用户名: 密码: 验证码:
双循环流化床烟气脱硫技术在100MW机组中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火电厂排放的二氧化硫形成的酸雨已严重危害人类的生存环境,国家强制要求火电厂必须安装烟气脱硫装置。但是,受技术和经济等条件的限制,已在采用的湿法脱硫技术存在着投资成本高、运行费用高和二次水污染的问题。因此,必须发展脱硫率高、系统可利用率高、流程简化、系统电耗低、投资和运行费用低的脱硫技术和工艺。在这种形势下,半干法脱硫工艺应运而生。
     本文结合国内外目前比较成熟、大型商业化运行的几种脱硫工艺,分析了各种脱硫工艺的技术要点。
     本文的研究内容采用了山东山大能源环境有限公司开发的双循环流化床半干法烟气悬浮脱硫技术。该工艺与传统的湿法烟气脱硫工艺相比具有投资费用低、布置紧凑、占用空间小、能耗小、脱硫产物为干态,易于处理等优点。
     本课题的重要组成部分是100MW机组双循环流化床烟气脱硫工程设计。目前半干法循环流化床烟气脱硫所用脱硫剂多采用石灰浆,经雾化后喷入脱硫塔。采用石灰浆作为脱硫剂的最大优点是脱硫效率高,钙硫比小,但在运行中也存在雾化喷嘴容易堵塞,输送管道容易沉积的难题。为了解决此问题,本设计中采用熟石灰粉和水分别喷入的方法,可避免上述问题,但将降低脱硫效率。当燃用低硫煤,并且在设计上采取适当的措施时,采用熟石灰粉直接喷入脱硫塔可以满足排放标准。
     烟台电厂100MW机组采用双循环流化床烟气半干法脱硫措施后,SO2的排放浓度达到排放标准,电厂排放的大气污染物量明显减少,从而降低了电厂大气污染物对当地环境的影响程度,将为保持当地空气质量作出贡献。
The acid rain caused by SO_2 emission from coal-fired power plants has seriously impacted humans living environment, and the installation of flue gas desulfurization (FGD) apparatus upon power plants has been enforced in China. In contrast with dyr FGD process, however, there are many problems such as higher cost、 higher operation expenses and waste water pollution in the wet flue gas desulfurization which is being used. So, those FGD techniques with high efficiency and availability, simple procedures and low power consumption, low investments and costs have to be developed, and semi-dry FGD methods arise as a result.
    Firstly, this paper describes several methods that are relatively mature and commercially are running on a large scale at home and abroad, and analyzes their technical characteristics.
    The DCFB-FGD (Double circulating fluidized bed flue gas desulfurization) technology has great advantages of being cheap, lower investment, lower operation cost, lower energy consumption, smaller size, and dry product over other process.
    The main part of this paper is the design and calculation of DCFB-FGD technology on the 100MW unit of YanTai Power Plant. At present, lime slurry is usually used as sorbent of semi—dry CFB-FGD to spray into the tower at the venturi fluidized equipment after atomization. But there are many problems in operation such as atomizer choke, slurry deposition. To overcome these dis advantages, lime and water was sprayed respectively, but the desulfurization efficiency will decline a little. It can meet the emission standards with this technology after taking appropriate measures in design when the low sulphur coal is used.
    After the DCFB-FGD technology was operated on the 100MW unit of YanTai Power Plant, the emission concentration of SO_2 can fulfill the emission
引文
[1] 郭东明.硫氮污染防治工程技术及其应用.化学工业出版社,2001:1~48
    [2] 范维唐.煤炭在能源中处于什么地位.中国煤炭.2001,27(8):57
    [3] 安玉斌.二十—世纪中国能源发展的总趋势.能源工程.1999,(1):1~4
    [4] 肖文德 吴志泉编.二氧化硫脱除与回收.化学工业出版社.北京.2001:187
    [5] 冉莹,张运洲.我国的能源结构与电力规划.中国电力.1996,29(11):33~39
    [6] 2001年中国环境状况公报:大气环境
    [7] 刘彬.酸雨的形成、危害及防治对策.环境科学与技术.2001,4:21~23
    [8] 王金南等编.二氧化硫排放交易——美国的经验与中国的前景.中国环境科学出版社.北京.2000.7:5~6
    [9] 燃煤二氧化硫排放污染防治技术政策.国家环境保护总局、国家经济贸易委员会、科学技术部文件(附件).环发[200EPRI/EPA/DOE SO_2 Control Symposium.Miami.Florida.USA.1995:28~31
    [10] 国家电力公司关于燃煤电厂建设脱硫除尘装置等有关情况的报告.国家电力公司文件.国电科[2001]531号
    [11] 电力设备行业06年投资策略
    [12] Demle, A.S., Modelling of SO_2 in spray dryer flue gas desulfurization system, EPA-600/7-85-038, December (1985)
    [13] 李玉忠,半干法烟气脱硫技术试验研究,山东大学硕士论文,2003年6月
    [14] 赵旭东,双循环流化床烟气悬浮脱硫技术工业化试验及机理研究,哈尔滨工业大学博士论文,2002年6月:22~23
    [15] 环保·火电厂脱硫难在何处?.中国能源网.2004
    [16] 管菊根.喷雾干燥烟气脱硫工艺.电力环境保护.1999,15(3):59~62
    [17] 张凤兰,程岩.小龙潭引进烟气循环流化床—悬浮吸收脱硫工艺.云南电力技术2001,29(1):23~25
    [18] 樊保国等.常温循环流化床烟气脱硫技术的研究.能源技术.2000,21(2):73~77
    [19] 黄震.65t/h锅炉循环流化床烟气脱硫系统及经济技术分析.环境工程.2001, 19 (6) :39
    [20] Harriot, P., Modelling the gas liquid phase resistance in the dry scrubbing process for SO_2 removal, Proceedings: Third Pittsburgh coal conference, 220(1986)
    [21] Wang. Z, Kwauk. M, Li.H. Fluidization of fine particle. Chemical Engideering Science. 1998, (53): 377~395
    [22] F. J. Gutierrez et al. A technical pilot plant assessment of the flue gas desulfurization in a circulating fluidized bed. Advances in Environmental Reseach. 2002, (7) : 73~85
    [23] 徐旭常.清华同方烟气脱硫技术的研究与开发.中国二氧化硫污染治理技术国际会议论文集.北京.中国国家环境保护总局.1999:1~5
    [24] H. Yoon. Coolside desulfurization reactions and mechanisms. Am. Chem. Soc. Div. Fuel Chem. 1987, 32(4):484
    [25] 吴颖海.循环流化床烟气脱硫模拟中试试验和理论研究.东南大学博士学位论文.2000:15~24
    [26] R. E. Graf et al. Commerical operation experience with advanced design circulating fluid bed scrubbing. EPRI/EPA/DOE SO_2 Control Symposium Boston. Massachusetts. USA. 1993:24~27
    [27] 米浩林,马国骏.回流式烟气循环流化床烟气脱硫技术.热力发电.1998,(2):57~59
    [28] 黄震.循环流化床烟气脱硫技术的实验和应用研究.东南大学博士论文.1997:26~28
    [29] U.S. Department of Energy, Airpol. Inc. SO_2 control using gas suspension absorption technology. Clean Coal Technology. Topical Report Number 4. 1995
    [30] 步学朋译,用气体悬浮吸收技术脱除烟气中SO_2,烟气脱硫技术译文集,中国石化总公司硫磺回收技术协作组等编,1996
    [31] B.H.Jenson et al.,采用FLS式气悬吸收剂半干法吸收装置的高效脱硫技术,国际电力环境保护学术研讨会论文集,南京,1996.10:11~15
    [32] Moyeda D. K, Newton G. H, Lafond J F et al., Rate Controlling Processes and Enhancement Stragies in Humidification for Duct SO_2 Capture, EPA/600/S2-88-047, 1988
    [33] W. T. Davis, T. C. Kneener. Chemical kinetical Studies on Dry Sorbents Final Report. DOE/FC. 1987, 6 (2) :26~32
    [34] J. Klingspor et al. A Kinetics Study of the Dry SO_2-Limestone Reaction at LowTemperature. Chem. Eng. Commun. 1983, 22:81~103
    [35] B. K. Gullet. Fundamental Process Involved in SO_2 Capture by Calium-based Absorbents. Fourth Annual Pittsburgh coal conference. 1987:2~19
    [36] M. R. Stouffer et al. An Investigation of the Mechanisms of Flue GasDesulferization by In-Duct Dry sorbent Injection. Ind. Eng. Chem. Res. 1989, 28:22~27
    [37] 干式烟气脱硫技术进展及应用前景分析.慧聪环保.2005
    [38] 赵旭东,马春元等.75t/h锅炉双循环流化床烟气脱硫装置研制及应用.中国电力.2002,35(3):62~65
    [39] 赵旭东.双循环流化床烟气悬浮脱硫技术工业化试验及机理研究.哈尔滨工业大学工学博士论文.2002年5月:83,94~98,95,104~105
    [40] 谭天恩,麦本熙等.化工原理(下册).化学工业出版社.北京.1984.12(1996.3重印):215~226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700