用户名: 密码: 验证码:
干燥和饱水状态下炭质板岩流变力学特性与模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展不同含水状态下岩石流变力学特性与模型研究,对于正确预测和有效控制岩石工程的安全与稳定具有重要的理论价值和工程实践意义。本文以兰渝铁路木寨岭隧道炭质板岩为研究对象,采用试验研究、理论分析相结合的方法,基于炭质板岩在干燥和饱水状态下的力学特性以及蠕变规律,建立适用于炭质板岩的非线性流变理论模型,结合粒子群算法(PSO)和非线性最小二乘法对流变参数进行辨识,并将建立的流变模型嵌入FLAC3D,完成数值程序的二次开发。本文主要研究工作如下:
     (1)开展干燥和饱和状态下炭质板岩单轴和三轴试验、楔形剪切试验、巴西圆盘劈裂试验,以及单轴循环加卸载瞬时力学特性试验,掌握了两种状态下炭质板岩的瞬时力学特性,也为开展岩石蠕变试验提供了试验基础。试验结果表明:水对炭质板岩强度和变形的影响是显著的,而在单轴循环加卸载条件下的影响更为突出;
     (2)采用全自动伺服流变仪,对干燥和饱和炭质板岩开展分级加载和分级增量循环加卸载蠕变试验,研究两种状态下炭质板岩的蠕变特点,以及水对岩石在各级压力下的蠕变量、蠕变速率的影响。在中、低应力水平下,岩石蠕变变形主要呈现出衰减蠕变和稳态蠕变2个阶段,当加载应力增加到较高应力水平时,岩石轴向变形急剧增长,表现出加速蠕变阶段;相同应力水平下的饱水岩样的蠕变量为干燥岩样的3倍以上;加卸载蠕变试验表明:水对岩石瞬时变形的影响主要表现在瞬时塑性变形方面,对瞬时弹性变形的影响不大,而对岩石蠕变变形的影响则主要体现在粘弹性应变方面;
     (3)根据炭质板岩在干燥和饱水状态下的蠕变特点,在Burgers流变模型的基础上,结合一个非线性粘塑性体,和Burgers流变模型相串联,构建适于炭质板岩蠕变特点的改进Burgers非线性粘弹塑性流变模型,导出了模型的本构方程、蠕变方程、卸载方程以及蠕变模型的三维形式;
     (4)在粒子群算法的基础上,将线性递减权重粒子群算法和Levenberg-Marqud非线性最小二乘法相结合,先采用线性递减粒子群算法对流变模型参数进行初步辨识,将其结果作为初始值,再采用L-M算法进行辨识,参数辨识后的相关系数均在0.94以上;
     (5)针对目前建立的能反映蠕变加速阶段的流变模型元件和参数较多的问题,借鉴经典元件组合模型的建模思路,将含分数阶微积分的软体元件与弹簧元件串联,结合一个幂函数粘塑性体,提出一种新的四元件非线性粘弹塑性流变模型,并给出该模型的本构方程和蠕变方程。利用炭质板岩蠕变试验结果,将该模型与改进Burgers非线性流变模型进行对比拟合分析,表明该模型能够有效地描述岩石的三阶段蠕变特性,在满足拟合精度的前提下,能够减少组合模型中的元件个数和参数数量;
     (6)岩石的蠕变过程是岩石内部应力不断调整,硬化和损伤效应不断发展并共同作用的结果。以经典元件模型为基础,将岩石的初始屈服强度作为蠕变硬化的应力阈值,岩石的长期强度作为损伤软化的应力阈值,引入能反映岩石蠕变硬化的硬化函数和损伤效应的损伤变量,建立了一个能够全面反映蠕变机制的岩石非线性蠕变模型。利用蠕变试验数据对所提出的模型进行辨识,结果表明该模型不仅能够很好地描述三阶段蠕变特性,而且可以全面反映岩石蠕变过程中的蠕变硬化和损伤软化机制;
     (7)依据FLAC3D提供的内置本构模型源代码,在Burgers蠕变模型有限差分形式的基础上,导出了改进Burgers非线性蠕变模型的三维差分形式。借助C++语言将改进Burgers非线性蠕变模型的三维差分形式编译成动态链接库,嵌套到FLAC3D中,实现了本构模型的二次开发,并利用新开发的流变模型进行单轴压缩蠕变模拟试验,验证了程序二次开发的正确性。
It is very important theoretical value and practical significance is that carry out the rockrheological mechanical properties and models research for which correct prediction andeffective control of the security and stability of rock engineering under different waterconditions. carbonaceous slate in wooden village ridge tunnel of Lan-Yu railway were takenfor research object, the research methods combined with the experiment, theoretical analysisand numerical calculation are used, based on the mechanical properties and creep law in dryand saturated state of the carbonaceous slates, Nonlinear rheological constitutive model ofcarbonaceous slate rock were established, identified the rheological parameters combinedwith particle swarm optimization (PSO) and nonlinear least square method, and accomplishedsecondary development in the FLAC3Dnumerical program, all of these are vital for predictionlong-term stability of tunnel engineering. The paper mainly focused on the following:
     (1) It is grasp the instantaneous mechanical properties of dry and saturated statecarbonaceous slate in which carry out uniaxial and triaxial compression test, wedge shear test,brazilian spilt test, as well as uniaxial cyclic loading and unloading instantaneous mechanicalproperties test. It is mainly focused on the mechanical property differences of two states ofrock, and also provide test base for creep test of rock; The test shows that water bring aboutsignificant influence to strength and deformation of carbonaceous slates, especially in uniaxialcyclic loading and unloading test conditions;
     (2) It is launched step load and circular increment step load and unload creep test of thedry and saturated carbonaceous slates in automatic servo rheometer, the mainly researchedcreep characteristics of two conditions of carbonaceous slates, and the influence of watertowards on the creep value and creep rate under all levels of pressure.The test resultsindicated that creep deformation mainly presents attenuation creep and steady-state creep inmost stress level, and the deformation has increased dramatically, performance acceleratingcreep stage when the stress level is higher. The mainly influence of water towards on rock isthat instantaneous plastic value in instantaneous deformation and the visco-elastic strain increep deformation;
     (3) According to the creep characteristics of carbonaceous slates in dry and saturatedstate, put forward a nonlinear viscoplastic body, combined with Burgers rheological model,established an improvement Burgers nonlinear viscoelastic-plastic rheological model, and thecreep equation, unloading equation and three dimensional form of creep model is deducedfrom the rheological constitutive model model;
     (4) Considered the defect of parameter identification in rheological model, based on theimprovement particle swarm optimization (PSO), combined with linear decreasing weightparticle swarm optimization and Levenberg-Marqud nonlinear least squares method, a newparameter inversion method is proposed,which proceeds as:1) the model parmeters areinverted using PSO;2) L-M nonlinear least square is used to invert the model parameterswith initial values from step1). A case demonstrates that the PSO—L-M method could beeffectively used in inverting the parameters of rock creep models;
     (5) By means of classic element combination modeling ideas, put forward a newnonlinear viscoelasto-plastic rheological model that contained component of fractionalcalculus and a nonlinear visco-plastic body of power function, and given constitutive equationand creep equation of the model. The fitted results of the test data showed that nonlinearrheological model that contained soft-matter element and nonlinear visco-plastic body can beeffectively depicted the creep properties of rocks, efficiently reduced the number ofcomponents and parameters of combination model;
     (6) Rock creep process is the result that constantly adjusts internal stresses of rock,hardening and damage effect gradually growth and mutual affect. By means of classicelement combination modeling ideas, the rock initial yield strength is regarded as the stressthreshold of the creep hardening, and rock's long-term strength served as the stress thresholdof damage softening, introduced hardening function and damage variable that can reflectedthe effect of rock hardening and damage effect, established nonlinear creep model of rock thatcan comprehensively reflected the creep mechanism. The fitted results of the test data showedthat nonlinear rheological model not only can be effectively described the creep process ofrocks, but also can reflected creep hardening and damage softening mechanism in the creepprocess of rocks;
     (7) On the basis of the constitutive model code and the finite difference form of Burgerscreep model in FLAC3D, deduced the three dimensional difference form of improvementBurgers nonlinear creep model,and compiled into the dynamic link library in FLAC3Dby C++language, finished secondary development of the constitutive model. Uniaxial compressioncreep simulation test is implemented, the simulation test manifested that it is fitted for theindoor creep test curves, verified the correctness of the secondary development.
引文
[1]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [2]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [3] Griggs D. Creep of Rocks[J]. Journal of Geology.1939,47(3):225-251.
    [4] Jun Sun,Wang Sijing. Rock mechanics and rock engineering in China: developments andcurrent state-of-the-art[J]. International Journal of Rock Mechanics and Mining Sciences.2000,37(3):447-465.
    [5]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报.2007,26(6):1081-1106.
    [6] Ito H,Sasajima. Ten year creep experiment on small rork specimens[J]. InternationalJournal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.1987,24(2):113-121.
    [7] Okubo S, Nishimatsu Y, Fukui K. Complete creep curves under uniaxial compression [J].International Journal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts.1991,28(1):77-82.
    [8] Malan D F. Time-dependent Behaviour of Deep Level Tabular Excavations in Hard Rock[J]. Rock Mechanics and Rock Engineering.1999,32(2):123-155.
    [9] Fujii Y, Kiyama T, Ishijima Y, et al. Circumferential strain behavior during creep tests ofbrittle rocks [J]. International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts.1999,36(3):323-337.
    [10] Maranini E, M B. Creep behaviour of a weak rock: experimental characterization [J].International Journal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts.1999,36(1):127-138.
    [11] Gasc-Barbier M, Chanchole S, Bérest P. Creep behavior of Bure clayey rock[J]. AppliedClay Science.2004,26(1):449-458.
    [12] L Ma, Daemen K J J. An experimental study on creep of welded tuff[J]. InternationalJournal of Rock Mechanics and Mining Sciences.2006,43(2):282-291.
    [13] C H Yang, Daemen K J J., H Y J. Experimental investigation of creep behavior of saltrock [J]. International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts.1999,36(2):233-242.
    [14] Berest P B, Blum A P, Charpentier P J, et al. Very slow creep tests on rock samples[J].International Journal of Rock Mechanics and Mining.2005,42(4):569-576.
    [15] G R Fabre,F D Pellet. Creep and time-dependent damage in argillaceous rocks[J].International Journal of Rock Mechanics and Mining.2006,43(6):950-960.
    [16]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报.1995,14(1):39-47.
    [17] Y S Li, C C Xia. Time-dependent tests on intact rocks in uniaxial compression [J].International Journal of Rock Mechanics and Mining Sciences.2000,37(3):467-475.
    [18]王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报.1996,18(6):55-60.
    [19]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报.1996,18(4):63-67.
    [20]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报.1997,16(3):246-251.
    [21]沈振中,徐志英.三峡大坝地基花岗岩蠕变试验研究[J].河海大学学报(自然科学版).1997,25(2):1-7.
    [22]张学忠,王龙,张代钧,等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版).1999,22(5):99-103.
    [23]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报.2003,35(4):480-484.
    [24]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学.2003,24(4):583-586.
    [25]陈渠,西田和范,岩本健.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报.2003,22(6):905-912.
    [26]李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报.2004,23(22):3745-3749.
    [27]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(I):试验结果[J].岩土力学.2005(4):531-537.
    [28]范庆忠,高延法.分级加载条件下岩石流变特性的试验研究[J].岩土工程学报.2005,27(11):1273-1276.
    [29]范庆忠,李术才,高延法.软岩三轴蠕变特性的试验研究[J].岩石力学与工程学报.2007,26(7):1381-1385.
    [30]姜永东,鲜学福,熊德国,等.砂岩蠕变特性及蠕变力学模型研究[J].岩土工程学报.2005,27(12):1478-1481.
    [31]李铀,朱维申,彭意,等.某地红砂岩多轴受力状态蠕变松弛特性试验研究[J].岩土力学.2006,27(8):1248-1252.
    [32]冒海军,杨春和,刘江,等.板岩蠕变特性试验研究与模拟分析[J].岩石力学与工程学报.2006,25(6):1204-1209.
    [33]袁海平,曹平,万文,等.分级加卸载条件下软弱复杂矿岩蠕变规律研究[J].岩石力学与工程学报.2006,25(8):1575-1581.
    [34]齐明山,徐正良,崔勤,等.风化破碎类花岗岩三轴流变试验研究[J].地下空间与工程学报.2007,3(5):914-917.
    [35]齐明山,徐正良,崔勤,等.厦门海底隧道围岩流变特性及其特征曲线[J].岩土力学.2007,28(增):493-496.
    [36]王志俭,殷坤龙,简文星,等.三峡库区万州红层砂岩流变特性试验研究[J].岩石力学与工程学报.2008,27(4):840-847.
    [37]朱明礼,朱珍德,唐胡丹,等.深埋隧洞围岩双向流变特性试验[J].煤炭学报.2010,35(02):208-212.
    [38]郭臣业,鲜学福,姜永东,等.破裂砂岩蠕变试验研究[J].岩石力学与工程学报.2010,29(5):990-995.
    [39]韩庚友,王思敬,张晓平,等.分级加载下薄层状岩石蠕变特性研究[J].岩石力学与工程学报.2010,29(11):2239-2247.
    [40]杨文东,张强勇,陈芳,等.大岗山水电站坝区辉绿岩流变特性的三轴试验研究[J].四川大学学报(工程科学版).2011,43(5):64-70,101.
    [41] Wawersik,Brown. Time-dependent behaviour of rock in compression[C]. Denver:1974,357-363.
    [42]彭光中,张奇华.链子崖危岩体软弱夹层的蠕变性质研究[J].岩土力学.1997,18(1):60-64.
    [43]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [44]陈记.岩石节理面剪切流变的试验研究[J].淮海工学院学报(自然科学版).2004,13(04):74-77.
    [45]徐卫亚,杨圣奇.节理岩石剪切流变特性试验与模型研究[J].岩石力学与工程学报.2005,24(增2):5536-5542.
    [46]杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学.2007,28(5):895-902.
    [47]沈明荣,张清照.规则岩体结构面的蠕变特性研究[J].岩石力学与工程学报.2008,27(增2):3973-3979.
    [48]朱根桥,沈明荣.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报.2004,23(2):223-226.
    [49]沈明荣,张清照.绿片岩软弱结构面的剪切蠕变特性研究[J].岩石力学与工程学报.2010,29(6):1149-1155.
    [50]程强,周德培,封志军.典型红层软岩软弱夹层剪切蠕变性质研究[J].岩石力学与工程学报.2009,28(增1):3176-3180.
    [51]刘学增,苏京伟,王晓形.不同围岩级别凝灰熔岩剪切流变特性的试验研究[J].岩石力学与工程学报.2009,28(1):190-197.
    [52]王中文,袁志强,李滨.黄土地区第三系红色黏土岩蠕变特性研究[J].岩石力学与工程学报.2010,29(增2):4008-4015.
    [53] Bl C W. The influence of moisture content on the compressive strength of rock[C].University of.Toronto:1965,385-391.
    [54] Ls B. The effect of moisture on the strength and deformability of sandstones[J]. Sov MinSci.1969,4:573-576.
    [55] Ns P. Influence of water on the strength of limestone[J]. International Journal of RockMechanics and Mining Sciences and Geomechanics Abstracts.1974,11(6):127-131.
    [56] Ojo O, Brook N. The effect of moisture on some mechanical properties of rock [J].Mining Science and Technology.1990,10(2):145-156.
    [57] Mcconnell A B,H A. Sensitivity of sandstone strength and deformability to changes inmoisture content [J]. Quarterly Journal of Engineering Geology and Hydrogeology.1992,25(2):115-130.
    [58] Vasarhelyi B. Statistical analysis of the influence of water content on the strength of theMiocene limestone[J]. Rock Mech Rock Eng.2005,38:69-76.
    [59] Yilmaz, Isik. Influence of water content on the strength and deformability of gypsum[J].International Journal of Rock Mechanics&Mining Sciences.2010,47:342-347.
    [60]周翠英,邓毅梅,谭祥韶,等.饱水软岩力学性质软化的试验研究和应用[J].岩石力学与工程学报.2005,24(1):33-38.
    [61]杨春和,冒海军,王学潮,等.板岩遇水软化的微观结构及力学特性研究[J].岩土力学.2006,27(12):2090-2098.
    [62]邓建华,黄醒春,彭结兵,等.膏溶角砾岩不同天然含水率情况下力学特性的试验研究[J].岩土工程学报.2008,30(8):1203-1207.
    [63]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [64] Lajtal E Z, Schmldtke R H, Btelus L P. Effect of water on the time-dependentdeformation and fracture of a granite[J]. International Journal of Rock Mechanics andMining Sciences.1987,24(4):247-255.
    [65] Okubo S, Fukui K,Hashiba K. Long-term creep of water-saturated tuff under uniaxialcompression[J]. International Journal of Rock Mechanics&Mining Sciences.2010,47:839-844.
    [66]周瑞光,成彬芳,高玉生,等.断层泥蠕变特性与含水量的关系研究[J].工程地质学报.1998,6(3):26-31.
    [67]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报.2002,21(12):1791-1796.
    [68]李铀,朱维申,白世伟,等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报.2003,22(10):1673-1677.
    [69]刘光廷,胡昱,陈凤岐,等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报.2004,23(8):1237-1241.
    [70]杨彩红,王永岩,李剑光,等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报.2007,32(7):695-699.
    [71]李鹏,刘建,朱杰兵,等.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学.2008,29(7):1865-1871.
    [72]黄小兰,杨春和,刘建军,等.不同含水情况下的泥岩蠕变试验及其对油田套损影响研究[J].岩石力学与工程学报.2008,27(增2):3477-3482.
    [73]徐辉,胡斌,唐辉明,等.饱水砂岩的剪切流变特性试验及模型研究[J].岩石力学与工程学报.2010,29(增1):2775-2781.
    [74]黄明,张旭东.含水状态下T_2b~2泥质粉砂岩蠕变特性试验研究[J].工业建筑.2011,41(1):77-81.
    [75]李江腾,郭群,曹平等.低应力条件下水对斜长岩蠕变性能的影响[J].中南大学学报(自然科学版).2011,42(9):2797-2801.
    [76] Ping CAO, Lin-hui WAN, Yi-xian WANG. Viscoelasto-plastic properties of deep hardrocks under water environment[J]. Transactions of Nonferrous Metals Society of China.2011,21:2711-2718.
    [77]李男,徐辉,胡斌.干燥与饱水状态下砂岩的剪切蠕变特性研究[J].岩土力学.2012,33(2):439-443.
    [78] Cruden D M, Leung K, Masoumzadeh S. Technique for estimating the complete creepcurve of a subbituminous coal under uniaxial compression[J]. International Journal ofRock Mechanics and Mining Sciences and Geomechanics Abstracts.1987,24(4):265-269.
    [79]吴立新,王金庄,孟顺利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报.1997,3(3):29-35.
    [80]芮勇勤,徐小荷,马新民,等.露天煤矿边坡中软弱夹层的蠕动变形特性分析[J].东北大学学报(自然科学版).1999,20(6):612-614.
    [81]邓荣贵.一种新的岩石流变模型[J].岩石力学与工程学报.2001,20(6):780-784.
    [82]曹树刚,边金,李鹏等.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报.2002,21(5):632-634.
    [83]陈沅江,潘长良,曹平,等.软岩流变的一种新力学模型[J].岩土力学.2003,24(2):209-214.
    [84]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究[J].岩石力学与工程学报.2005,24(15):2659-2664.
    [85]周家文,徐卫亚,杨圣奇.改进的广义Bingham岩石蠕变模型[J].水利学报.2006,37(7):827-830.
    [86]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报.2006,25(3):433-447.
    [87]杨圣奇,朱运华,于世海.考虑黏聚力与内摩擦系数的岩石黏弹塑性流变模型[J].河海大学学报(自然科学版).2007,35(3):197-291.
    [88]范庆忠,高廷法,崔希海,等.软岩非线性蠕变模型研究[J].岩土工程学报.2007,29(4):505-509.
    [89]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报.2007,26(2):391-396.
    [90]罗润林,阮怀宁,朱昌星.基于塑性强化和粘性弱化的岩石蠕变模型[J].西南交通大学学报.2008,43(3):346-351.
    [91]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报.2008,27(4):832-839.
    [92]阎岩,王思敬,王恩志.基于西原模型的变参数蠕变方程[J].岩土力学.2010,31(10):3025-3035.
    [93]李良权,徐卫亚,王伟.基于西原模型的非线性黏弹塑性流变模型[J].力学学报.2009,41(5):671-680.
    [94]佘成学.岩石非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报.2009,28(10):2006-2011.
    [95] H W, Zhou, C P,Wang. A creep constitutive model for salt rock based on fractionalderivatives[J]. International Journal of Rock Mechanics&Mining Sciences.2011(48):116-121.
    [96]张治亮,徐卫亚,王伟.向家坝水电站坝基挤压带岩石三轴蠕变试验及非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报.2011,30(1):132-140.
    [97] Costin L S. Time-dependent damage and creep of brittle rock[C]. New York:1985.
    [98] Chan K S, Bodner S R, Fossum A F, et al. A constitutive model for inelastic flow anddamage evolution in solids under triaxial compression [J]. Mechanics of Materials.1992,14(1):1-14.
    [99] Chan K S, Bodner S R, Munson D E, et al. Inelastic Flow Behavior of Argillaceous Salt[J]. International Journal of Damage Mechanics.1996,5(3):292-314.
    [100] Chan K S, Bodner S R, Fossum A F, et al. A Damage Mechanics Treatment of CreepFailure in Rock Salt [J]. International Journal of Damage Mechanics.1997,6(2):121-152.
    [101] Aubertin M, Ladanyi B. An Internal Variable Model for the Creep ofRocksalt[J]. Rock Mechanics and Rock Engineering.1991,24:81-97.
    [102] Aubertin M. A viscoplastic-damage model for solf rocks with low porosity[C].1995.
    [103] Hoxha D, Albert G F H. Modelling long-term behaviour of a natural gypsumrock[J].Mechanics of Materials.2005,37(12):1223-1241.
    [104] J F Shao,Q Z Zhu. Modeling of creep in rock materials in terms of materialdegradation[J]. Computers and Geotechnics.2003(30):549-555.
    [105] J F Shao. Modeling of anisotropic damage and creep deformation in brittle rocks[J].International Journal of Rock Mechanics&Mining Sciences.2006,43:582-592.
    [106]杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学.1994,11(2):81-90.
    [107]陈祖安,伍向阳.三轴应力下岩石蠕变扩容的微裂纹扩展模型[J].地球物理学报.1994,37(增1):156-160.
    [108]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报.1995,16(4):343-346.
    [109]杨更社,谢定义,张长庆,等.岩石损伤扩展力学特性的CT分析[J].岩石力学与工程学报.1999,18(3):250-254.
    [110]杨更社,张长庆.岩石损伤特性的CT识别[J].岩石力学与工程学报.1996,15(1):48-54.
    [111]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报.2002(1):10-15.
    [112]陈有亮,孙钧.岩石的流变断裂特性[J].岩石力学与工程学报.1996,15(4):323-327.
    [113]陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报:自然科学版.2000,6(6):491-496.
    [114]朱维申,邱祥波,李术才,等.损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J].岩石力学与工程学报.1997,16(5):431-436.
    [115]肖洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报.2000,33(6):94-98.
    [116]金丰年,浦奎源.岩石蠕变损伤模型研究[J].工程力学,2000,33(增):227-231.
    [117]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学报(自然科学版).2000,1(3):1-5.
    [118]秦跃平,王林,孙文标,等.岩石损伤流变理论模型研究[J].岩石力学与工程学报.2002,21(增2):2291-2295.
    [119]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报.2002,21(11):1602-1604.
    [120]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].岩石力学与工程学报.2005,24(23):4253-4258.
    [121]万玲,彭向和,杨春和,等.岩石流变损伤本构方程[J].岩土力学.2006,27(增1):46-50.
    [122]陈卫忠,王者超,伍国军,等.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报.2007,26(3):467-472.
    [123]任中俊,彭向和,万玲,等.三轴加载下盐岩蠕变损伤特性的研究[J].应用力学学报.2008,25(2):212-217.
    [124]张强勇,杨文东,张建国,等.变参数蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报.2009,28(4):732-739.
    [125]刘桃根,王伟,吴斌华,等.基于损伤力学的砂岩蠕变模型研究与参数辨识[J].三峡大学学报(自然科学版).2010,32(6):55-60.
    [126]袁勇,孙钧.岩体本构模型反演识别理论及其工程应用[J].岩石力学与工程学报.1993,12(3):232-239.
    [127]薛琳.圆形隧道围岩蠕变柔量的确定及粘弹性力学模型的识别[J].岩石力学与工程学报.1993,12(4):338-344.
    [128]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报.1996,24(5):498-503.
    [129]李青麒.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报.1998,17(5):559-564.
    [130]刘保国,孙钧.岩体流变本构模型的辨识及其应用[J].北方交通大学学报.1998,22(4):10-14.
    [131]刘保国,孙钧.岩体粘弹性本构模型辨识的一种方法[J].工程力学.1999,16(1):18-25.
    [132]左红伟,冯紫良,田玉静,王旭春.岩石弹粘塑性时效模型的遗传算法多参数辨识[J].岩石力学与工程学报.2000,21(增2):2527-2531.
    [133]高玮,郑颖人.基于遗传算法的岩土本构模型辨识[J].岩石力学与工程学报.2002,21(1):9-12.
    [134]陈沅江,潘长良,曹平,王文星.基于人工神经网络的岩土流变本构模型辨识[J].中国有色金属学报.2002,12(5):1027-1034.
    [135]胡斌,冯夏庭,王国峰,等.龙滩水电站左岸高边坡泥板岩体蠕变参数的智能反演[J].岩石力学与工程学报.2005,24(17):3064-3070.
    [136]杨成祥,冯夏庭,陈炳瑞.基于扩展卡尔曼滤波的岩石流变模型参数识别[J].岩石力学与工程学报.2007,26(4):754-761.
    [137]陈炳瑞,冯夏庭,黄书岭,等.基于快速拉格朗日分析–并行粒子群算法的黏弹塑性参数反演及其应用[J].岩石力学与工程学报.2007,26(12):2517-2525.
    [138]翟淑花,李文秀.基于遗传规划的岩石流变模型辨识[J].河北大学学报(自然科学版).2008,28(6):578-582.
    [139]李志敬,朱珍德,周伟华.基于CPSO算法的岩石蠕变模型非定常参数反演分析[J].河海大学学报(自然科学版).2008,36(3):346-349.
    [140]罗润林,阮怀宁,朱昌星.基于粒子群-最小二乘法的岩石流变模型参数反演[J].辽宁工程技术大学学报:自然科学版.2009,28(5):750-753.
    [141]刘文彬,刘保国,刘中战,等.基于改进PSO算法的岩石蠕变模型参数辨识[J].北京交通大学学报.2009,33(4):140-143.
    [142]彭汝发,许小健.用微进化算法反演岩石蠕变模型非定常参数[J].长江科学院院报.2011,28(6):50-54.
    [143]徐平,李云鹏,丁秀丽,等. FLAC~(3D)粘弹性模型的二次开发及其应用[J].长江科学院院报.2004,21(2):10-13.
    [144]谢秀栋,苏燕.软土弹粘塑性模型在FLAC~(3D)中的二次开发及其应用[J].福州大学学报(自然科学版).2009,37(4):582-587.
    [145]褚卫江,徐卫亚,杨圣奇,等.基于FLAC~(3D)岩石黏弹塑性流变模型的二次开发研究[J].岩土力学.2006,27(11):2005-2010.
    [146]杨文东,张强勇,张建国,等.基于FLAC~(3D)的改进Burgers蠕变损伤模型的二次开发研究[J].岩土力学.2010,31(6):1956-1964.
    [147] Fairhurst C E Hudson J. A.单轴压缩试验测定完整岩石应力—应变全曲线ISRM建议方法草案[J].岩石力学与工程学报.2000,19(6):802-808.
    [148]尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报.2003,22(1):53-60.
    [149]中华人民共和国煤炭工业部.煤与岩石物理力学性质测定方法[S].北京:中国标准出版社,1988.
    [150]中华人民共和国地质矿产部.岩石物理力学性质试验规程[S].北京:地质出版社,1995.
    [151]杨圣奇,苏承东,徐卫亚.大理岩常规三轴压缩下强度和变形特性的试验研究[J].岩土力学.2005,26(3):475-478.
    [152]于德海,彭建兵.三轴压缩下水影响绿泥石片岩力学性质试验研究[J].岩石力学与工程学报.2009,28(1):205-211.
    [153]杨文东.复杂高坝坝区边坡岩体的非线性损伤流变力学模型及其工程应用[D].济南:山东大学,2011.
    [154]中华人民共和国国家标准编写组.工程岩体试验方法标准GB/T50266–99[S].北京:中国计划出版社,1999.
    [155]中华人民共和国行业标准编写组.水利水电工程岩石试验规程SL264–2001[S].北京:水利水电出版社,2001.
    [156]周家文,杨兴国,符文熹,等.脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J].岩石力学与工程学报.2010,29(6):1172-1183.
    [157]尤明庆,苏承东,徐涛.岩石试样的加载卸载过程及杨氏模量[J].岩土工程学报.2001,23(5):588-592.
    [158]尤明庆,苏承东.大理岩试样循环加载强化作用的试验研究[J].固体力学学报.2008,29(1):66-72.
    [159]陈文玲.黑河水库坝肩边坡云母石英片岩三轴蠕变机理及蠕变模型研究[D].西安:长安大学,2009.
    [160]范庆忠.岩石蠕变及其扰动效应试验研究[D].青岛:山东科技大学,2006.
    [161]李娜,曹平,衣永亮,等.分级加卸载下深部岩石流变实验及模型[J].中南大学学报(自然科学版).2011,42(11):3465-3471.
    [162]王芝银.岩体流变理论及数值模拟[M].北京:科学出版社,2008.
    [163]赵宝云.岩石拉—压蠕变特性研究及其在地下大空间洞室施工控制中的应用[D].重庆:重庆大学,2011.
    [164]夏才初,金磊,郭锐.参数非线性理论流变力学模型研究进展及存在的问题[J].岩石力学与工程学报.2011,30(3):454-463.
    [165]沈为.损伤力学[M].武汉:华中理工大学出版社,1995.
    [166]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [167]王宇,李建林,邓华锋,等.软岩三轴卸荷流变力学特性及本构模型研究[J].岩土力学.2012,33(11):3338-3344.
    [168]齐亚静,姜清辉,王志俭.改进西原模型的三维蠕变本构方程及其参数辨识[J].岩石力学与工程学报.2012,31(2):347-355.
    [169]朱元林,何平.冻土在振动荷载作用下的三轴蠕变模型[J].自然科学进展.1998,8(1):60-62.
    [170]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报:自然科学版.2002,25(7):96-98.
    [171] Boukharovg G N, Chanda M W, Boukharov N G. The three processes of brittlecrystalline rock creep[J]. Int. J. Rock Mech. Min. Sci&Geomech.Abstr.1995,32(4):325-335.
    [172]陈宝林.最优化理论与算法(第二版)[M].北京:清华大学出版社,2005.
    [173]陈炳瑞,冯夏庭,丁秀丽,等.基于模式—遗传—神经网络的流变参数反演[J].岩石力学与工程学报.2005,24(4):553-558.
    [174]刘杰,王媛.岩体流变参数反演的加速遗传算法[J].大坝观测与土工测试.2001,25(6):33-37.
    [175] Kennedy J, Eberhart R. Partical Swarm Optimization[C]. Proc IEEE lnt Conf on NeuralNetworks,1995,1942-1948.
    [176]罗润林.深埋岩石非定常参数蠕变模型研究与工程应用[D].南京:河海大学,2008.
    [177] Shi Y, Eberhart R. A Modified Particle Swarm OPtimizer[C]. In IEEE World Congresson Computational Intelligence. Anchorage,AK,USA:1998.
    [178]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2009.
    [179]史峰,王辉,郁磊. MATLAB智能算法30个案例分析[M].北京:北京航空航天出版社,2011.
    [180]朱昌星,阮怀宁,朱珍德,等.岩石非线性蠕变损伤模型的研究[J].岩土工程学报.2008,30(10):1510-1513.
    [181]殷德顺,任俊娟,和成亮,等.一种新的岩土流变模型元件[J].岩石力学与工程学报.2007,26(9):1899-1903.
    [182]郭佳奇,乔春生,徐冲.基于分数阶微积分的Kelvin-Voigt流变模型[J].中国铁道科学.2009,30(4):2-5.
    [183]朱昌星,阮怀宁,朱珍德,等.一种新的非线性粘弹塑性流变模型[J].长江科学院院报.2008,25(04):53-55.
    [184]范秋雁,阳克青,王渭明.泥质软岩蠕变机制研究[J].岩石力学与工程学报.2010,29(8):1555-1561.
    [185]蒋昱州,徐卫亚,王瑞红.岩石非线性蠕变损伤模型研究[J].中国矿业大学学报2009,38(3):331-335.
    [186]陈文玲,赵法锁,弓虎军.三轴蠕变试验中云母石英片岩蠕变参数的研究[J].岩石力学与工程学报.2011,30(增1):2810-2816.
    [187]刘保国,崔少东.泥岩蠕变损伤试验研究[J].岩石力学与工程学报.2010,29(10):2127-2133.
    [188]李栋伟,汪仁和,范菊红.白垩系冻结软岩非线性流变模型试验研究[J].岩土工程学报.2011,33(3):398-403.
    [189]袁海平,曹平.岩石粘弹塑性本构关系及改进的Burgers蠕变模型[J].岩土工程学报.2006,28(6):796-799.
    [190] Consulting I, Group. Fast Lagrangian analysis of continua in three dimensions(version2.1)user’s manual[R]. Minnesota: Itasca Consulting Group, Inc,2003.
    [191]陈育民,刘汉龙.邓肯—张本构模型在FLAC3D中的开发与实现[J].岩土力学.2007,28(10):2123-2126.
    [192]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700