用户名: 密码: 验证码:
温室甜椒生长发育模拟模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物模型是辅助温室作物生产环境优化调控和栽培管理的有力工具。甜椒(Capsicum annuum L.)经济价值较高,是重要的温室栽培物之一,因此建立温室甜椒生长发育模拟模型对提高我国温室甜椒种植水平,增加种植者经济效益,提高生态效益具有重要意义。本研究于2005年分春茬和秋茬间,分别在上海孙桥现代化农业园区PVC连栋温室内和新疆石河子大学农学院试验站加温日光温室内进行了不同品种、播期的试验。通过对试验数据的系统分析,以温室甜椒的发育生理生态过程为基础,以作物生理发育时间(Physiological development time, PDT)为尺度,建立了温室甜椒生育期模拟模型。以辐热积(Product of thermal effectiveness and PAR, TEP)为尺度,建立了温室甜椒叶面积指数模拟模型。将叶面积模型与已有的光合作用和干物质生产模型相结合,建立了光合生产模拟模型。利用分配指数(Partitioning index, PI)和采收指数(Harvest index, HI)建立了温室甜椒干物质分配和产量预测模拟模型。将上述四个子模型综合集成,建立了温室甜椒生长发育模拟模型。
     在发育子模型中,根据甜椒发育对光温的反应,建立了基于生理发育时间的甜椒生育期模拟模型,并利用不同品种和播期与建模相独立的试验资料对模型进行了检验。结果表明,从出苗到现蕾、开花、成熟所需的生理发育时间分别为29、35、53个PDT天。模型对甜椒从出苗到现蕾、开花、成熟不同物候期的模拟值与观测值的回归估计标准误差(RMSE)和相对误差(RE)分别为0.8、1.6、4天和1.9%、3.1%、5.1%,对现蕾、开花、成熟三个物候期预测的平均RMSE和RE为2.1天和3.7%。模型预测的模拟值与观测值呈较好的1:1关系,基于1:1直线的决定系数R2为0.99,本模型能够用生理发育时间准确地预测甜椒各个生育期的起止日期和成熟上市日期。
     在叶面积子模型中首次利用综合光温指标—辐热积模拟了甜椒叶面积指数形成过程,建立了甜椒叶面积指数模拟模型。辐热积指的是相对热效应(Relative thermal effectiveness, RTE)与光合有效辐射PAR的乘积。累积辐热积的具体计算过程公式如下:
     式中Tb为生长下限温度,Tm为生长上限温度,Tob为生长的最适温度下限,Tou为生长的最适温度上限,T为每小时的平均温度。
     DTEP(i)=(∑RTE(i,j)/24)×PAR(i)
     式中DTEP(i)表示第i日辐热积(MJ·m-2d-1);RTE(i,j)为第i日第j小时的相对热效应,PAR(i)分别为第i日总光合有效辐射(MJ·m-2·d-1)。
     TEP(i+1)=TEP(i)+DTEP(i+1)
     TEP(i+1)为从出苗到第i+1天的累积辐热积(MJ·m-2),TEP(i)为从出苗到第i天的累积辐热积(MJ·m-2),DTEP(i+1)为第i+1天的日总辐热积(MJ·m-2·d-1).
     温室甜椒单株叶面积(LA)计算模型为:
     N=23.29×exp(TEP/290.391-21.35
     Li=Lmaxi[1-exp(-ki×TEPi/Lmaxi)]+2
     式中N为植株上已展开的叶片数,i为叶序,Li为第i叶的实际叶长(cm),Lmaxi是第i片叶的最大叶长(cm),TEP为出苗后的累积幅热积,TEP1为第i片叶展开后的累积幅热积,ki是无量纲参数,No为已摘除的老叶数,ALo为摘除老叶的总面积(cm2),ALi表示第i叶的面积(cm2)。
     LAI=LA×d/10000
     式中LAI为叶面积指数;d为种植密度(株·m-2);10000为将cm2换算成m2的单位换算系数。
     模型对甜椒出叶数、叶片长度和叶面积指数的模拟结果与实测值之间基于1:1直线的决定系数R2和回归估计标准误差RMSE分别为0.94、0.89、0.93和3.4、2.15cm、0.15。该模型能够利用气温、辐射、种植密度和出苗日期准确地预测温室甜椒叶面积指数动态,模型参数少实用性强,可以为温室甜椒生长模型和蒸腾模型提供所必需的叶面积指数动态信息。
     在甜椒生长与产量预测子模型中,首先将本研究建立的叶面积模型与已有的光合作用和干物质生产模型相结合,建立温室甜椒生长动态预测模型。然后定量分析辐射和温度对甜椒干物质分配和果实采收指数的影响,以及果实干物重增长和鲜重增长的关系,建立以辐热积为预测指标的甜椒干物质分配模型和产量预测模型。温室甜椒干物质分配指数和采收指数与辐热积的函数关系为:
     地上部分分配指数:PISH=0.91-0.33×0.99TEP
     地下部分分配指数:PIR=1-PISH
     茎分酯指数
     叶分配指数:
     果分配指数:PIF=1-PIS-PIL
     采收指数:HI=0.94×(1-EXP x (-(TEP-245.16)/58.18))
     式中PISH、PIR、PIS、PIL、PIF分别为地上部分、地下部分、茎、叶和果分配指数,HI为采收指数。
     基于温室甜椒干物质分配指数和采收指数与辐热积的函数关系构建了温室甜椒产量预测模型:
     WF=BIOMASS x PISH x PIF
     Y=(WF×HI)/0.05
     式中WF表示预测的果实总干重(kg·ha-1), BIOMASS为甜椒的总干重(kg·ha-1)Y表示甜椒的产量(kg·ha-1),0.05为甜椒果实的干物质含量(g·g-1)。
     利用与建模相独立的试验资料对模型进行检验,结果表明,模型对Venlo型连栋温室和日光温室中种植的不同品种甜椒的干物质生产与分配和产量的预测结果较好。模型对甜椒总干物质量和各个器官干重的模拟预测值与实测值之间基于1:1直线的决定系数R2和相对预测误差RE,总干物质量分别为0.93和8.4%,地上部分干重、地下部分干重分别为0.92和8.4%、0.91和9.0%,地上部分茎、叶、果干重分别为0.85和11.5%,0.80和11.2%,0.86和12.9%,甜椒产量分别为0.79和16.1%。本研究建立的模型参数少且易获取,模型的实用性较强,可以为我国温室甜椒生产中光温的精准管理提供决策支持。
Crop growth and development simulation model is a useful tool for the optimization of greenhouse crop and climate management. Sweet pepper is one of the most important greenhouse vegetable crops. In this study, experiments with different cultivars and substrates were conducted in a venlo-type greenhouse in Shanghai (E121.5°, N31.20) and a solar greenhouse in Xinjiang shihezi (E58.70, N49.90) in2005to collect data for model development and validation. Firstly, a module for greenhouse sweet pepper development simulation was developed based on the concept of physiological development time (PDT). Secondly, a module for greenhouse sweet pepper leaf area simulation was developed using the product of thermal effectiveness and PAR (TEP). Thirdly, a photosynthesis based dry matter production module was developed by combining the leaf area module developed in this study with photosynthesis and dry matter production simulation model. Fourthly, a module for greenhouse sweet pepper matter partitioning and yield prediction was developed using dry matter partitioning index and harvest index. Finally, the four modules mentioned above were integrated to develop the greenhouse sweet pepper growth and development simulation model.
     In the phonological development submodel, the PDT value for the duration from emergence date to flower bud emergence date was29days, with35,53days, respectively, for the duration from emergence date to flowering date and from emergence date to maturation. The root mean squared error (RMSE) and relative prediction error (RE) between the simulated and observed results for duration of flower bud emergence, flowering, maturity respectively, was0.8,1.6,4days and1.9%,3.1%,5.1%respectively. Based on the1:1line, the coefficient of determination (R2), RE and RMSE between simulated and measured are0.99,3.7%, and2.1days for total development stages. The model developed in this study can be used for simulation of the development stages of greenhouse sweet pepper.
     In the leaf area submodel, the concept of the product of thermal effectiveness and PAR (TEP) was proposed. TEP was calculated by formula as follows:
     RTE is the relative thermal effectiveness. Tb, Tob, Tou, Tm are the base temperature, the base optimum temperature, the upper optimum temperature, the maximum temperature, respectively, for greenhouse sweet pepper growth.
     DTEP(i)=(∑RTE(i,j)/24) x PAR(i)
     DTEP(i) is the daily total product of thermal effectiveness and PAR to day i. RTE(i,j) is the relative thermal effectiveness on day i, hour j. PAR(i) is the daily total PAR on day i.
     TEP(i+1)=TEP(i)+DTEP(i+l)
     TEP (i+1) is the cumulative TEP from emergence date to day i+1. TEP (i) is the cumulative TEP from the ith leaf unfolding date to day i, DTEP(i+1) is the daily total TEP on day i+1.
     Then, the relationships between plant leaf area (LA) and TEP were calculated as follows:
     N=23.29×exp(TEP/290.39)-21.35
     N is the number of leaves unfolding, i is leaf order, Li is the leaf length of leaf i (cm), LMAXi is the maximum leaf length of leaf i, TEP is the cumulative TEP after emergence (MJ·m-2), TEPi is the cumulative TEP after unfolding of leaf i (MJ·m-2), ki is a parameter, No is the number of old leaves removed, ALo is the total area of old leaves removed (cm2), ALi is the leaf area of leaf i (cm2). When TEP=274.10MJ·m-2, old leaves were removed for the first time. LAI=LA×d/10000
     LAI is the leaf area index, d is the planting density (plant·m-2),10000is the conversion coefficient from cm2to m2.
     Based on the experimental data, the relationships between the TEP accumulated after emergence to the number of unfolding leaves per plant, the number of old leaves removed per plant and the length of each leaf were determined. Based on these quantitative relationships, a leaf area simulation model for greenhouse sweet pepper was developed. Independent experimental data were used to validate the model. The results showed that the coefficient of determination (R2) and the root mean squared error (RMSE) between the simulated and the measured leaf number, leaf length and leaf area index(LAI) based on the1:1line are, respectively,0.94.0.89.0.93and3.4.2.15cm、0.15. The model can predict LAI satisfactorily using air temperature, radiation, date of emergence and planting density for greenhouse sweet pepper growth and water evapotranspiration simulation models.
     In the biomass production submodel and dry matter partitioning and yield prediction submodel, the LAI model based on TEP was combined with photosynthesis and dry matter production model to predict dry matter production. The effects of radiation and temperature on dry matter partitioning and fruit harvest index were quantified based on the experimental data. A greenhouse sweet pepper growth and yield simulation model was developed by integrating those quantitative relationships with a general photosynthesis driven biomass production model.
     In the dry matter partitioning and yield prediction submodel, the partitioning index (PI) of organs and the harvest index (HI) were predicted using TEP:
     PI of shoot:PISH=0.91-0.33×0.99TEP
     PI of root:PIR=1-PISH
     PI of fruit:PIF=1-PIS-PIL
     HI=0.94x (1-EXP x (-(TEP-245.16)/58.18))
     Then, greenhouse sweet pepper yield were predicted using PI and HI as follows:
     WF=BIOMASS x PISH x PIF
     Y=(WF x HI)/0.05
     WF is the fruit total dry weight (kg·ha-1), BIOMASS is the plant total dry weight (kg·ha-1), Y is the yield (fresh weight),0.05is the dry matter content of fruit (g·g-1).
     Independent experimental data were used to validate the model. The results show that the model developed in this study gives satisfactory predictions of the growth and yield of sweet pepper grown in both the multi-span Venlo-type greenhouse and the solar greenhouse. Based on the1:1line, the coefficient of determination (R2) and the relative prediction error (RE) between simulated and measured are0.93and8.4%, respectively, for total biomass;0.92and8.4%, respectively, for shoot dry weight;0.91and9.0%, respectively, for root dry weight;0.85and11.5%, respectively, for stem dry weight;0.80and11.2%, respectively, for leaf dry weight;0.86and12.9%, respectively, for total fruit dry weight;0.79and16.1%, respectively, for yield (fresh weight). The model developed in this study can be used for light and temperature management for greenhouse sweet pepper production.
引文
[1]周长吉,冯广和.引进温室带给中国设施园艺现代化的思考[J].沈阳农业大学学报,2000-02,31(1):23-25
    [2]古文海,陈建.设施农业的现状分析及展望.农机化研究[J].2004,(1):46-47
    [3]Kornera O, Van Straten G. Decision support for dynamic greenhouse climate control Strategies[J]. Computers and Electronics in Agriculture 2008,60:18-30
    [4]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.
    [5]Lentz W. Model applications in horticulture:a review[J]. Scientia Horticulturae 1998,74:151-174.
    [6]孙忠富,陈人杰.温室作物模型研究基本理念与技术方法的探讨[J].中国农业科学,2002,35(3):320-324.
    [7]李永秀,罗卫红.温室蔬菜生长发育模型研究进展[J].农业工程学报,2008,24(1):307-312.
    [8]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review[J]. Scientia Horticulture,1998,74:83-111.
    [9]Gary C, Jones J W, Tchamitchian M. Crop modeling in horticulture:state of the art[J]. Scientia Horticulture,1998,74:3-20
    [10]Birch C J, Vos J, Kiniry J, et al. Phyllochron responds to acclimation to temperature and irradiance in maize[J]. Field Crops research,1998,59:187-200
    [11]Sadras V O, Villalobos F J. Floral initiation, leaf initiation and leaf appearance in sunflower[J]. Field Crops Research,1993,33:449-457449
    [12]Onsinejad R, Abak K. Determination of a suitable formula for the calculation of sum growing degree days in watermelon (Citrullus lanatus (Thunb) Mansf.)[J]. Acta Horticulture.1999,492: 297-302
    [13]Baker J T, Leskovar D I, Reddy V R, Dainello F J. A simple phonological model of muskmelon development[J]. Annals of Botany,2001,87 (5):615-621
    [14]Marcelis L F M, Gijzen H. A model for prediction of yield and quality of cucumber fruit[J]. Acta. Horticulturae,1998,476:237-242.
    [15]Wurr D C E, Fellows J R, Sucking R F. Crop continuity and prediction of maturity in the crisp lettuce variety Saladin[J]. Journal of Horticultural Science,1988,111:481-486.
    [16]Raymond Bonhomme. Bases and limits to using'degree.day' units[J]. European Journal of Agronomy,2000,13:1-10
    [17]Piper E L, Smit M A, Boote K J, et al. The role of daily minimum temperature in modulating the development rate to flowering in soybean[J]. Field Crops research,1996,47:211-220
    [18]Sadi S. Grimm, Jones James W, Boote Kenneth J, et al. Parameter estimation for predicting flowering date of soybean cultivars[J]. Crop Science,1993,33:137-144.
    [19]潘学标.作物模型原理[M].北京:气象出版社,2003
    [20]严美春,曹卫星,罗卫红,等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(3):355-359.
    [21]孟亚利,曹卫星,周治国,等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362-1367.
    [22]张立祯,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97-103.
    [23]汤亮,朱艳,刘铁梅,等.油菜生育期模拟模型研究[J].中国农业科学,2008,41(8):2493-2498
    [24]袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜发育模拟模型研究[J].园艺学报,2005,32:262--267.
    [25]倪纪恒,罗卫红,李永秀,等.温室番茄发育模拟模型研究[J].中国农业科学,2005,38(6):1219-1225.
    [26]李永秀,罗卫红,倪纪恒,等.温室黄瓜生育期模拟模型的研究[J].南京气象学院学报,2008,31(2):257-263.
    [27]Van Delden A, Kropff M J, Haverkort A J. Modeling temperature-and radiation-driven leaf area expansion in the contrasting crops potato and wheat[J]. Field Crops Research,2001,72:119-142.
    [28]Dayan E, Van Keulen, Jones H, et al. Development, calibration and validation of a greenhouse tomato growth model:I. Description of the model[J]. Agricultural System,1993,43:148-163.
    [29]Heuvelink E. Tomato growth and yield:quantitative analysis and synthesis[D]. Wageningen: Wageningen Agriculturl University,1996.
    [30]Heuvelink E, Marcelis LFM. Influence of assimilate supply on leaf formation in sweet pepper and tomato[J]. Journal of Horticultural Science,1996,71:405-414.
    [31]Gijzen H, Heuvelink E, Challa H, et al. (1998). HORTISIM:A model for greenhouse crops and greenhouse climate[J]. Acta Horticulturae,456,441-450.
    [32]Van Keulen H, Penning de Vries F W T, Drees E M et al. A summary model for crop growth [A]. Penning de Vries F W T, Van Laar H H. Simulation of plant growth and crop production [C]. Wageningen:Pudoc,1982,87-97.
    [33]De Visser C L M. ALCEPAS, an onion growth model based on SUCROS87:1. Development of the model[J]. Horticulture Science,1994,69:501-518.
    [34]Penning de Vries F W T, Jansen D M, Ten Berge H F M et al. Simulation of ecophysiological processes of growth in several annual crops[M]. Simulation monographs 29.Wageningen:Pudoc, 1989.
    [35]Van Delden A, Pecio A, Haverkort A J. Temperature Response of Early Foliar Expansion of Potato and Wheat[J]. Annals of Botany,2000,86:355-369
    [36]Spitters CJT, van Keulen H, van Kraalingen DWG 1989. A simple and universal crop growth simulator:SUCROS87. In:Rabbinge, R., Ward, S., van Laar, H._Eds.., Simulation and System Management in Crop Protection. Simulation Monograph Vol.32, Pudoc, Wageningen, Netherlands, pp.147-181.
    [37]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(5):861-867
    [38]袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜叶面积与光合生产模拟模型研究[J].南京农业大学学报,2006,29(1):7-12
    [39]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635
    [40]De Wit C T. Photosynthesis of leaf canopies [M]. Wageningen:Agric. Res. Rep.663. Pudoc.1965: 57.
    [41]Monsi M, Saeki T. Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion[J]. Soc. Jpn. J. Bot.1953,14:22-52.
    [42]Spitters C J T. Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis:II. Calculation of canopy photosynthesis [J]. Agricultural and Forest Meteorology,1986,38,231-242.
    [43]Goudriaan J, Van Laar H H. Modelling Potential Crop Growth processes[M]. Dordrecht:Kluwer Acad. Publishers,1994,238.
    [44]Thevenard D, Zhang Y, Jewett T J, et al. Monitoring and modeling of light penetration into double-row greenhouse crops[J]. American Society of Agricultural Engineers,1999,42(1):165-174
    [45]Challa Hogo, Heuelink E. Photosynythesis driven crop growth models for greenhouse cultivation: advances and bottle-necks [J]. Acta Horticulturae,1996,417:9-22.
    [46]Acock B, Charles-Edwards D. A., Fitter D.J,, et al. The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis:An experiment examination of two Canopy models[J]. Journal of Experimental Botany,1978,29:815-827.
    [47]Thornley J H M. Mathematical models in plant physiology. Academic Press, London,1976
    [48]Longuenesse J.J., Gary C., Tchamitchian M. Modelling co2 exchanges of greenhouse crops; a matter of scales and boundaries [J]. Acta Horticulturae,1993,328:33-47
    [49]Charles-Edwards D A. An analysis of photosynthesis and productivity of vegetative crops in the United Kingdom[J]. Annals of Botany,1978,42:717-731.
    [50]Leutscher K J, Vogelezang J V M. A crop growth simulation model for operational management support in pot plant production [J]. Agricultural System,1990,33:101-114.
    [51]Goudriaan J. The bare bones of leaf angle distribution in radiation models for canopy photosynthesis and energy exchange [J]. Agricultural and Forest Meteorology,1988,43:155-169.
    [52]Amthor J S. Respiration and Crop Productivity. Springer-Verlag, New York,1989,215 pp.
    [53]Johnson I R. Plant Respiration in relation to growth, maintenance, ion uptake and nitrogen assimilation[J]. Plant Cell Environment,1990,13:319-328.
    [54]Bouma T J, Broekhuysen A G M, Veen B W. Analysis of root respiration of Solanum tuberosum as related to growth, ion uptake and maintenance of biomass[J]. Plant Physiol Biochem.1996,34, 795-806.
    [55]Amthor J S. The role of maintenance respiration in plant growth[J]. Plant Cell Environment,1984, 7:561-569.
    [56]Penning de Vries F W T, Van Laar H H. Simulation of growth processes and the model BACROS. Simulation of Plant Growth and Crop Production. Pudoc, Wageningen,1982,114-135.
    [57]De Wit C T. Simulation of assimilation, respiration and transpiration of crops[M]. Wageningen: Simulation Monographs Pudoc,1978:141.
    [58]Wullschlegar S D, Ziska L H, Bunce J A. Respiratory responses of higher plants to atmospheric CO2 enrichment[J]. Physiologia Plantarum,1994,90:221-229.
    [59]Heuvelink E. Dry matter production in a tomato crop:measurements and simulation[J]. Annals of Botany,1995,75:369-379.
    [60]Bunce J A. Growth rate, photosynthesis and respiration in relation to leaf area index[J]. Annals of Botany,1989,63:459-463.
    [61]Gifford R M. Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature:long-term vs short-term distinctions for modeling[J]. Global Change Biology.1995,1:385-396.
    [62]Wardlaw I F. The control of carbon partitioning in plants[J]. New Phytology,1990,116:341-381.
    [63]Marcelis L F M. Sink strength as a determinant of dry matter partitioning in the whole plant[J]. Journal of Experimental Botany,1996,47:1281-1291.
    [64]Marcelis L F M. Simulation of biomass allocation in greenhouse crops:a review[J]. Acta Horticulture,1993,328:49-67.
    [65]Wilson. A review of evidence on the control of shoot:root ratio in relation to models[J]. Annals of Botany,1988,61:433-449
    [66]De Willigen P, Van Noordwijk M. Roots, plant production and nutrient use. Dissertation. Wageningen Agric. Univ., Wageningen,1987,282 pp.
    [67]Marcelis L F M. The dynamics of growth and dry matter distribution in cucumber[J]. Annals of Botany,1992,69:487-492
    [68]Bertin N, Gary C. Tomato fruit set:A case study for validation of the model TOMGRO[J]. Acta Horticulture,1993,328:185-193
    [69]Prusinkiewicz P. Modeling of spatial structure and development of plants:a review[J]. Scientia Horticulturae,1998,74(2):113-149.
    [70]Di'az-Ambrona C H, Tarquis A, Mi'nguez M I. Faba bean canopy modelling with a parametric open L-system:a comparison with the Monsi and Saeki model[J]. Field Crops Research,1998, 58(1):1-13.
    [71]Prusinkiewicz P, Remphrey W R, Davidson C G, et al. Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems[J]. Canadian Journal of Botany,1993,72(5): 701-714.
    [72]Pachepsky LB, Kaul M, Walthall C, et al. Soybean growth and development visualized with L-systems simulations:effect of temperature[J]. International Journal of Biotronics,2004,33(1): 31-47.
    [73]Watanabe T, Hanan JS, Room PM, et al. Rice morphogenesis and plant architecture:measurement, specification and the reconstruction of structural development by 3D architectural modelling[J]. Annals of Botany,2005,95(5):1131-1143.
    [74]Fournier C, Andrieu B. A 3D architectural and process-based model of maize development[J]. Annals of Botany,1998,81(2):233-250.
    [75]Hanan JS, Hearn AB. Linking physiological architectural models of cotton[J]. Agricultural Systems, 2003,75(1):47-77.
    [76]de Reffye P, Fourcaud T H, Blaise F, et al. A functional model of tree growth and tree architecture[J]. Silva Fennica,1997,31(3):297-311.
    [77]de Reffye P, Blaise F, Chemouny S, et al. Calibration of hydraulic growth model on the architecture of cotton plants[J].Agronomie,1999,19(3):265-280.
    [78]Perttunen J, Sievanen R, Nikinmaa E, et al. LIGNUM:a tree model based on simple structural units[J]. Annals of Botany,1996,77(1):87-98.
    [79]Yan HP, Kang MZ, de Reffye P, et al. A dynamic, architectural plant model simulating resource-dependent growth[J]. Annals of Boany,2004,93(5):591-602.
    [80]Guo Y, Ma Y T, Zhan Z G, et al. Parameter optimization and field validation of the functional-structural model GREENLAB for maize [J]. Annals of Botany,2006,97(2):217-230.
    [81]董乔雪,王一鸣.番茄的结构—功能模型Ⅰ:基于有限态自动机的3D形态构建[J].中国生态农业学报,2006,14(4):195-199.
    [82]董乔雪,王一鸣.番茄的结构—功能模型Ⅱ:基于器官水平的功能模型与验证研究[J].中国生态农业学报,2007,15(1):122-126.
    [83]董乔雪,王一鸣,Francois BARCZI J,等.番茄形态结构模型参数的多目标拟合估算方法研究[J].农业工程学
    [84]Gijzen,H. Development of a simulation model for transpiration and water uptakend and an integral growth model[R]. AB-DLO Report 18, AB-DLO Wageningen.1994.
    [85]孙忠富,陈人杰.温室作物模型与环境控制管理研究[J].中国生态农业学报,2003,11(4):1-3
    [86]Jones J W, Dayan E, van Keulen H, et al. A dynamic tomato growth and yield model (TOMGRO). TRANSACTION OF THE ASAE,1991,34(2):663-672.
    [87]Heuvelink E. Dry matter partitioning in tomato:validation of a dynamic simulation model[J]. Annals of Botany,1996,77(1):71-80
    [88]Marcelis L F M. A simulation model for dry matter partitioning in cucumber[J]. Annals of Botany, 1994,74:43-52.
    [89]孙忠富,陈晴,王迎春.不同光照条件下温室黄瓜干物质生产模拟与试验研究[J].农业工程学报,2005,21(增刊):50-52
    [90]史为民,陈青云,乔晓军.日光温室黄瓜叶片光合速率模型及其参数确定的初步研究[J].农业工程学报,2005,21(5):113-118
    [91]罗新兰,李天来,姚运生,等.日光温室气象要素及番茄单叶光合速率日变化模拟的研究[J].园艺学报,2004,31(5):607-612
    [92]倪纪恒,罗卫红,李永秀,等.温室番茄干物质分配与产量的模拟分析[J].应用生态学报,2006,17(5):811-816
    [93]袁昌梅,罗卫红,邰翔,等.温室网纹甜瓜干物质分配、产量形成与采收期模拟研究[J].中国农业科学,2006,39(2):353-360
    [94]李永秀,罗卫红,倪纪恒.用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量[J].农业工程学报,2005,21(12):131-136.
    [95]李永秀,罗卫红,倪纪恒,等.温室黄瓜干物质分配与产量预测模拟模型初步研究[J].农业工程学报,2006,22(2):116-121.
    [96]贺超兴,张志斌,徐知函,等.日光温室甜椒越冬长季节栽培关键技术[J].中国蔬菜,2004,2:44-46.
    [1]贺超兴,张志斌,徐知函,等.日光温室甜椒越冬长季节栽培关键技术[J].中国蔬菜,2004,2:44-46.
    [2]Habekotte B. A model of the phonological development of winter oilseed rape (Brassica napus L.) [J]. Field Crop Research,1997,54:127-136.
    [3]Baker J T, Leskovar D I, Reddy V R, Dainello F J. A simple phonological model of muskmelon development[J]. Annals of Botany,2001,87 (5):615-621
    [4]Enli Wang, Thomas Engel. Simulation of Phenological Development of Wheat Crops[J]. Agricultural Systems,1998,58:1-24,.
    [5]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003:22-33
    [6]严美春,曹卫星,罗卫红,等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(3):355-359.
    [7]孟亚利,曹卫星,周治国,等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362-1367.
    [8]张立祯,曹卫星,张思平,等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97-103.
    [9]汤亮,朱艳,刘铁梅,等.油菜生育期模拟模型研究[J].中国农业科学,2008,41(8):2493-2498
    [10]袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜发育模拟模型研究[J].园艺学报,2005,32:262-267.
    [11]倪纪恒,罗卫红,李永秀,等.温室番茄发育模拟模型研究[J].中国农业科学,2005,38(6):1219-1225.
    [12]李永秀,罗卫红,倪纪恒,等.温室黄瓜生育期模拟模型的研究[J].南京气象学院学报,2008,31(2):257-263.
    [13]柴敏,耿三省.特色番茄彩色甜椒新品种及栽培[M].北京:中国农业出版社,2003:123-127
    [14]蔡象元.现代蔬菜温室设施和管理[M].上海:上海科学与技术出版社,2000:298-308
    [15]Goudriaan J, Van Laar H H. Modeling potential crop growth processes[M]. The Netherlands: Kluwer academic publishers,1994.29-77
    [16]郭世荣.无土栽培学[M].北京:中国农业出版社,2003:306-311
    [17]中国蔬菜花卉研究所.中国蔬菜栽培学[M].北京:中国农业出版社,1987:649-653
    [18]日本农山渔村文化协会(北京农业大学译).蔬菜生物生理学基础[M].北京:农业出版社,1985:223-259
    [1]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.
    [2]Lizaso J I, Batchelo W D, Westgateb M E. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves[J]. Field Crops Reserch,2003,80:1-17.
    [3]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(5):861-867
    [4]Luo W-H, Hendrik Feije de Zwart, Jianfeng Dai, et al Simulation of greenhouse management in the sub tropics, Part Ⅰ:Model validation and scenario study for the winter season [J]. Biosystems Engineering,2005,90 (3):307-318
    [5]汤亮,朱艳,鞠昌华,等.油菜地上部干物质分配与产量形成模拟模型[J].应用生态学报,2007,18(3):526-530
    [6]袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜叶面积与光合生产模拟模型研究[J].南京农业大学学报,2006,29(1):7-12
    [7]Marcelis LFM, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review[J]. Scientia Horticulturae,1998,74:83-111.
    [8]Fleisher DH, Shillito RM, Timlin D. et al. Approaches to modeling potato leaf appearance rate[J]. Agronomy Journal,2006,98:522-528.
    [9]Gabrielle B, Denoroy P, Gosse G, et al. A model of leaf area development and senescence for winter oilseed rape[J]. Field Crops Research,1998,57:209-222.
    [10]Petersen CT, Jorgensen U, Svendsen H. et al. Parameter assessment for simulation of biomass production and N uptake in winter rapeseed[J]. European Journal of Agronomy,1995,4:77-89.
    [11]Sinclair TR, Gilbertb RA, Perdomoc RE et al Sugarcane leaf area development under field conditions in Florida[J]. USA Field Crops Research,2004,88:171-178.
    [12]Villalobos FJ, Hall AJ, Ritchie JT et al OILCROPSUN:a development, growth, and yield model of the sunflower crop[J]. Agronomy Journal,1996,88:403-415.
    [13]Dayan E, Van Keulen H, Jones JW, et al Development, calibration and validation of a greenhouse tomato growth model:Ⅰ. Description of the model.Agricultural Systems,1993,43:145-163.
    [14]Heuvelink E. Dry matter production in a tomato crop:measurements and simulation[J]. Annals of Botany,1995,75:369-379.
    [15]Heuvelink E, Marcelis LFM. Influence of assimilate supply on leaf formation in sweet pepper and tomato[J]. Journal of Horticultural Science,1996,71:405-414.
    [16]Marcelis LFM., Gijzen H. A model for prediction of yield and quality of cucumber fruits[J]. Acta Horticulturae,1998,476:237-242.
    [17]Pronk AA, Heuvelink E, Challac H. Dry mass production and leaf area development of field-grown ornamental conifers:measurements and simulation[J]. Agricultural Systems,2003,78:337-353
    [18]Tom H, Nielsen, BjarkeVeierskov. Distribution of dry matter in sweet pepper plants (Capsicum annuum L.) during the juvenile and generative growth phases[J]. Scientia Horticulturae,1992,52: 69-76
    [19]倪纪恒,罗卫红,李永秀等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学2005,38(8):1629-1635
    [20]杨再强,罗卫红,陈发棣,等.基于光温的温室标准切花菊品质预测模型[J].应用生态学报,2007,18(4):877-882
    [21]袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜发育模拟模型研究[J].园艺学报,2005,32(2):262-267
    [22]贺超兴,张志斌,徐知函,等.日光温室甜椒越冬长季节栽培关键技术[J].中国蔬菜,2004,2:44-46.
    [23]郭世荣.无土栽培学[M].北京:中国农业出版社,2003:306-311
    [24]LiG-J(李国景),Benoit F, Ceustermans N. Influence of day and night temperature on the growth, development and yield of greenhouse sweet pepper[J]. Journal of Zhejiang University (浙江大学学报),2004,30(5):487-491.
    [25]Olivier Turc, Jeremie Lecoeur. Leaf Primordium Initiation and Expanded Leaf Production are Co-ordinated through Similar Response to Air Temperature in Pea (Pisum sativum L.) [J]. Annals of Botany,1997,80:265-273.
    [26]蔡象元.现代蔬菜温室设施和管理[M].上海:上海科学与技术出版社,2000:298-308
    [27]柴敏,耿三省.特色番茄彩色甜椒新品种及栽培[M].北京:中国农业出版社,2003:123-127
    [28]倪纪恒,罗卫红,李永秀等.温室番茄干物质分配与产量的模拟分析[J].应用生态学报.2006,17(5):811-816
    [29]Sinclair TR. Water and nitrogen limitations in soybean grain production. I. Model development Field Crops Research,1986,15:125-141.
    [30]Sinclair TR, Amir J. A model to assess nitrogen limitations on the growth and yield of spring wheat Field Crops Resrech,1992,30:63-78.
    [31]Vos J, Van der Putten PEL, Birch CJ Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity maize (Zea mays L.) Field Crops Research, 2005,93:64-7
    [1]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.49-63.
    [2]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:areview[J]. Scientia Horticulturae,1998,74:83-111.
    [3]Gijzen H. Simulation of photosynthesis and dry matter production of greenhouse crops[A]. Simulation Report CABO-TT, nr.28[C]. Wageningen:Centre for Agrobiological Research, Wageningen Agricultural University,1992,17-21.
    [4]Penning de Vries F W T, Jansen D M, Ten Berge H F M, et al. Simulation of ecophysiological processes of growth in several annual crops [M]. The Netherlands:Wageningen, pudoc,1989.
    [5]van Kenlen H. Crop production under semi-arid conditions, as determined by nitrogen and moisture availability. In:Penning de Vries F W T, van Laar H H eds.Simulation Monographs. Wageningen, Netherlands:PUDOC,1982.234-251
    [6]Jones C A, Kiniry J R. CERES-Maize:A simulation model of maize growth and development. College Station, US:Texas A&M Univ. Press,1986
    [7]Ritchie J T, Otter S. Description and performance of CERES-Wheat:a user-oriented wheat yield model. Willis W O. ARSwheat yield project. US:USDA-ARS, ARS-38,1985.159-175
    [8]Wilkerson G G, Jones J W, Boote K J, et al. Modeling soybean growth for crop management.Trans ASAE,1983,26:63-73
    [9]Baker D N, Lambert JR, McKinion J M.1983. Gossym:a simulator of cotton crop growth and yield. South Carolina Agricural Experimental Station Technical Bulletin 1089:1-134.
    [10]Jones J W, Dayan E, van Keulen H, et al. A dynamic tomato growth and yield model (TOMGRO). TRANSACTION OF THE ASAE,1991,34(2):663-672.
    [11]Bertin N, Gary C. Tomato fruit set:A case study for validation of the model TOMGRO[J], Acta Horticulture,1993,328:185-193
    [12]Gijzen,H. Development of a simulation model for transpiration and water uptakend and an integral growth model[R]. AB-DLO Report 18, AB-DLO Wageningen.1994.
    [13]Gijzen H, Heuvelink E, Challa H, et al. (1998). HORTISIM:A model for greenhouse crops and greenhouse climate[J]. Acta Horticulturae,456,441-450.
    [14]Goudriaan J. The bare bones of leaf angle distribution in radiation models for canopy photosynthesis and energy exchange [J]. Agricultural and Forest Meteorology,1988,43:155-169.
    [15]孟亚利,曹卫星,柳新伟,等.水稻光合生产和干物质积累的动态模拟的初步研究生物数学学报[J].2004,19(2):205-212
    [16]刘铁梅,曹卫星,罗卫红,等.小麦物质生产与积累的模拟模型[J].麦类作物学报,2001,21(3):26-31.
    [17]郑国清,张曙光,段韶芬,等.玉米光合生产与产量形成模拟模型[J].农业系统科学与综合研究,2004,20(3):193
    [18]张立桢,曹卫星,张思平等.棉花光合生产与干物质积累过程的模拟[J].棉花学报,2003,15(3):138-145.
    [19]汤亮,朱艳,孙小芳,等.油菜光合作用与干物质积累的动态模拟模型[J].作物学报,2007,33(2):189-195
    [20]倪纪恒,罗卫红,李永秀等.温室番茄干物质分配与产量的模拟分析[J].应用生态学报2006,17(5):811-816
    [21]李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003,19(4):241-244.
    [22]袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜叶面积与光合生产模拟模型研究[J].南京农业大学学报2006,29(1):7-12
    [23]杨再强,罗卫红,陈发棣,等.温室标准切花菊干物质生产和分配模型[J].中国农业科学2007,40(9):2028-2035
    [24]Goudriaan J, van Laar H H. Modeling Potential Crop Growth Processes [M]. The Netherlands: Kluwer Academic Publishers,1994:10-111
    [1]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review [J]. Scientia Horticulturae,1998,74:83-111.
    [2]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.49-70.
    [3]Chen J L, Reynolds J F.A coordination model of whole-plant carbon allocation in relation to water stress[J]. Annals of Botany,1996,80:45-55.
    [4]Reynolds J F, Chen J L. Modelling whole-plant allocation in relation to carbon and nitrogen supply: coordination versus optimization [J]. Plant and soil,1997,185:65-74.
    [5]Marcelis L F M. A simulation model for dry matter partitioning in cucumber[J]. Annals of Botany, 1994,74:43-52.
    [6]Wilson, J.B..A review of evidence on the control of shoot:root ratio, in relation to models[J]. Annals of Botany,1988,61,433-449.
    [7]Gutierrez Colomer R.P., Gonzalez-Real M.M., Baille A. Dry matter production and partitioning in rose (Rosa hybrida) flower shoots[J]. Scientia Horticulturae 107 (2006) 284-291.
    [8]Heuvelink E. Dry matter production in a tomato crop:measurements and simulation[J]. Annals of Botany,1995,75:369-379.
    [9]Marcelis LFM., Gijzen H. A model for prediction of yield and quality of cucumber fruits[J]. Acta Horticulturae,1998,476:237-242.
    [10]倪纪恒,罗卫红,李永秀等.温室番茄干物质分配与产量的模拟分析[J].应用生态学报.2006,17(5);811-816.
    [11]李永秀,罗卫红,倪纪恒等.温室黄瓜干物质分配与产量预测模拟模型初步研究[J].农业工程学报,2006,22(2):116-121.
    [12]Tom H., Nielsen, BjarkeVeierskov. Distribution of dry matter in sweet pepper plants (Capsicum annuum L.) during the juvenile and generative growth phases[J]. Scientia Horticulturae,1988,35: 179-187.
    [13]Marcelis,L.F.M., Elings,A., Bakker,M., etal. Modelling dry matter production and partitioning in sweet pepper[J].Acta Hort.2006,718:121-128.
    [14]Gijzen, H. Development of a simulation model for transpiration and water uptakend and an integral growth model[R]. AB-DLO Report 18, AB-DLO Wageningen.1994.
    [15]L i G-J(李国景),Benoit F, Ceustermans N. Influence of day and night temperature on the growth, development and yield of greenhouse sweet pepper [J]. Journal of Zhejiang University (浙江大学 学报),2004,30(5):487-491.
    [16]Olivier Turc, Jeremie Lecoeur. Leaf Primordium Initiation and Expanded Leaf Production are Co-ordinated through Similar Response to Air Temperature in Pea (Pisum sativum L.) [J]. Annals of Botany,1997,80:.265-273.
    [17]倪纪恒,罗卫红,李永秀等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1629-1635.
    [18]Goudriaan J, van Laar H H. Modeling Potential Crop Growth Processes [M]. The Netherlands: Kluwer Academic Publishers,1994:10-111
    [19]Goudriaan J. A simple and fast numerical method for the computation of daily totals of crop photosynthesis [J]. Agricultural and Forest Meteorology,1986,38:249-254.
    [20]Gijzen H. Simulation of Photosynthesis and Dry Matter Production of Greenhouse Crops[A]. Amsterdam:Simulation Report CABO-TT 28,1992:17-21.
    [21]蔡象元.现代蔬菜温室设施和管理[M].上海:上海科学与技术出版社,2000:298-308
    [22]柴敏,耿三省.特色番茄彩色甜椒新品种及栽培[M].北京:中国农业出版社,2003:123-127
    [1]Baker J T, Leskovar D I, Reddy V R, Dainello F J. A simple phonological model of muskmelon development[J]. Annals of Botany,2001,87 (5):615-621.
    [2]Onsinejad R, Abak K. Determination of a suitable formula for the calculation of sum growing degree days in watermelon (Citrullus lanatus (Thunb) Mansf.)[J]. Acta Horticulture.1999,492: 297-302.
    [3]Ottoson L. Some aspects on heat unit calculations for sowing-programs of vining peas[J]. Acta Horticulture,1973,27:279-280.
    [4]Wurr D C E, Fellows J R, Suckling R F. Crop continuity and prediction of maturity in the crisp lettuce variety Saladin[J]. Agricultural Science,1988,111:481-486.
    [5]Marcelis L F M, Gijzen H. A model for prediction of yield and quality of cucumber fruits[J]. Acta Horticulturae,1998,476:237-242.
    [6]Marcelis,L.F.M., Elings,A., Bakker,M., etal. Modelling dry matter production and partitioning in sweet pepper[J]. Acta Hort.2006,718:121-128.
    [7]Heuvelink E, Marcelis LFM. Influence of assimilate supply on leaf formation in sweet pepper and tomato [J]. Journal of Horticultural Science,1996,71:405-414.
    [8]Dayan E, Van Keulen H, Jones JW, et al Development, calibration and validation of a greenhouse tomato growth model:I. Description of the model[J]. Agricultural Systems,1993,43:145-163.
    [9]Heuvelink E. Dry matter production in a tomato crop:measurements and simulation [J]. Annals of Botany,1995,75:369-379.
    [10]Pronk AA, Heuvelink E, Challac H. Dry mass production and leaf area development of field-grown ornamental conifers:measurements and simulation [J]. Agricultural Systems,2003,78:337-353
    [11]倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005,38(8):1 629、1635.
    [12]袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜叶面积与光合生产模拟模型研究[J].南京农业大学学报,2006,29(1):7-12.
    [13]李永秀,罗卫红,倪纪恒,等.基于辐射和温度热效应的温室水果黄瓜叶面积模型[J].植物生态学报,2006,30(5):861-867.
    [14]李永秀,罗卫红.温室蔬菜生长发育模型研究进展[J].农业工程学报,2008,24(1):307-312.
    [15]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review [J]. Scientia Horticulture,1998,74:83-111.
    [16]Marcelis L F M. A simulation model for dry matter partitioning in cucumber[J]. Annals of Botany, 1994,74:43-52.
    [17]Thornley J H M. Modelling shoot:root relation:the only way forward[J]. Annals of Botany,1998, 81:163-175.
    [18]Marcelis L F M. Simulation of biomass allocation in glasshouse crops-a review[J]. Acta Horticulture,1993,328:49-67.
    [19]Johnson I R, Thornley J H M. A model of shoot:root partitioning with allocation in relation to water stress[J]. Annals of Botany,1987,60:133-142.
    [20]Chen J L, Reynolds J F. A coordination model of whole-plant carbon allocation in relation to water stress [J]. Annals of Botany,1996,80:45-55.
    [21]Reynolds J F, Chen J L. Modelling whole-plant allocation in relation to carbon and nitrogen supply:coordination versus optimization[J]. Plant and soil,1997,185:65-74.
    [22]Gutierrez Colomer R.P., Gonzalez-Real M.M., Baille A.. Dry matter production and partitioning in rose (Rosa hybrida) flower shoots [J]. Scientia Horticulturae 107 (2006) 284-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700