用户名: 密码: 验证码:
微结构观测镜光学结构研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对微小盲孔与微小面积(医学应用等)提出一种微结构观测镜仪器结构。该仪器基于直接成像原理,主要针对常见通信机架上光纤连接器FC、SC设计,深入到直径2.5毫米的盲孔底部进行检测。现在国外的类似仪器数值孔径和视场均受被观测孔径的限制,体积较大,只能观测光纤端面污染情况。针对以上限制,考虑扩展应用,根据应用光学理论对仪器提出以下结构要求:
    1.仪器的微型化设计,便于手持和携带,用于检测通信机架上光纤连接器内孔或医学检测。内窥式探测头中微小物镜不受数值孔径限制,也有一定视场。
    2.光学系统可以低倍率粗观测和高倍率细观测。因数值孔径不受严格限制,故系统既有低倍定焦物镜,还有高倍变焦物镜,二者可单独使用,也可对接构成高倍系统。可接目镜直接观测,也可接CCD摄像头摄取图像,再通过计算机处理。并可应用CCD细分技术以适当满足变倍率和高倍率的分辨率要求。
    3.一般照明只能观测光纤端面不透明的污染。为了能观测到位相型污染,在系统中设置了相衬法照明。
    4.为了瞄准非视场中心处的细节,利用转动系统中微扫描器将值得注意的局部置于视场中心。
    5.为保证以上功能,并将机械、光学、电子及CCD摄像系统集成在一个微小体积和能够较长时间手持重量内,总体设计将着重于仪器的微型化。
    论文的主要工作:
    分析了光纤端面检查的方法,针对两种连接器和应用条件提出光学系统总体设计思路,给出了系统原理图,讨论了其中光学系统应用功能的扩展。
    基于应用光学理论,设计物镜镜头组,柯拉照明系统,并对镜头组的变焦距拆分、扫描法等作了研究。
    基于像差理论选择定焦距镜头,照明系统,目镜和变焦距镜头结构形式,并设计一组二元全动型变焦距镜头。并校正了光学系统的像差。
    基于物理光学理论分析相衬照明应用,对照明光能进行计算。
    设计定焦距微结构观测镜机械结构。基于尺寸链理论的误差分析公式,分析系统光学结构和机械结构误差。
    考虑了电路软硬件和摄像系统的配置,应用了CCD细分技术。
Optical system of a microstructure inspection endoscope supplied in micro-profile and micro-area (iatrical application and so on) is studied in this thesis. The system is based on directly imaging principle .The endoscope is designed mainly for fiber connector FC&SC in common communication equipments .The inspection head of the endoscope can be put into 2.5- millimeter-diameter micro-pore. Nowadays most of similar instruments abroad are relatively big,and its number aperture and view field are restricted by small dimension of micro-pore. They merely detect fiber end contamination.
    According to the limits mentioned above, expanding utility and applied optics theory, the demands of instrument structure should be satisfied:
    1. Instrument Micromation. The instrument has advantages of handability and portability. It is used not only in inspection of fiber connector pore but also in iatrical application .The head of endoscope detector ensures un restricted number aperture and certain view range of the small lens.
    2.Rough observation at low- magnification and particularly inspection at high- magnification. The system includes low- magnification lens and high- magnification zoom lens. Its number aperture is limited by pore diameter. Both of the two lenses part can be used separately. Higher magnification is gained by joining two parts into one whole system. Direct observation by eyes need an eye lens .The amplificatory image also can be received by CCD, and be processed by computer. The subdivision principles of area CCD are applied in order to meet the resolution require of high-magnification zoom lens.
    3.Common illumination merely cares opaque contamination .A phase contrast illumination is applied in the system in order to observe phase contamination.
    4. Collimation of detail outside the middle of view field. Motion of the noticeable part is obtained by means of small slab in the scan system.
    5.The whole design focuses on Micromation in order to meet requires mentioned above. Mechanism, optics, electro-circuit and CCD camera are integrated into a small cubage and a durable hand weight.
    
    
    
    The main works of the thesis:
    Analysis of fiber end inspection methods. The design idea and the schematic diagram of optical system are given for two kinds of fiber connector and its working condition. Multi-function supplication of optical system is studied.
    Object lenses and kohler illumination system are designed based on application optics theory. Splitting and linking of zoom lens, scan system is studied.
     Fixed focus object lens, zoom lens, eye lens and illuming lens are developed. Their structures forms are selected. Optical path optimization is accomplished. A set of dual moved module zoom system is designed.
     A phase contrast illumination is analyzed based on physical optics theory. Calculation of illumination energy is completed.
     Mechanical structure of microstructure endoscopes is developed. The error analysis method based on dimensional chain theory is described and the error of optical & mechanical structure is emphatically discussed by the method.
    The subdivision principles of area CCD are described in view of hardware & software of circuit and camera system configuration.
引文
[1]高科,光纤通讯以及光缆出口的形势分析,国际技术贸易市场信息,2003,2002(3):17~18
    [2] Desurvire.E,第五代光纤通讯,中国科学基金,1993,7(1).:43~49
    [3]张宏伟,光纤,21世纪初全球最大潮阳产业,知识经济,2001(2):20~23
    [4]Berdinskikh T.,Bragg J.,Tse,E.,et al,The contamination of fiber optics connectors and their effect on optical performance,Optical Fiber Communication Conference and Exhibit,2002,OFC 17-22:617~619
    [5]NIU Wen-xue, LIANG Yi-jun, JIANG Yu, et al., Experimental study of the method for inspecting optic fiber end, Applied Science and Technology,2002,29(3):19~22 (in Chinese)
    [6]安东泰博,泰大甲,光纤连接器最新技术,机电元件,2000,20(4):29~43
    [7]ZHANG Jie,TAN Jiu-bin,Research on A Novel Reflective ConfocalFiber-optical Sensor,Journal of Optoelectronics·Laser,2002,13(1):1~4.(in Chinese)
    [8]ZHANG Jie,TAN Jiu-bin.,Effect on Various Factors on Axial Resolution in Fiber-optical Confocal Microscope Using a Gradient-index lens,Journal of Optoelectronics·Laser:2002,3(8):818~821(in Chinese)
    [9]张红霞,微表面三维形貌相移干涉检测的研究,硕士学位论文,天津大学,2003
    [10]林敏,黄建军,岑国荣,智能化光纤连接器端面干涉测试仪,光电工程,2000,27(1):37~389
    [11]林学煌等,光无源器件,北京:北京人民邮电出版社,1998 ,24~28
    [12]胡先志,邹林森,刘有信等,光缆及工程应用,北京:北京人民邮电出版社,1998,50~60,191~98
    [13]赵梓森等,光纤通讯工程,北京:北京人民邮电出版社,1994 ,326~331
    [14]殷益群,郭志刚,温向明,光纤通信技术200问 ,北京邮电学院出版社,1992 , 197-199 ,217-223
    [15]张以谟,应用光学,北京:机械工业出版社,1987.10:328-353
    [16]同[15],372-397
    [17]同[15],394-397
    [18]eoTM Edmund industrial optics,Optics and Optical Instruments Catalog 2002 ,U.S.A.,2002,184~186
    [19]程科华,程谦,自聚胶微透镜及其应用,物理,1991,20(10):622~625
    
    [20]同[15],509~641
    [21]王之江、陈杏蒲、陆汉民等;光学技术手册(上册),北京:机械工业出版社,1987.11,1119
    [22]同[15],416~422
    [23]同[21],1002~1016
    [24]张以谟,徐桂英,无焦系统在“空间直线度”测量中的应用,仪器仪表学报,1980,1(1):77~78
    [25]STEVENS.LANGNER.PARRY&ROLLINSON,Zoom Type of Opticl System for Microscopes,Great British ,Patent Specification,GB988120,1965
    [26]同[15],422-424
    [27]湛廷政,吕海宝,CCD细分技术方法研究及应用,光学学报,2002 ,22(11),1396~1400
    [28]同[15],401~404
    [29]周汉明,相衬显微镜与泽尔尼克,物理,1993,22(10):626~630
    [30]高宏,薛实福,严普强,微分干涉相衬显微镜定量测量技术,光仪技术,1990,11(2):23~27
    [31]郝群,赵洋,李达成,等,位相板在大型几何量形位误差测量中的应用,光学技术,1998,8(4):118~122
    [32]郝群,赵洋,李达成,等,一种位相板衍射图样的图像处理新方法,光学技术,1998,7(4):25~27
    [33]王庆有编著,CCD应用技术,天津:天津大学出版社,2000.
    [34]赵妙霞,蒋均均;机械精度设计中机械制造系统误差的特征分布,甘肃:甘肃工业大学学报,2001.12, 27(.4)37~39
    [35]同[21],1208~1209
    [36]同[15],52~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700