用户名: 密码: 验证码:
空间模拟装置的真空获得及热沉研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间模拟装置主要用来模拟太空的真空、冷黑、太阳辐射三大自然环境,再现或者等效模拟整星或元器件所经历的空间环境物理参数,用于卫星组件或材料的热真空、热平衡试验。目前所有新型号的航天器发射之前都必须在空间环境模拟装置内功能验证,并以此进行校核其热控制系统的设计,以提高航天器飞行的可靠性,保证航天器的工作寿命。因此空间模拟装置是航天技术必备的、重要的基础设施。
     为适应航空航天技术的发展,从50年代起美国、前苏联等国家及公司都在积极进行空间环境模拟装置的研制。我国于1998年研制成功KM6主模拟室直径12m、高22.4m,是当今世界三大载人航天器空间环境试验设备之一,总体性能达到国际同类设备先进水平。但是我国空间模拟装置的总体容量仍然不足,大部分环境模拟装置真空性能需要改进、加热制冷方式陈旧、冷媒采用酒精等不利因素。因此我们需要从新的真空获得方式及温控方式进行改进。
     本研究采用粗抽泵抽速8L/s干式涡旋泵、增压泵抽速30L/s干式罗茨泵组成无油前级真空机组,主抽泵采用抽速5000L/s的低温泵保证空间环境清洁真空品质特性真空获得系统。真空建立时间能够满足从常压降低到1.3Pa大于10分钟进行真空放电实验的要求,并能够采用低温泵预冷与前级泵组并行工作提高极限真空度≤5×10-5Pa建立时间小于3.5小时。同时低温泵口与热沉之间采用隔辐射障板使低温泵可以在以热辐射为主的热状态下应用。
     本研究从满足真空室有效尺寸Φ900mm×1000mm的空间环境模拟装置出发,针对真空度高于10-2Pa的空间环境下热辐射效应为主要传导方式的特性,采用绝缘隔热材料将热沉与真空室内不锈钢轨道进行隔离,对流和热传导忽略进行设计。热沉采用其“鱼骨架”式结构浴液经1413mm半圆弧同步由下向上汇总,保证热稳定性及温度场均匀性。温控系统采用加热、制冷体化MagNum91型温控设备,其加热制冷功率可调整,从而满足升降温速率。实验结果表明,热沉升温速率在-60℃~+100℃能满足>1.2℃/min;降温速率能够(-35~+80℃)时>1℃/min,(-50~-35℃,+80~+100℃)时>0.5℃/min。热沉稳定性能在0.2℃/h,整体设计性能效果较好。
Space environment simulator is used to simulate vacuum,dark and cold,solar radiation of space.Reappear or equal space environment parameters of star or device.That can be used in satellite or hot vacuum and heat balance experiment.At present,it is necessary to test the function of the spacecraft in space environment before launched.And in order to improve reliability of the spacecraft and guarantee the working life of it,the design of heat control system should be checked according to the test results.Therefore,space simulation simulator is very important for space technology.
     In order to adapt the develpment of space technology,from the 1950s,space simulator is studied in USA,Russia and many company.In 1998,KM6 main simulation chamber(diameter is 12m,hight is 22.4m) is developed in our country,which is one of the world's three manned spacecraft space envionment experimental device and reaches the international advanced level of similar device.But in China, overall space simulator capacity remains inadequate,the performance of the vacuum of the environmental simulation devices need to be improved, heating refrigeration methods are outmoded, alcohol is choosed as refrigerant other negative and many other adverse factors. Therefore, we need a new vacuum acquirement methods and ways to improve temperature control.
     The study uses dry scroll pumps as coarse pumps(pumping speed is 8 L/s),and use Roots pump dry oil-free prime vacuum unit as booster pumps(pumping speed is 30 L/s).Cryopump is used as main pump(the pumping speed is 5000 L/s)to guarantee the quality of the space environment clean of the vacuum system access.Vacuum setup time can meet the requirement that there is more that 10 minutes to lauch vacuum discharge before the pressure is reduced to 1.3Pa, and with parallel work of low temperature precooling pump and prime vacuum unit,limit vacuum(≤5×10-5Pa)setup time is reduced to less than 3.5 hours. At the same time the radiation barrier settled between cryopump and heat sink guarantees the application of cryopump under thermal radiation condition.
     This study effectively meet the requirement that the vacuum chamber size of space environment simulator isΦ900 mm×1000mm.And considering the main mode of transmission is thermal radiation when the vacuum degree is higher than 10-2Pa,the radiation barrier materials are choosed to isolate heat sink from stainless steel track in the vacuum chamber, and convection and heat conduction overlooked. Heat sink choose "fish skeleton" structure,and bath liquid converges synchronously from bottom to top through 1413mm semi-circular arc to ensure thermal stability and uniformity of the temperature field. Temperature control system uses integral heating and refrigeration MagNum91 temperature control equipment, and it's heating and refrigeration power is adjustable to meet the rate of cooling and heating. The Experimental results show that the heating rate of heat sink is above 1.2℃/min when the temperature is -60℃to+100℃.Cooling rate is above 1℃/min when the temperature is -35℃to +80℃,and it is above 0.5℃/min when the lower temperature is -50℃to -35℃and the higher temperature is +80℃to +100℃. Stability of heat sink is 0.2℃/h.The effectiveness of the overall design is satisfied.
引文
1.黄本诚主编.空间模拟器设计[M],北京:宇航出版社,1994
    2.中国人民解放军总装备部军事训练教材编辑工作委员会.载人航天环境模拟技术[M],北京:国防工业出版社,2006,1~149
    3.王浚等.环境模拟技术[M],北京:国防工业出版社,1996
    4.杨乃恒主编.真空获得设备(第二版)[M],北京:冶金工业出版社,2001
    5.王晓冬、巴德纯、张世伟、张以忱.真空技术,北京:冶金工业出版社,2006
    6.徐成海主编,巴德纯等副主编.真空工程技术,北京:化学工业出版社,2006
    7.张以忱,黄英编著.真空材料[M],北京:冶金工业出版社,2005
    8.达道安主编.真空设计手册(第三版),北京:国防工业出版社,2006
    9.吴孝俭,闫荣鑫主编.泄露检测[M],北京:机械工业出版社,2005
    10.郭鸿震主编.真空系统设计与计算[M],北京:冶金工业出版社,1986
    11.沈青.稀薄气体动力学[M],北京:国防工业出版社,2005
    12.全国真空技术标准化技术委员会.真空技术标准汇编[M],2002
    13.Nigel S.Harris. Modern Vacuum Practice[M],McGraw-Hill Publishing Co.,1989
    14.James M. Lafferty. Foundations of Vacuum Science and Technology[M],John Wiley & Sons, Inc.,1998
    15.PFEIFFER. The generation of rough and medium vacuum[M],2005
    16.达道安,谈治信.中国航天器真空技术的进展(一)[J],真空于低温,2001,7(4):187-193
    17.达道安,谈治信.中国航天器真空技术的进展(二)[J],真空于低温,2002,8(1):1-7
    18.黄本诚.KM6载人航天器空间环境模拟试验设备[J],中国空间科学技术,2002(3):1-6
    19.D.C.Planchard,陈香云,陈志强.冷泵在热工艺中的应用[J],真空,2003(04):13-15
    20.姜传胜,白焱,王浚.大型空间环模器热沉管网动态仿真技术[J],高技术通讯,2002(06):69-73
    21.刘敏,邹定忠,刘国清.铝热沉的焊接技术[J],导弹与航天运载技术,2001(1)43-46
    22.孙来燕,黄本诚,成致祥,王立,刘国青.大型空间环境试验设备中的低温技术[J],低温工程,1999(4):218-223
    23.李超,闫春杰,霍英杰,施宝毅.斯特林制冷机真空环境热模拟试验研究[J],真空与低温,2006,12(2):108-111
    24.姜传胜,王浚.大型空间环模器热沉热设计研究[J],北京航空航天大学学报,2001,27(3):305-308
    25.孙立臣, 汪力.无油真空检漏系统在空间环境模拟试验中的应用[J],真空,2005,42(2):45-48
    26.龚洁,裴一飞,郄殿福,杨国巍.空间环境模拟器内液氮冷却密封技术[J],航天器环境工程,2005,22(3):168-174
    27.孙来燕李洪勋 蔡朝恩 李高 胡朝斌.大型空间环境模拟设备的气氦制冷系统[J],低温工程,1999(4):249-252
    28.王若维,董小瑛.载人航天空间模拟器与某大型风洞制造的若干关键技术[J],塑性程学报,2004,11(2):35-40
    29.Yu Su, Theoretical study on the pumping mechanism of a dry scroll vacuum pump[J],VACUUM,1996(47):815-818
    30.2003 Annual Report Arnold Engineering Development Center. Pdf document
    31.AEDC Space Environment Simulation Capabilities.Pdf document
    32.杨强生,浦保荣.高等传热学(第二版)[J],上海:上海交通大学出版社,2001
    33.王兴安.辐射传热[M],北京:高教出版社,1989
    34.杨乃恒.干式真空泵的原理、特征及其应用[J],真空,2000(03)
    35.黄龙林,潘杰.罗茨真空泵机组抽气速率分析[J],真空,2002(02)
    36.曲军, 陈炳南,赵伟民, 高玉栋, 王魁汉,吴玉锋.真空热处理使用的新型温度传感器[J],真空,2002(06)
    37.刘汉林, 刘立宁.提高系统真空度的方法[J],真空,2001(02)
    38.曲国苑,王乃千,王海平,徐卓辉.新型热沉用复合金属材料[J],电力电子技术,2000(3)
    39.龚吉君.模拟真空冷黑环境的大型热沉的研究[J],低温工程,1979(1),1-15
    40.Marsbed H. Hablanian,High-Vacuum Technology, A Practical Guide[M],Marcel Dekker, Inc.,1997
    41.Phil Danielson,Dry Gas Techniques for Reducing Water Vapor in Vacuum Systems[J],2006
    42.A. Roth,Vacuum Technology[M],Elsevier Science B.V.,1990
    43.《Computational Fluid Dynamics》 Kollmann
    44.《Fundamentals of Vacuum Technology》 Dr. Walter Umrath;
    45.《The generation of rough and medium vacuum》 PFEIFFER

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700