用户名: 密码: 验证码:
双扫描器宽范围原子力显微镜技术及系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术越来越成为当今世界科技发展的潮流,对现代科学技术的发展和社会进步起到重大的推动作用。以扫描隧道显微镜(STM)和原子力显微镜(AFM)为代表的扫描探针显微术(SPM)是纳米技术发展的重要基础,也是纳米科技工作者和研究人员必不可少的研究工具。其中以AFM的应用范围最为广泛,它可以在大气、液体等多种环境下对导体、半导体、绝缘体等多种材料进行检测,适应性很强。
     本文在分析国内外AFM技术研究和应用现状的基础上,对现有AFM仪器的缺点和不足做了探讨。针对这些缺点和不足,本文提出了双扫描器宽范围的AFM扫描新方法,包括新型的压电扫描方法和步进扫描方法,并在此基础上研制出了一套双扫描器宽范围AFM系统。该系统集成了压电扫描器和步进扫描器两种扫描方式,不仅能对样品进行高分辨率的检测,还能对较大较重样品进行大范围的扫描成像,实现了在一个较宽的范围内对样品表面形貌的全方位呈现。
     本文分别从理论方法、系统设计以及实验技术等方面对该AFM系统进行了详细阐述,本文的主要研究内容及工作如下:
     首次提出了双扫描器实现小范围高分辨和较大较重样品大范围扫描的新方法。发展并优化了压电陶瓷扫描方法,利用两个压电陶瓷管构成的扫描器做X、Y方向上的扫描和单个压电陶瓷管带动微悬臂作Z向反馈运动,实现了XY平面扫描和Z向反馈的分离,消除了耦合误差,实现高分辨;与此同时,利用两个步进电控平移台构成的扫描器带动样品进行大范围AFM扫描,并在实际的实验研究中实现了利用步进扫描器扫描较大样品并得到大范围AFM图像的功能。
     结合压电扫描和步进扫描两种方法,成功研制了双扫描器宽范围AFM系统。该系统运行平稳良好,能在保证小范围扫描具有高分辨率的前提下满足对较大样品大范围扫描成像的要求。并且基于压电扫描器与步进扫描器的不同特点以及测量样品的特殊要求等,设计了功能完善、运行良好的扫描控制软件。该软件不仅可实现压电扫描方式的扫描控制以及步进扫描方式的扫描控制,还提供了序列图像的拼接功能。
     利用本系统对多种样品进行了AFM扫描实验研究。实验包括对样品的小范围高分辨扫描以及对样品的大范围扫描,得到了较好的实验结果,验证了系统稳定良好的性能。此外,通过序列图像的拼接在已获得的大扫描范围的基础上获得了更大范围的AFM图像,极大的拓展了AFM的应用范围。
Nanotechnology is increasingly becoming the trend of technology development in today's world, and is playing a major role in the promoting of modern science and technology development and social advancement. Scanning probe microscopy (SPM), which is represented by scanning tunneling microscope (STM) and atomic force microscope (AFM), is an important foundation for the development of nanotechnology, and it's also an essential research tool for nanotechnology workers and researchers. AFM is the most widely used in the SPM. It can be used for testing conductors, semiconductors, insulators and other materials in air, liquid and other environments.
     This paper reports the domestic and international research and application of AFM technology based on analyzing the shortcomings and deficiencies of existing AFM equipment. It presents a new method for AFM scanning, including the new piezoelectric scanning method and step scan method, and a new AFM system developed with dual-scanner and wide scan range. This AFM can not only detect small samples with high-resolution, but also perform well on the larger sample with a wide range of scanning and imaging.
     The theoretical method, system design and experimental technology of the new AFM are presented in this paper. The main research works are as follows:
     A new scanning method was first proposed in this paper, which is using two scanners to scan the sample in XY plate and using the feedback controller to control Z piezoelectric ceramic up or down with micro cantilever. For high resolution, we developed and optimized the piezoelectric ceramic scanning method of traditional AFM. The advantage of this method is using two tube-piezoelectric ceramics to scan the sample in XY plate and using Z piezoelectric ceramic to drive micro cantilever up or down, which removes the cross-coupling error. For wide range scanning, we adopted two electronically controlled translation stages to form a step scanner to drive samples for XY scanning, and have got large range AFM images in experimental study through scanning large samples by this step scanner.
     According to the new scanning method, we have successfully developed an AFM system with dual-scanner and wide scan range. The system is running well, which can meet the requirements of scanning large sample with a wide scan range and ensure high resolution when scanning a small area. According to the different characteristics of the piezoelectric scanner and step scanner, and the particular requirements for measuring samples, we designed a set of well-functioned scan control software. This software not only enables control of the piezoelectric scanning mode and the step scanning mode, but also provides a function of stitching a sequence of images.
     A variety of samples were scanned by using this AFM system. The experiments included high-resolution scanning of small samples and wide range scanning of large samples. We obtained good experimental results which verified the good performance of the system. Through the sequence image stitching, we obtained wider range AFM images based on the current scan range, which greatly expanded the application scope of this AFM.
引文
[1]白春礼.纳米科学与技术.昆明:云南科技出版社,1995:1-25
    [2]黄德欢.纳米技术与应用.上海:中国纺织大学出版社,2001:1-11
    [3]袁哲俊.纳米科学与技术.哈尔滨:哈尔滨工业大学出版社,2005:5-9
    [4]Richard P. Feynman, "There's Plenty of Room at the Bottom", was first presented as an address at the annual meeting of the American Physical Society, held at the California Institute of Technology on December 26,1959. Feynman's talk was first published in Engineering and Science(Calif. Inst. of Tech.),1960:22-36
    [5]G Binnig, H. Rohrer, Ch. Gerber and E. Weibel. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett.,1982,49(1):57-61
    [6]贾宝贤,李文卓.微纳米科学技术导论.北京:化学工业出版社,2007:9-12
    [7]张立德.纳米材料的科研现状和发展趋势.现代科学仪器,1998,1:27-29
    [8]纳米材料和纳米结构.中国科学院院刊,2001,16(6):444-445
    [9]D. L. Feldheim, C. D. Keating. Self-Assembly of Single Electron Transistors and Related Devices. Chem. Soc. Rev.,1998,27:1-12
    [10]王静端.划时代的新科学—纳米电子学.世界科学,1998,8:25-26
    [11]王占国.纳米器件研究进展.微纳电子技术,2002,39(2):1-5
    [12]W. D. Oliver, J. Kim, R. C. Liu and Y. Yamamoto. Hanbury Brown and Twiss-type Experiment with Electrons. Science,1999,284(5412):299-301
    [13]H. Nejoh. Incremental Charging of a Molecule at Room Temperature using the Scanning Tunnelling Microscope. Nature,1991,353:640-642
    [14]W. P. Halperin. Quantum Size Effects in Metal Particles. Rev. of Modern Phys. Rev. Mod. Phys.,1986,58:533-606
    [15]靳晓明.美国纳米生物学发展现状及展望.中国现代医学杂志,2004,7:79-82
    [16]T. Uchihashi, N. Choi, M. Tanigawa, et al. Carbon-Nanotube Tip for Highly-Reproducible Imaging of Deoxyribonucleic Acid Helical Turns by Noncontact Atomic Force Microscopy. J.Appl.Phys.,2000,39:L887
    [17]W. Mu, J. M. Herrmann, P. Pichat. Room Temperature Photocatalytic Oxidation of Liquid Cyclohexane into Cyclohexanone over Neat and Modified TiO2. Catal. Lett.,1989, 3(1):73-84.
    [18]C. M. Mo, L. D. Zhang, G. Z. Wang. Characteristics of Dielectric Behavior in Nanostructured Materials. Nanostr. Mater.,1995,6:823-826
    [19]L. Brus. Squeezing Light from Silicon. News and views article in Nature,1991,351:301
    [20]H. Tabagi, H. Ogawa. Quantum Size Effect of the Si Fine particles. Appl. Phys. Lett.,1990, 56(24):2379
    [21]Z. Q. Qiu, Y. W. Du, H. Tang, J. C. Walker. A Mossbauer Study of Fine Iron Particles. J. Appl. Phys.,1988,63(8):4100
    [22]H. Hahn, J. Logas, R. S. Averback. Sintering Characteristics of Nano-crystalline TiO2. J. Mater. Res.,1990,5(3):609
    [23]P. Ball, L. Garwin. Science at Atomic Scale. Nature,1992,355:761
    [24]M. D. Sacks. Rheological Science in Ceramic Processing. Science of ceramic chemical processing, Wiley, New York,1989:522-538
    [25]Y. S. Papir, I. M. Krieger. Rheological studies on dispersions of uniform colloidal spheres 11. Dispersions in nonaqueous media. J. Colloid Interface Sci.,1970,34(1):126-130
    [26]G. Binnig, H. Rohrer, Ch. Gerber and E.Weibel.7×7 Reconstruction on Si(111) Resolved in Real Space. Phys. Rev. Lett.,1983,50(2):120-123
    [27]张天浩,张春平,张光寅等.基于STM的多模式扫描探针显微镜的建立.光电子·激光,2001,12(2:174-177
    [28]白春礼,田芳,罗克.扫描力显微术.北京:科学出版社,2000:7-15
    [29](美)陈成均著.扫描隧道显微学引论.北京:中国轻工业出版社,1996:34-40
    [30]朱传凤,王琛.扫描探针显微术应用进展.北京:化学工业出版社,2007:1-24
    [31]G. Binnig, C. F. Quate, and Ch. Gerber. Atomic Force Microscope. Phys. Rev. Lett.,1986, 56(9):930-933
    [32]G. Binnig and H. Rohrer. Scanning Tunneling Microscopy — from Birth to Adolescence. Rev. Mod. Phys.,1987,59(3):615-625
    [33]Ratcliff, G. Curtis. Advances in atomic force microscopy for the study of biological systems. Ph. D. Thesis. The University of North Carolina at Chapel Hill.2002:10-31
    [34]R. Aguilar, K. Ann. Atomic force microscopy for the study of nanometric particles and biological molecules. Ph. D. Thesis. University of Colorado at Boulder.1999:11-15
    [35]J. H. Hoh, P. K. Hansma. Atomic Force Microscopy for High-resolution Imaging in Cell Biology. Trends Cell Biol.,1992,2(7):208-213
    [36]H. Heinzelmann, D. W. Pohl. Scanning Near-field Optical Microscopy. Appl. Phys. A,1994, 59(2):89-101
    [37]H. K. Wickramasinghe. Scanning probe microscopy:Current status and future trends. J. Vac. Sci. Technol A,1990,8:363-368
    [38]C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang. Atomic-scale Friction of a Tungsten Tip on a Graphite Surface. Phys. Rev. Lett.,1987,59:1942-1945
    [39]白春礼.扫描隧道显微术及其应用.上海:科学技术出版社,1991:5-15
    [40]张德添,何昆等.原子力显微镜发展近况及其应用.现代仪器,2002,3:6-9
    [41](日)田中哲朗.陈俊彦等译.压电陶瓷材料.北京:化学工业出版社,1982:10-26
    [42]李环亭,孙晓红等.压电陶瓷材料的研究进展与发展趋势,现代技术陶瓷,2009,2:28-32
    [43]雷淑梅,匡同春,白晓军等.压电陶瓷材料的研究现状与发展趋势.佛山陶瓷,2005,15(3):36-39
    [44]R. Howland and L. Benatar. A Practical Guide to Scanning Probe Microscopy. Park Scientific Instruments:Sunnyvale, CA,1993, Chapters 1 and 2.
    [45]严璐.图像拼接算法研究.西安:西安理工大学,2009:1-3
    [46]吴铭,林锦国,梅雪.用于图像拼接的特征提取算法研究.计算机工程与设计,2009,30(2):440-442
    [47]David G. Lowe. Object Recognition from Local Scale-invariant Features. International Conference on Computer Vision, Corfu, Greece,1999,9(2):1150-1157
    [48]M. Brown, D. G. Lowe. Recognising Panoramas. Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington. DC,2003:1218-1225
    [49]杨艳伟.基于SIFT特征点的图像拼接技术研究.西安:西安电子科技大学,2009,36-42
    [50]Lindeberg T. Scale-space theory:A Basic Tool for Analyzing Structures at Different Scales. Journal Applied Statistics,1994,21(2):223-261
    [51]W. M. P. Van der Aalst. Verification of Workflow Nets. Lecture Notes in Computer Science, 1997,1248:407-426
    [52]李云霞,曾毅,钟瑞艳,郭涛.基于SIFT特征匹配的图像拼接算法.计算机技术与发展,2009,19(1):43-52
    [53]赵垒,侯振杰.一种改进的SIFT图像配准方法.计算机工程,2010,36(12),226-228
    [54]邓荣峰,李熙莹.基于SIFT特征匹配的稳健图像拼接算法.计算机应用,2009,29(6):219-221
    [55]J. Billington, G. E. Gallasch, B. Han. A Coloured Petri Net Approach to Protocol Verification. Lecture Notes in Computer Science,2004,3098:210-290
    [56]冯嘉.SIFT算法的研究和改进.长春:吉林大学,2010:29-32
    [57]施洋,章海军.新型大扫描范围原子力显微镜的研究.光电工程,2004,31(6):30-33
    [58]于海峰,刘超等.基于平板扫描器的新型AFM系统.光学仪器,2007,29(4):62-65
    [59]单小磊.双光路扫描式微型机构三维测量系统.杭州:浙江大学,2008:31-33
    [60]陶永华.新型PID控制及其应用.北京:机械工业出版社,2002:9-15
    [61]Dave Shreiner等OpenGL编程指南(第四版).北京:人民邮电出版社,2005:2
    [62]张冬仙,章海军,林晓峰,何玉琳.多孔氧化铝薄膜的纳米结构和光谱特性研究.光谱学与光谱分析,2006,26(3),411-413
    [63]王旭迪,刘颖,徐向东,洪义麟,付绍军.石英和BK7玻璃的离子束刻蚀特性研究.真空科学与技术学报.2004,24(5),397-400
    [64]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用.北京:化学工业出版社,2007:179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700