Soldersover an Intermetallic Solid Surface Part1: Eutectic Lead Solder[J]. Journal ofElectronic Materials,2009,38(9):1838-1845.
    [134] Yost F G, Rye R R and Mann J A. Solder Wetting Kinetics in NarrowV-Grooves[J]. Acta Materialia,1997,45(12):5337-5345.
    [135] Zhao H, Wang H Q, Sekulic D P, et al. Spreading Kinetics of Liquid Soldersover an Intermetallic Solid Surface Part2: Lead-Free Solders[J]. Journal ofElectronic Materials,2009,38(9):1846-1854.
    [136] Elizabeth B, Dussan V and Davis S. On the Motion of a Fluid-Fluid Interfacealong a Solid Surface[J]. J. Fluid Mech,1974,65:71-95.
    [137] Shikhmurzaev Y D. The Moving Contact Line on a Smooth Solid Surface[J].Int. J. Multiphase Flow.1993,19(4):589-610.
    [138] De Ruijter M J, Blake T and De Coninck J. Dynamic Wetting Studied byMolecular Modeling Simulations of Droplet Spreading. Langmuir,1999,15(22):7836-7847.
    [139] Kulkarni D, Subbarayan G. A Dynamic Model for Predicting the Motion ofSolder Droplets During Assembly[J]. IEEE Trans. on Components andPackaging Technologies,2003,26(4):698-704.
    [140] Wu X, Dou X, Yeh C P, et al. Solder Joint Formation Simulation andComponent Tombstoning Prediction During Reflow[J]. Journal of ElectronicPackaging,1998,120(2):141-144.
    [141] Dumont K, Stijnen J, Vierendeels J, et al. Validation of a Fluid–StructureInteraction Model of a Heart Valve Using the Dynamic Mesh Method inFluent[J]. Computer Methods in Biomechanics and Biomedical Engineering,2004,7(3):139-146.
    [142] Stein E, De Borst R and Hughes T J R. Encyclopedia of ComputationalMechanics[M]. United Kindom: Wiley,1999,1(14):1-25.
    [143] Hirt C, Amsden A A and Cook J. An Arbitrary Lagrangian-EulerianComputing Method for All Flow Speeds[J]. Journal of Computational Physics,1974,14(3):227-253.
    [144] Hong T H, Choi C R and Kim C N. Characteristics of Hemodynamics in aBi-Leaflet Mechanical Heart Valve Using an Implicit FSI Method[J]. EngTechnol,2009,49:679-684.
    [145] ANSYS Inc. Ansys Fluent Theory Guide.2009, Chap.3:11-30.
    [146] Felippa C A, Park K and Farhat C. Partitioned Analysis of CoupledMechanical Systems[J]. Computer Methods in Applied Mechanics andEngineering,2001,190(24):3247-3270.
    [147] Vierendeels J, Dumont K, Dick E, et al. Analysis and Stabilization of Fluid-Structure Interaction Algorithm for Rigid-Body Motion[J]. AIAA Journal,2005,43(12):2549-2557.
    [148] Ashkin A. Acceleration and Trapping of Particles by Radiation Pressure[J].Physical Review Letters,1970,24(4):156-159.
    [149] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a Single-BeamGradient Force Optical Trap for Dielectric Particles[J]. Opt. Lett.1986,11:288–290.
    [150] Grier D G. A Revolution in Optical Manipulation[J]. Nature,2003,424(6950):810-816.
    [151] Chaudhury M k, Whitesides G M. How to Make Water Run Uphill[J]. Science,1992,256(5063):1539-1541.
    [152] Brochard F. Motions of Droplets on Solid Surfaces Induced by Chemical orThermal Gradients[J]. Langmuir,1989,5(2):432-438.
    [153] Yarin A L, Liu W and Reneker D H. Motion of Droplets Along Thin Fiberswith Temperature Gradient. Journal of Applied Physics,2002,91(7):4751-4760.
    [154] Kim S, Lee J, Jeon B M, et al. Thermophysical Properties of Sn-Ag-Cu BasedPb-Free Solders[J]. International Journal of Thermophysics,2009,30(4):1234-1241.
    [155] Lax M. Temperature Rise Induced by a Laser Beam[J]. Journal of AppliedPhysics,1977,48:3919-3924.
    [156] Le H, Moin P. An Improvement of Fractional Step Methods for theIncompressible Navier-Stokes Equations[J]. Journal of computational Physics,1991,92(2):369-379.
    [157] Abtew M, Selvaduray G. Lead-free Solders in Microelectronics[J]. MaterialsScience and Engineering,2000,27(5):95-141.
    [158] Lea C. Laser Soldering-Production and Microstructural Benefits for SMT[J].Soldering&Surface Mount Technology,1989,1(2):13-21.
    [159] Moser Z, Gasior W and Pstru J. Surface Tension of Liquid Ag-Sn Alloys:Experiment versus Modeling[J]. Journal of Phase Equilibria,2001,22(3):254-258.
    [160] Pratap V, Moumen N and Subramanian R S. Thermocapillary Motion of aLiquid Drop on a Horizontal Solid Surface[J]. Langmuir,2008,24(9):5185-5193.
    [161] Brzoska J B, Brochard F W and Rondelez F. Motions of Droplets onHydrophobic Model Surfaces Induced by Thermal Gradients[J]. Langmuir,1993,9(8):2220-2224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700