用户名: 密码: 验证码:
电气石粉体表面有机化改性探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电气石作为环境友好型矿物一直备受国内外学者关注,由于电气石具有释放负离子、发射远红外线、抗菌、防霉、杀虫、除臭等功能,被广泛应用于环保、医疗保健、建筑以及功能性纺织品等领域。电气石超细粉体具有较大的表面能,团聚现象严重。由于极性差异的缘故,电气石粉体不易在有机高分子中稳定分散。这些问题严重影响了电气石/聚合物复合材料的综合性能。为了解决这些问题,需要对电气石粉体进行表面有机化改性,使其表面呈现疏水特性,由此提高电气石粉体与聚合物基体的相容性和分散稳定性。本文以湿法工艺为基础,在提高改性电气石的疏水性方面取得了积极研究成果,具有重要的理论意义和实用价值。
     在汲取国内外对电气石改性研究方面先进成果的基础上,本文深入研究了电气石有机表面改性的方法和条件,制备了多种改性电气石,系统研究了有机表面改性对电气石性能和结构的影响,并采用XRD、IR、SEM、DTA等手段对改性电气石进行了表征。本文主要结论如下:
     以月桂酰氯作为改性剂,通过对电气石粉体表面有机化改性反应的探讨,得出了优化的工艺条件。改性后电气石粉体的接触角超过120°,活化指数达96%。月桂酰氯与电气石粉体表面发生酯交换反应,且表面的有机化改性没有影响到电气石本身的晶体结构,并且提高了干燥状态下粉体的分散性。
     采用非离子表面活性剂斯潘80对电气石粉体进行表面改性,并对工艺条件进行优化。改性后接触角达107.3°,显示了较强的疏水性能。分析表明,斯潘80与电气石表面的羟基发生了化学反应生成了酯基而引入长链的烃链。反应没有影响其内部晶体结构,改性后的电气石粉体团聚现象有所改善。
     采用硬脂酸钠作为改性剂,对电气石粉体进行改性,并优化了改性的工艺条件。结果表明,硬脂酸钠与电气石粉体表面发生酯化反应,表面的有机化修饰没有破坏电气石本身的晶体结构,且提高了干燥状态下粉体的分散性。
     将月桂酰氯改性后的电气石粉体与聚乙烯制备成复合材料,并用扫描电镜进行表征,结果表明,改性后电气石粉体在聚乙烯基体中显示了很好的分散性。
As an environment-friendly mineral, tourmaline has been paid much attentionby domestic and international scholars. Because of its function in releasing anion,emitting far infrared rays, antibacterial, mouldproof, insecticidal and deodorization,tourmaline is widely used in many fields such as environmental protection, medicalcare, building materials, functional textile, etc.
     Tourmaline powder is easy to reunite mutually for its large surface energy andhard to disperse in polymer steadily, which has a major influence in thecomprehensive performance of tourmaline/polymer composites. In order to solvethese problems, tourmaline powder surface needs to be modified organically. Thiswork makes the surface of modified tourmaline hydrophobic to improve compatibilityand dispersivity with polymer. The main methods of surface modification includedry-technology and wet-technology.In this work, the research on the improvement ofmodified tourmaline hydrophobic property have been studied, showing theoreticalsignificance and practical value.
     This paper researched methods and conditions of the tourmaline in organicsurface modification, and prepared varies of modified tourmalines, discusses theeffect of organic surface modification to the tourmaline performance and structure,and makes the characterization of modified tourmaline by XRD, IR, SEM, DTA andso on. Main conclusions are shown as follows:
     With the modifying agent of lauroyl chloride, the optimal process condition isobtained through the discussion of modified tourmaline powder. The contact angleand the activation index of modified tourmaline powder are above120°and96%respectively. Lauroyl chloride reacts with tourmaline by transesterification, and hasno effect to the crystal structure of tourmaline. The dispensability of modifiedtourmaline in PE is improved obviously.
     With Span80as modifier, the optimal conditions are obtained. The contact angle reaches to107.3°, showing the hydrophobic property. The result shows that thereaction has no influence in the crystal structure of tourmaline. The dispensability ofmodified tourmaline is improved obviously.
     With sodium stearate as modifying agent, the modified tourmaline powder isobtained. This work doesn’t change the crystal structure of tourmaline. Thedispensability of modified tourmaline is obviously improved.
     Composite materials are made with modified tourmaline powder and PE andcharacterized by the scanning electron microscopy, the results show that the modifiedtourmaline powder shows a very good dispersion in PE.
引文
Bertoni F,Galassi C,Ardizzone S,et al.Surface modification of Si3N4powders by coprecipitationof sintering aids.Journal of the American Ceramic Society,1999,82(10):2653~2659
    Bijsterbosch H V, Cohen S, Fleer G J.Adsorption of graft copolymers onto silica andtitanium.Macromolecules,1998,31(11):8981~8987
    Chen Y,Helen L W Chan,Chung L C. Nanocrystalline lead titanate and lead titanate/vinylidenefluoride-trifloroethylene0-3nanocomposites. J. Am. Ceram. Soc,1998,81(5):1231~1236
    da Fonseca Zang WA,Zang JW,Hofmeister W. The Ti-influence on the tourmaline color.Journal of the Brazilian Chemical Soceity,2008,19(6):1186~1192
    Dietrich R V. The Tourmaline Group. New York:Van Nostrand Reinhold Company,1985
    Donnay G.Structural mechanism of pyroelectricity in tourmaline. Acta Cryst,1977,A33:927~932
    Han LJ,Meng JP,Liang JS et al. Electric dipole characteristics of mineral tourmaline superfinepowders and its properties of far infrared emission. Advance in Ecological EnvironmentFunctional Materials and Ion Industry II in Advanced Materials Research,2011,178:129~132
    Hawthorne Frank C and Dirlam Dona M. Tourmaline the indicator mineral:From atomicarrangement to viking navigation. Elements.2011,7(5):307~312
    Henry DJ, Dutrow BL. Tourmaline in a low grade clastic metasedimentary rock:an example ofthe petrogenetic potential of tourmaline. Contributions to Mineralogy and Petrology,1992,112(2-3):203~218
    Henry DJ,Guidotti CV.Tourmaline as a petrogenetic indicator mineral:an example from thestaurolite-grade metapelites of NW Maine. American Mineralogist,1985,70(1-2):1~15
    Jiang Kan,Sun Tieheng,Sun Lina. Adsorption characteristics of copper,lead,zinc and cadmiumions by tourmaline. J. Environ. Sci.2006,18(6):1221~1225
    K Kramborck,M V B Pinheiro,K J Guedes,S M Medeiros,S Schweizer,J-M Spaeth. Correlationof irradiatiorrinduced yellow colour with the O-hole center in tourmalines.Phys ChemMinerals,2004,31:168~175
    Koivula JI. Tourmaline with silver and gold chatoyancy. Gems&Gemology,2009,45(2):139~140
    Lang S B. The history of pyroelectricity:from ancient Greece to space missions. Ferrpelectrics,1999,230:99~108
    Liang JS,Li J, Meng JP et al. Microstructure and far infrared emission properties of tourmalinepowders eroded by hydrochloric acid. Journal of Nanoscience and Nanotechnology,2010,10(3):2077~2082
    Liang J S,Meng J P,Liang G C,et al. Preparation and photocatalytic activity of composite filmscontaining clustered TiO2particles and mineral tourmaline powders. Trans. Nonferrous Met.Soc. China16,2006:542~546
    Morton AC,Whitham AG,Fanning CM. Provenance of late cretaceous to paleocene submarinefan sandstones in the Norwegian Sea: integration of heavy mineral, mineral chemical andzircon age data. Sedimentary Geology,2005,182(1-4):3~28
    Nakamura T,Kubo T. The tourmaline group crystals reaction with water. J. Ferroelectrics,1992(137):13~31
    Navio JA,Colon G, Macias M, et al.Iron-doped titania semiconductor powders prepared bya sol-gel method Part I:synthesis and characterization.Applied Catalysis A:General,1999,177(1):111~120
    Ogorodova L P, Melchakova L V, Kiseleva I A, Peretyazhko I S. Thermodynamics ofnatural tourmaline elbaite.Thermochimica,Acta,2004(419):211~214
    Pezzotta F,Laurs BM. Tourmaline:The Kaleidoscopic Gemstone. Elements,2011,7(5):333~338
    Slack JF,Trumbull RB. Tourmaline as a recorder of ore-forming processes. Elements,2011,7(5):321~326
    Somasundaran P,Krishnakumar S. Adsorption of surfactants and polymers at the solid-liquidinterface.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997,123:491~513
    Sugiyama K,Ogawa T,Saito N,et al. Surface characterization of titanium dioxide powder treatedby the CH4-H2plasma CVD method.Surface and Coatings Technology,2003,174:882~885
    Tian XB,Lu GD. Tourmaline fiber experimental study of indoor air purification. RegulatoryRegional Economic Challenge for Mining,Investment, Environment and Work Safety,2010:128~131
    Tokumura M,Znad H T,Kawase Y. Modeling of an external light irradiation slurry photoreactor:UV light or sunlight-photoassisted Fenton discoloration of azo-dye Orange II with naturalmineral tourmaline powder. Chemical Engineering Science,2006(61):6361~6371
    van Hinsberg VJ,Henry DJ, Dutrow BL. Tourmaline as a petrologic forensic mineral:AUnique Recorder of Its Geologic Past. Elements,2011,7(5):327~332
    Wang Y,Yeh J T,Yue T J,et al.Surface modification of superfine tourmaline powder with titanatecoupling agent.Colloid Polym Sci,2006(284):1465~1470
    Wang Cuiping, Liu Jingting, Zhang Zhiyuan, et al. Adsorption of Cd(II), Ni(II), and Zn(II) bytourmaline at acidic conditions: Kinetics,Thermodynamics and Mechanisms.Industrial&Engineering Chemistry Research.2012,51(11):4397~4406
    Wang C P,Wu J Z,Sun H W,et al. Adsorption of Pb(II) ion from aqueous solutions by tourmalineas a novel adsorbent. Industrial&Engineering Chemistry Research,2011,50(14):8515~8523
    Yamada K,Nakamura H,Matsushima S,et al. Preparation of N-doped TiO2particles by plasmasurface modification.Comptes Rendus Chimie,2006,9(5-6):788~793
    Yamaguchi S. Surface electric fields of tourmaline. Appl Pliys,1983,A31:183~185
    Zhu Dongbin, Xu Anping, Liang Jinsheng. Effect of morphology of dispersed Nano-CeO(2)on far infrared emission property of natural tourmaline. Journal of Nanoscience andNanotechnology.2011,11(11):9594~9599
    蔡艳华,彭汝芳,马冬梅,等.机械力化学应用研究进展.无机盐工业,2008,40(8):7~10
    陈文彬,王丽亚,徐琳燕,等.胶原蛋白聚乙烯复合材料制备.皮革科学与工程,2011,21(3):40~43
    陈学广,阎殿然,杨勇,等.等离子体反应合成铁铝尖晶石基复合材料.硅酸盐学报,2011,39(8:1281~1285
    陈培,乔文杰,李晏.湿法玻璃粉体表面改性的研究.玻璃与搪瓷,2011,39(5):1-6
    董发勤,何登良,袁昌来.电气石的环境功能属性及应用.功能材料,2005,36(10):1485~1488
    杜亚利,丁浩.电气石粉体的机械力化学法表面有机化改性研究.中国非金属矿工业导刊,2006(5):33-35
    范建良,冯锡淇,郭守国,等.电气石晶体的光学吸收谱.硅酸盐学报,2009(4):523~530
    方伟,屠宇迪,严俊,等.机械力化学法超疏水改性叶蜡石的研究.非金属矿,2011,34(4):23~25
    高锦章,马得莉,俞洁,等.辉光放电等离子体引发制备聚丙烯酸/蛭石复合高吸水树脂及其性能研究.西北师范大学学报,2011,47(4):56~60
    郭力.电气石——多功能环保健康新材料.中国非金属矿工业导报,2004(5):56-58
    郭勇,李大纲,李晶晶,等.不同温度条件下废弃牛奶盒/聚乙烯复合材料性能的研究.塑料工业,2011,39(9):104~108
    何登良,董发勤.电气石的环境功能属性及应用研究动态.中国非金属工业导刊,2006,(1):10~14
    胡楠,何力军,王立惠,等.硬脂酸钠/Al复合粒子的改性研究.宁夏大学学报,2011,32(2):139-143
    蒋民华.晶体物理.山东:山东科学技术出版社,1980
    姜伟平,张先龙,许文娟,等.O2和H2O对改性凹凸棒石干法烟气脱硫的影响.广东化工,2011,38(9):99~101
    金谷.表面活性剂化学.安徽:中国科学技术大学出版,2008
    李赋屏,彭光菊,卢宗柳,等.我国电气石资源分布、地质特征及其开发利用前景分析.矿产与地质,2004(5):493~497
    李芳芳.电气石的性质及应用展望.矿业快报,2007(3)::10~13
    李计元,马玉书,张婷婷,等.硅烷偶联剂改性海泡石的制备及表征.非金属矿,2011,34(5):27~29
    李星,铁生年. KH-550硅烷偶联剂对半导体制造用碳化硅粉体表面的改性研究.材料导报,2011,25(7):53~56
    刘程,米裕民等.表面活性剂性质理论与应用.北京:北京工业大学出版社,2003:45~100
    卢宗柳,许仲威.我国电气石矿产资源开发前景分析.矿产与地质,2008,22(6):562~565
    刘瑄,张军,成学海,等.电气石粉表面改性工艺条件试验研究.矿产保护与利用,2004(1):15~17
    马鸿文.工业矿物与岩石.北京:地质出版社,2002:114~116
    苗超林,史璐,陈改荣.聚乙烯复合材料制备与表征.新乡学院学报,2011,28(1):38~40
    赖铭,陈红梅,杭巧娣,等.管材用回收高密度聚乙烯/胶粉复合材料的研究.塑料科技,2011,39(6):47~50
    聂士斌,张明旭,胡源,等.新型阻燃低密度聚乙烯材料的制备及性能研究.中国科学技术大学学报,2011,41(10):902~906
    潘兆鲁.结晶学及矿物学(下册).北京:地质出版社,1985:131~133
    彭小芹,贺芳,张乐,等.水化硅酸钙超细粉体表面湿法改性.西南交通大学学报,2009,44(4):595~599
    吴瑞华,汤云辉,张晓辉.电气石的电场效应及其在环境领域中的应用前景.岩石矿物学杂志,2001,20(4):474~476
    任飞,韩跃新,印万忠,等.电气石的表面改性研究.中国非金属矿工业导刊,2005(2):17~19
    宋聪,刘学民,陈红.双子阳离子表面活性剂改性蒙脱土的制备与表征.应用化工,2010,39(8):1198~1200
    司鹏,乔秀臣,于建国.机械力化学效应对高岭石铝氧多面体的影响.武汉理工大学学报,2011,33(5):22~26
    盛旭敏,李又兵,王选伦,等.食用级淀粉/低密度聚乙烯复合材料研究.重庆理工大学学报,2011,25(2):37~42
    孙鲁洪,楼建余,章霖.CO2硬化水玻璃砂添加剂及旧砂干法再生工艺.铸造,2011,60(9):908~911
    王光华,董发勤.电气石的功能属性及应用.中国非金属矿工业导刊,2007(5):9~31
    王怀法,崔淑凤,卢寿慈.电子束辐照对矿物可磨性的影响.金属矿山,2003(6):18~21
    王连军,刘方.电气石超细粉体的修饰及表征.湖南工程学院学报,2007(03):58~62
    王攀,高志农,张旗.Gemini表面活性剂改性蒙脱土的制备及其对水中苯酚的吸附.武汉大学学报,2012,58(1):1~4
    王平,杜高翔,郑水林,等.超细电气石粉体的表面改性试验研究.化工矿物与加工,2008(2):17~19
    魏健,刘渝燕,张开永.电气石应用专属性研究.非金属矿,2003,26(1):34~36
    徐伟,崔益顺,陈利秀.白炭黑湿法改性研究.无机盐工业,2010,42(12):40~43
    薛强,杜高翔,廖立兵,等.机械力化学法制备煅烧硅藻土/α-Fe2O3复合粉体.北京科技大学学报,2011,33(5):614~618
    严俊,胡仙超,邵佳明,等.叶腊石干法研磨中微结构及物相变化研究.硅酸盐通报,2011,30(5):1039~1043
    杨如增,杨满珍,廖宗廷.天然黑色电气石红外辐射研究.同济大学学报,2002,30(2):183~188
    杨雪,胡应模,朱建华,等.Span60对电气石粉体的表面改性及表征.矿产综合利用,2011(1):14~17
    姚志通,陆甜,李海晏,等.电气石/H2O2体系对Cu(Ⅱ)-乙二胺四乙酸废水的降解及反应机理.硅酸盐学报,2009(4):523~530
    岳同健,王瑛,沈新元.电气石超细粉体表面修饰的研究.玻璃与搪瓷,2004,32(3):19~22
    张慧勤,张黎燕.钛酸酯偶联剂改性纳米PS/ATO的结构和性能.中原工学院学报,2010,21(1):14~17
    张开永,成学海,曲鸿鲁.国内外电气石开发研究现状及应用前景展望.矿冶,2004,13(1):97~100
    张万福.食品乳化剂.北京:中国轻工业出版社,1993
    张秀兰,栗印环,张灵芝,等.表面活性剂改性有机沸石对废水中亚甲基蓝的吸附行为.化学研究,2011,22(1):80~83
    张育民,仲剑初,王洪志.硬脂酸钠改性白硼钙石的水热合成及表面改性.硅酸盐通报,2011,30(3):705-709
    张荔,吴也,肖兵,等.电气石组成、结构及深加工工艺研究.矿产综合利用,2009(4):30~34
    赵珊茸.结晶学及矿物学.北京:高等教育出版社,2004:345~346
    郑水林,王彩丽.粉体表面改性.北京:中国建材工业出版社,2011
    朱红梅,邢宝石,朱杰.电气石的开发前景广阔.山东陶瓷,2007,30(3):45~46
    庄建平,杜慷慨.偶联剂改性绢云母对环氧树脂力学性能的影响.河南化工,2011,28(6):28~30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700