用户名: 密码: 验证码:
大分子的量子和经典理论计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子反应动力学是一门用分子层次的动力学行为来解释宏观化学反应的学科,它是化学动力学的一个重要分支。目前,人们已经能够对四原子体系进行准确的量子动力学计算研究。然而,化学和生物领域所涉及的反应包含有更多个原子,近年来6原子反应体系已经引起了较多科研工作者的兴趣。
     氯原子参与的化学反应在大气环境中占有非常重要的地位。在低温范围(200-300K)内,氯原子能够破坏大气层的臭氧层。在高温范围(1000-2500K)内它是典型的卤族元素和碳氢化合物的燃烧反应。而氯原子和甲烷的反应是卤素和有机物最简单的反应。这个反应能生成非常稳定的HCl分子,它是大气层中消除氯原子的一个重要渠道。所以近些年来,这一反应得到了广泛的研究,探索它的微观机理已经成为当前分子反应动力学的一个热门话题。
     在多原子分子反应动力学的研究中,由于体系涉及的独立坐标较多,使得构造其全维的势能面显得格外困难,同时量子动力学研究也需要约化维数的模型才能进行计算。本文是在较高水平的从头算基础上,采用修正的半经验势能函数,重新构建了Cl+CH4→HCl+CH3反应的全维势能面。并在新的势能面上,采用量子含时波包法和半刚性振转靶模型对本体系进行了详细的动力学计算研究,主要内容如下:
     (1)在Molpro2006程序包上,采用CCSD(T)/aug-cc-pvtz计算水平,优化了反应物、产物、鞍点和最小反应路径的几何结构和振动频率。依据这些从头算结果拟合了全维半经验势能函数中的所有参数。在拟合过程中不仅考虑了各稳定点的结构和频率而且也把实验反应速率常数数据作为标准进行了对比校正。然后讨论了新建势能面的一些特点。并采用经典的变分过渡态理论(CVT)和统一统计理论(CUS)对本反应的动力学进行了计算,与实验及其它理论结果的对比表明,当前新建的势能面能够精确地重现本反应体系的各种静态和动态性质。
     (2)在新建的势能面上,采用半刚性振转靶模型约化维数,对Cl+CH4→HCl+CH3反应进行了含时波包动力学计算。结果表明:第一,CH4基态反应几率随入射平动能的增加而平稳地上升,基态不存在明显的振动结构。第二,本体系反应几率总体上低于O+CH4,F+CH4等相似体系的反应几率,这说明Cl+CH4反应较难进行。第三,CH4的振动激发能显著地提高反应几率并且大幅降低反应阈能,同时CH4的第一、二振动激发态反应存在明显的振动结构。第四,不同的转动激发态也能明显地影响反应几率,但对反应阈能影响较小,且不同的空间立体构型对反应几率和反应阈能也都有影响。第五,给出了基态的总积分散射截面和反应速率常数,并和相应的实验以及其它理论结果进行了比较。
     (3)应用相似的方法,对同位素反应Cl+CD4→DCl+CD3进行了含时波包动力学计算,并对比研究了氘替代氢的同位素效应。研究表明:首先,同位素替代使得渐进态和过渡态的零点能发生了移动,造成了反应势垒的提高,加大了反应进行的难度。其次,同位素替代引起反应体系约化质量增加,进而造成了反应几率的降低。再次,对同位素替代前后不同振转激发态的反应几率分别进行了比较,发现存在明显的同位素效应。最后,给出了两同位素反应的散射截面和速率常数并和当前可以利用的实验及理论结果进行了比较。
     本文的创新点主要表现在以下方面:
     (1)提高了本体系依据的从头算数据的计算水平,纠正了以前势能面中发现的一些缺陷,构建了能够进行全局量子计算的全维势能面。
     (2)对本体系进行了含时波包动力学计算,给出了反应几率、总散射截面和速率常数等量子结果,当前计算所得结果能够与实验和其它理论数据较好的吻合,为进一步研究提供了理论数据,也为本体系的化学动力学研究作了有益的尝试。
Molecular reaction dynamics, which uses the dynamics of molecular collision to understand the rules of macroscopic chemical reaction, is an important branch of chemical dynamics. At present, ones have been able to carry out the exact full-dimensional quantum dynamic calculation for the four-atomic system. But what chemistry and biology mostly concerns is the large reaction system containing more than four atoms. In resent years, the six-atomic reaction systems have attracted more researchers’attention.
     Chlorine atom chemistry is of great importance in the atmosphere over a wide temperature range. At low temperature (200-300K) range, Cl atom plays an active role as ozone destroyer. At high temperature (1000-2500K) range, it is important for halogen-hydrocarbon combustion. As a prototypical abio-organic reaction for combustion, the Cl+CH4→HCl+CH3 reaction has been widely studied in recent years. This is because that the reaction can eliminate chlorine atoms from the atmosphere by converting them into inactive HCl. So the reaction has been a hot topic in the molecular reaction dynamics at present.
     Firstly, in the theoretical dynamic study, the degrees of freedom are quite more for the atom-polyatomic reaction system, which make the ab initio calculations more difficult. Secondly, the quantum dynamic calculations still need reduced-dimensional model due to the limitation of the computer’ability at present. In this work, we developed a full-dimensional analytical potential energy surface (PES) for Cl+CH4→HCl+CH3 reaction, which took the formula of the semiempirical functions and was calibrated based on the new ab initio data at the CCSD(T)/aug-cc-pvtz level. Then, on this PES we carried out the time-dependent wave package dynamics study using semirigid vibrational rotation target model. The main content of this thesis can be summarized as follows:
     (1) Employing CCSD(T) method and aug-cc-pvtz basis sets in Molpro2006 program packages, we calculated the geometries and frequencies of saddle point, reactant and product for Cl+CH4 reaction. The reaction coordinate path was also optimized. Based on these ab initio data, a semiempirical PES was calibrated. In this process, the geometries and vibrational frequencies of the reactants, the products and the saddle point were adjusted, and the experimental rate constants are also emphasized. Then discussions were involved concerning some characters of the present PES. To test this PES, the reaction kinetic calculations were carried out by using canonical variational transition state theory and canonical unified statistical theory. The comparison with experiments exhibited the present PES could well display both static and dynamical properties of the Cl+CH4→HCl+CH3 reaction
     (2) A four dimensional quantum dynamics study was reported on the new developed potential energy surface for Cl+CH4→HCl+CH3 reaction. We employed time-dependent wave package method to propagate wave function and semirigid vibrational rotation target model to reduce the system dimensions. Initial state-specific reaction probabilities were calculated and compared with the results of hydrogen absorption reactions O+CH4 and F+CH4. The ground state rate constants were given and in agreement with the experimental measures. The effects of reactant rovibrational excitation were investigated. Sterically dynamical effects of the reactants were also revealed.
     (3) By using the same method, a time-dependent wave packet dynamic study for the isotope effects of the Cl+CH4/CD4 reactions was conducted. The initial state-specific probabilities exhibited the replacement of hydrogen by deuterium significantly decreased the reaction ability, and the rovibrational excitations of the methane molecule favored the progress of the reaction. Additionally, the ground state rate constants were reported.
     The important and valuable results in this dissertation can be summarized as follows:
     (1) The ab initio calculation level of the reaction system was improved and some defects existed in the previous potential energy surface of the system were corrected. A modified global PES was constructed.
     (2) On the system, the time-dependent quantum dynamic calculations were conducted and provide the reasonable results including the reaction probability, the total scattering cross section and the rate constant, which were in well agreement with the related experimental data. This work has carried out a beneficial trial for the theoretical and experimental research of the Cl+CH4→HCl+CH3 reaction.
引文
[1] R. D. Levine, R. B. Bernstein. Molecule Reaction Dynamics [M]. Oxford University Press, 1974.
    [2] R. B. Bernstein. Chemical dynamics via molecular beam and laser techniques [M]. Clarendon Press, l982.
    [3] M. R. Levy. Dynamics of reaction collision in Progress in reaction kinetics [M]. K. R. Jennings and R. B. Cundall. Eds, Pergamon Press, 1979: Vol. 10.
    [4] X. Liu, J. J. Lin, S. A. Harich., G. C. Schatz, X. Yang. A quantum state-resolved insertion reaction: O(1D)+H2(j=0)→OH(2П, v, N)+H(2S) [J]. Science, 2000, 289: 1536.
    [5] P. R. Brooks. Reactions of oriented molecules: Molecules can be oriented in molecular beams and their reactions show some unexpected steric effects [J]. Science, 1976, 193: 11.
    [6] H. J. Yuh, P. J. Dagdigian. Spin-orbit effects in chemical reactions: The reaction of spin-orbit state state-selected Ca (3P0J) with Cl2, Br2, and CH3Cl [J]. J. Chem. Phys., 1984, 81: 2375.
    [7] M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln (Quantum Theory of the Molecules) [J]. Ann. Phsik., 1927, 84: 457.
    [8]赵成大.化学反应量子理论[M].东北师范大学出版社, 1989: 76.
    [9]杨传路. F+CH4全维解析势能函数研究[D].大连:中国科学院大连化学物理研究所, 2004.
    [10] Zhang D. H. First-principles Theory for the H+H2O, D2O Reactions [J]. Science, 2000, 290: 961.
    [11] S. Glastone, K. J. Laidler, H. Eyring. The theory of rate process [M]. Mc-Graw- Hill Book Company, New York, 1941.
    [12] Laid1er, K. J. Theories of Chemical Reaction Rates [M]. Mc-Graw-Hill Book Company, New York, 1969.
    [13] H. Eyring, S. H. Lin, S. M. Lin. Basic Chemical Kinetics [M]. John Wiley & Sons, 1980.
    [14]罗渝然.过渡态理论的进展[J].化学通报, 1983, 10: 8-14.
    [15] J. D. Doll. Semiclassical theory of atom-solid surface collisions: Elastic scattering [J]. Chem. Phys., 1974, 3: 257.
    [16] D. G. Truhlar, T. Muckermanin. In Physics of Atoms and Molecules [M]. Ed. R. B. Berstein, Plenum, New York, 1979.
    [17] T. J. Polfe, S. A. Rice. Classical trajectory studies of energy transfer in Ar-difluorodiazirine collisions [J]. J. Chem. Phys., 1983, 79: 4863.
    [18] W. H. Miller. Classical S Matrix for Rotational Excitation: Quenching of Quantum Eeffets in Molecular Collisions [M]. J. Chem. Phys., 1971, 54: 5386.
    [19] J. D. Doll. Semiclassical theory of atom-solid-surface collisions: Application to He-LiF diffraction [J]. J. Chem. Phys., 1974, 61: 954.
    [20] R. I. Masel, R. P. Merril, W. H. Miller. A semiclassical model for atomic scattering from solid surfaces-He and Ne scattering from W(112) [J]. J. Chem. Phys., 1976, 64: 45.
    [21] W. A. Wagner. A classical statistical theory for chemical reactions [J]. J. Chem. Phys., 1976, 65: 4343.
    [22] G. Wolken. Theoretical studies of atom-solid elastic scattering: He+LiF [J]. J. Chem. Phys., 58, 1973, 30: 47.
    [23] G. C. Schatz, A. Kuppermann. Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems.Ⅱ. Accurat cross sections for H+H2 [J]. J. Chem. Phys., 1976, 65: 4668.
    [24] M. J. Redmon, R. E. Wyatt. Concentration quenching of pyrene in the vapour Phase [J]. Chem. Phys. Lett., 1979, 63: 209.
    [25] J. F. McNutt, R. E. Wyatt, M. J. Redmon. Quantum dynamics of the there-dimensional F+H2 reaction. I. Energy Partitioning and entropy analysis in the collision complex [J]. J. Chem. Phys., 1984, 81 1692.
    [26] J. M. Huston, C. Schartz. Selective adsorption resonances in the scattering of helium atoms from xenon coated graphite: Close-coupling calculations and potential dependence [J]. J. Chem. Phys., 1983, 79: 5179.
    [27] C. Yu, K. B. Whaley, C. S. Hogg, S. J. Sibener. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111) [J]. Phys. Rev. Lett., 1983, 51: 2210.
    [28] D. C. Clary. Quantum reactive scattering of four-atom reactions with nonlinear geometry: OH+H2→H2O+H [J]. J. Chem. Phys., 1991, 95: 7298.
    [29] A. Kuppermann, J. A. Key. Hyperspherical coordinates in quantum mechanical collinear reactive scattering [J]. Chem. Phys. Lett., 1980, 74: 257.
    [30] W. H. Miller, B. M. D. Jansen op de Hanr. A new basis set method for quantum scattering calculations [J]. J. Chem. Phys., 1987, 86: 6213.
    [31] J. Z. H. Zhang, W. H. Miller. Accurate three-dimensional quantum scattering calculations for F+H2→HF+H [J]. J. Chem. Phys., 1988, 88: 4549.
    [32] J. Z. H. Zhang, W. H. Miller. New method for quantum reactive scattering, with applications to the 3-D H+H2 reaction [J]. Chem. Phys. Lett., 1987, 140: 329.
    [33] W. H. Miller. Coupled Equations and the Minimum Principle for Collisions of an Atomand a Diatomic Molecule, Including Rearrangements [J]. J. Chem. Phys., 1969, 50: 407.
    [34] D. C. Clary. Quantum scattering calculations on the OH+H2(v=0,1), OH+D2, and OD+H2 reactions [J]. J. Chem. Phys., 1992, 96: 3656.
    [35] G. Nyman, D. C. Clary. Quantum scattering calculations on H2O+H→H2+OH and isotopes: Rotational distributions and cross sections [J]. J. Chem. Phys., 1995, 99: 7774.
    [36] Q. Sun, J. M. Bowman. Reduced dimensionality quantum reactive scattering: H2+CN→H+HCN [J]. J. Chem. Phys., 1990, 92: 5201.
    [37] H. G. Yu, G. Nyman. Four-dimensional quantum scattering calculations on the H+CH4→H2+CH3 reaction [J]. J. Chem. Phys., 1999, 111: 3508.
    [38] H. G. Yu, G. Nyman. Three-dimensional quantum scattering calculations on the Cl+CH4 reversible arrow HCl+CH3 reaction [J]. Phys. Chem. Chem. Phys., 1999, 1: 1181.
    [39] Zhang J Z H. Theory and Application of Quantum Molecular Dynamics [M]. Singapore: World Scientific, 1998: 145.
    [40]张鑫.多原子分子反应动态学的理论研究[D].大连:中国科学院大连化学物理研究所, 2004.
    [41] D. H. Zhang, J. Z. H. Zhang. The semirigid vibrating rotor target model for atom-polyatom reaction: Application to H+H2O→H2+OH [J]. J. Chem. Phys., 2000, 112: 585.
    [42] X. Q. Zhang Q. Cui, J. Z. H. Zhang, K. L. Han. Quantum dynamics study of H+NH3→H2+NH2 reaction [J]. J. Chem. Phys., 2007, 126: 234304.
    [43] M. L. Wang, Y. M. Li, J. Z. H. Zhang, D. H. Zhang. Application of semirigid vibrating rotor target model to reaction of H+CH4→CH3+H2 [J]. J. Chem. Phys., 2000, 113: 1802.
    [44] M. L. Wang, J. Z. H. Zhang. Stereodynamics and rovibrational effect for H+CH4(v,j,k,n)→CH3+H2 reaction [J]. J. Chem. Phys., 2002, 116: 6497.
    [45]杨茂友,牛爱芹,曹钢.应用SVRT模型对氢与氘代甲烷反应的四维量子散射计算[J].原子与分子物理学报,2005, 22: 613.
    [46]张绪强,张少龙,张庆刚,张怿慈. H+SiH4→SiH3+H2反应的约化维数计算”,原子与分子物理学报[J]. 2005, 22(2): 321.
    [47]张少龙,张绪强,张庆刚,张怿慈.碳族元素氢化物与氢反应的对比[J].中国科学G辑物理学力学天文学,2005,35(6): 643~650.
    [48] Ming-Liang Wang, Yi-Min Li, and John Z. H. Zhang. Application of Semirigid Vibrating Rotor Target Model to the Reaction of O(3P) + CH4→CH3 + OH [J]. 2001, 105(12): 2530–2534.
    [49] T. S. Chu, X. Zhang, L. P. Ju, L. Yao, K. L. Han, M. L. Wang, J. Z. H. Zhang. Firstprinciples quantum dynamics study reveals subtle resonance in polyatomic reaction: The case of F+CH4→FH +CH3 [J]. Chem. Phys. Lett., 2006, 424: 243.
    [50] X. Zhang, K. L. Han, J. Z. H. Zhang. Quantum dynamics study of isotope effect for H+CH4 reaction using the SVRT model [J]. J. Chem. Phys., 2002, 116: 10197.
    [51] W. J. Hehre, L. Radom, P. v. R. Schleyer, et al.. Ab Initio Molecular Obrital Theory [M]. John Wiley&Sons, Inc., 1986.
    [52] D. A. MeQuarrie. Quantum Chemistry University Science Books [M]. Mill Vally. CA., 1983.
    [53]唐敖庆,杨忠志,李前树.量子化学[M].北京,科学出版社,1982.
    [54]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京,科学出版社,1985.
    [55] J. A. Pople, R. Seeger and R. Krishnan. Vriational Configuration Interaction Methods and Comparison with Perturbation Theory [J]. Int. J. Qunat. Chem. Symp., 1977, 11: 149.
    [56] J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch. Toward a Systematic Molecular Orbital Theory for Exeited States [J]. J. Phys. Chem., 1992, 96: 135.
    [57] R. Krishnan, H. B. Schlegel and J. A. Pople. Derivate Studies in Configuration Interaction Theory [J]. J. Chem. Phys., 1980, 72: 4654.
    [58] B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H. F. Schaefer. Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach [J]. J. Chem. Phys., 1980, 72: 4652.
    [59] E. A. Salter, G. W. Trucks and R. J. Bartlett. Analytic Energy Derivatives in Many-Body Methods I. First Derivatives [J]. J. Chem. Phys., 1989, 90: 1752.
    [60] V. Kothekar, Specificity and molecular mechanism of abortificient action of prostaglandins [J]. Int. J. Quant. Chem., 1981, 20: 167.
    [61] J. A. Pople, M. Head-Gordon, K. Raghavachari. Qudaratic Configuration Interaction. A general Technique for Determining Electron Correlation Energies [J]. J. Chem. Phys., 1987, 87: 5968.
    [62] Smith, I. W. M. Kinetics and Dynamics of Elementary Gas Reactions Butterworths [M]. London, 1980.
    [63]张君.大气中含硫化合物若干化学反应的机理和动力学研究[D].济南:山东大学, 2006.
    [64] Stern, M. J., Persky, A., Klein, F. S.. Force field and tunneling effects in the H-H-Cl reaction system Determination from kinetic-isotope-effeet measurements [J]. J. Chem. Phys., 1973, 58(12): 5697-5706.
    [65] Garret, B. C., Truhlar, D. G.. Genera1ized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules [J]. J. Phys.Chem., 1979, 83: 1052-1079.
    [66] Garrett, B. C., Truhlar, D. G.. Additions and Corrections-Generalized Transition State Theory. Quantum Effeets for Collinear Reactions of Hydrogen Molecules [J]. J. Phys. Chem., 1983, 87(22): 4553.
    [67] Herzberg. G.. Molecular Spectra and Molecular StructureⅡ[M]. Van Nostrand Reinhold, Pinceton, 1945: 505.
    [68] Pechukas, P.; Mclafferty, F. J.. On transition-state theory and the classical mechanics of collinear collisions [J]. J. Chem. Phys., 1973, 58(4): 1622-1625.
    [69] R. Kosloff. A quantum mechanical open system as a model of a heat engine [J]. J. Chem. Phys., 1984, 80: 1625.
    [70] D. J. Kouri and R. C. Mowrey. Close coupling-wave packet formalism for gas phase nonreactive atom–diatom collisions [J]. J. Chem. Phys., 1987, 86: 2087.
    [71] Y. Sun, R. C. Mowrey and D. J. Kouri. Spherical wave close coupling wave packet formalism for gas phase nonreactive atom–diatom collisions [J]. J. Chem. Phys., 1987, 87: 339.
    [72] Y. Sun, R. S. Judson and D. J. Kouri. Body frame close coupling wave packet approach to gas phase atom–rigid rotor inelastic collisions [J]. J. Chem. Phys., 1989, 90: 241.
    [73] D. Neuhauser. Fully quantal initial-state-selected reaction probabilities (J=0) for a four-atom system: H2(v=0, 1, j=0)+OH(v=0,1, j=0)→H+H2O [J]. J. Chem. Phys., 1994, 100: 9272.
    [74] D. H. Zhang, J. Z. H. Zhang, Y. C. Zhang, D. Y. Wang and Q. G. Zhang. Quantum dynamics study of the reaction HD+OH→H+DOH, D+HOH [J]. J. Chem. Phys., 1995, 102: 7400.
    [75]杨茂友, SVRT模型在H+CD4→HD+CD3反应散射中的应用[D].济南:山东师范大学, 2003.
    [76] D. H. Zhang and J. Z. H. Zhang. Full-dimensional time-dependent treatment for diatom–diatom reactions: The H2+OH reaction [J]. J. Chem. Phys., 1994, 101: 1146.
    [77] D. O. Harris, G. G Engerholm et al.. Calculation of Matrix Elements for One-Dimensional Quantum-Mechanical Problems and the Application to Anharmonic Oscillators [J]. J. Chem. Phys., 1965, 43: 1515.
    [78] O. Sharafeddin and J. Z. H. Zhang. A DVR based time-dependent wave packet treatment for reactive scattering [J]. Chem. Phys. Lett., 1993, 204: 190.
    [79] J. Echave and D. C. Clary. Potential optimized discrete variable representation [J]. Chem. Phys. Lett., 1992, 190: 225.
    [80] J. V. Lill, G. A. Paker et al.. Discrete variable representations and sudden models in quantum scattering theory [J]. Chem. Phys. Lett., 1982, 89: 483.
    [81] J. C. Light, I. P. Hamilton et al.. Generalized discrete variable approximation in quantum mechanics [J]. J. Chem. Phys., 1985, 82: 1400.
    [82] D. E. Manolopoulos, R. E. Wyatt, Quantum scattering via the log derivative version of the Kohn variational principle [J]. Chem. Phys. Lett., 1988, 152: 23.
    [83] Z. Ba?i?, J. D. Kress, G. A. Parker, and R. T Pack, Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. IV. Discrete variable representation (DVR) basis functions and the analysis of accurate results for F+H2 [J]. J. Chem. Phys., 1990, 92: 2344.
    [84] J. A. Fleck, Jr., J. R. Morris and M. D. Feit. Propagation of high-energy laser beams in the atmosphere [J]. Appl. Phys., 1976, 10: 129.
    [85] M. D. Feit, J. A. Fleck, Jr., and A. Steiger. Solution of the Schr?dinger equation by a spectral method [J]. J. Comput. Phys., 1982, 47: 412.
    [86] D. H. Zhang, O. A. Shrfeddin and J. Z. H. Zhang. Product state distribution in time-dependent quantum wave packet calculation with an optical potential [J]. Chem. Phys., 1992, 167: 137.
    [87] Daniel Neuhauser, Michael Baer, Richard S. Judson, Donald J. Kouri, The application of time-dependent wavepacket methods to reactive scattering [J]. Comput. Phys. Commun., 1991, 63: 460.
    [88] J. Z. H. Zhang. The semirigid vibrating rotor target model for quantum polyatomic reaction dynamics [J]. J. Chem. Phys., 1999, 111: 3929.
    [89] E. B. Wilson, Jr., and J. B. Howard. The Vibration-Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules [J]. J. Chem. Phys., 1936, 4: 260.
    [90] B. T. Darling, and D. M. Dennison. Excitation Curves for the Reactions C12(d, dn)C1' and C12(a, an)CII at High Energies [J]. Phys. Rev., 1940, 57: 128.
    [91] J. K. G. Watson. Simplification of the molecular vibration-rotation hamiltonian [J]. Mol. Phys., 1968, 15: 479.
    [92] R. N. Porter. Molecular trajectory calculations [J]. Ann. Rev. Phys. Chem., 1974, 25: 317.
    [93] L. M. Raff, D. L. Thompson. Theory of Chemical Reaction Dynamics [M]. M. Baef, Ed. CRC Press Inc., Florida 1985: Vol.3.
    [94] D. G. Truhlar and J. T. Muckerman. Atom-Molecule Collision Theory—A guide for the experimentalist [M]. R. B. Bernstein, Ed., Plenum Press, New York, 1979.
    [95]郑锡光,中国科学院大连化学物理研究所硕士学位论文[D],大连, 1991.
    [96]俞书勤,微观化学反应[M],安徽科学技术出版社, 1985.
    [97]詹际平,中国科学院大连化学物理研究所博士学位论文[D],大连,1997.
    [98]陈茂笃,几个典型反应的立体动力学理论研究[D].大连:中国科学院大连化学物理研究所, 2002.
    [99] Y. J. Chen, L.K. Chu, S.R. Lin, Y.P. Lee. Observation of CH4 (v2 = 1 or v4 = 1) in the reaction Cl + CH4 with time-resolved Fourier-transform infrared absorption spectroscopy [J]. J. Chem. Phys., 2001, 115: 6513.
    [100] J. Zhou, B. Zhang, J. J. Lin, K. Liu. Imaging the isotope effects in the ground state reaction of Cl CH4 and CD4 [J]. Mol. Phys., 2005, 103: 1757.
    [101] M. S. Zahniser, B. M. Berquist, F. Kaufman. Rate constants and kinetic isotope effects for Cl+CH4→ClH+CH3: a comparison between LSC-IVR and statistical theories [J]. Int. J. Chem. Kinet., 1978, 10: 15.
    [102] W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, M. J. Molina. Jet Propulsion Laboratory Report No. 92-20 [M]. 1992 (unpublished).
    [103] K. Takahashi, O. Yamamoto, T. Inomata. Direct measurements of the rate coefficients for the reactions of some hydrocarbons with chlorine atoms at high temperatures [J]. Proc. Combust. Inst., 2002, 29: 2447.
    [104] J. J. Russell, J. A. Setula, D. Gutman. Rate constants and kinetic isotope effects for Cl+CH4→ClH+CH3: a comparison between LSC-IVR and statistical theories [J]. Int. J. Chem. Kinet., 1998, 20: 759.
    [105] J. V. Seeley, J. T. Jayne, M. J. Molina. Kinetic Studies of Chlorine Atom Reactions Using the Turbulent Flow Tube Technique [J]. J. Phys. Chem., 1996, 100: 4019.
    [106] S. A. Kandel, R. N. Zare. Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional excitation in controlling reactivity [J]. J. Chem. Phys., 1998, 109: 9719.
    [107] W. R. Simpson, A. J. Orr-Ewing, R. N. Zare. State-to-state differential cross sections for the reaction Cl (2P 2 3) + CH4 (ν3=1, J =1)→HCl (v′= 1, J′) + CH3 [J]. Chem. Phys. Lett., 1993, 212: 163.
    [108] A. J. Orr-Ewing, W. R. Simpson, T. P. Rakitzis, S. A. Kandel, R. N. Zare. Scattering-angleresolved product rotational alignment for the reaction of Cl with vibrationally excited methane [J]. J. Chem. Phys., 1997, 106: 5961.
    [109] E. Garcia, C. Sanchez, A. Saracibar. A Full Dimensional Quasiclassical Trajectory Study of Cl + CH4 Rate Coefficients [J]. J. Phys. Chem. A, 2004, 108: 8752.
    [110] D. Troya, P. J. E. Weiss. Ab initio and direct quasiclassical-trajectory study of the Cl+CH4→HCl+CH3 reaction [J]. J. Chem. Phys., 2006, 124: 074313.
    [111] H. G. Yu, G. Nyman. Reaction dynamics of chlorine atom with methane: Dual-level ab initio analytic potential energy surface and isotope effects [J]. J. Chem. Phys., 1999, 111: 6693.
    [112] H. G. Yu, G. Nyman. A four dimensional quantum scattering study of the Cl + CH4?HCl + CH3 reaction via spectral transform iteration [J]. J. Chem. Phys., 1999, 110: 7233.
    [113] R. Martínez, M. González, P. Defazio. Searching for resonances in the reaction Cl+CH4→HCl+CH3: Quantum versus quasiclassical dynamics and comparison with experiments [J]. J. Chem. Phys., 2007, 127: 104302.
    [114] J. Espinosa-García, J.C. Corchado. Analytical potential energy surface for the CH4+Cl→CH3+ClH reaction: Application of the variational transition state theory and analysis of the kinetic isotope effects [J]. J. Chem. Phys., 1996, 105: 3517.
    [115] J. C. Corchado, D. G. Truhlar, J. Espinosa-García. Potential energy surface, thermal, and state-selected rate coefficients, and kinetic isotope effects for Cl + CH4→HCl + CH3 [J]. J. Chem. Phys., 2000, 112: 9375.
    [116] C. Rangel, M. Navarrete, J. C. Corchado, J. Espinosa-García. Potential energy surface, kinetics, and dynamics study of the Cl+CH4→HCl+CH3 reaction [J]. J. Chem. Phys., 2006, 124: 124306
    [117] MOLPRO is a package of ab initio programs designed by H.-J. Werner, and P.J. Knowles. The authors are R.D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M.J.O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J. Knowles, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nickla, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, H.-J. Werner.
    [118] P. J. Knowles, C. Hampel and H. J. Werner. Coupled cluster theory for high spin, open shell reference wave functions [J]. J. Chem. Phys., 1993, 99: 5219.
    [119] J. D. Watts, J. Gauss and R. J. Bartlett. Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients [J]. J. Chem. Phys., 1993, 98: 8718.
    [120] M. J. O. Deegan and P. J. Knowles. Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories [J]. Chem. Phys. Lett., 1994, 227: 321.
    [121] T. H. Dunning, Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen [J]. J. Chem. Phys., 1989, 90: 1007.
    [123] H. J. Werner and P. J. Knowles. A second order multiconfiguration SCF procedure with optimum convergence [J]. J. Chem. Phys., 1985, 82: 5053.
    [124] P. J. Knowles and H. J. Werner. An efficient second-order MC SCF method for long configuration expansions [J]. Chem. Phys. Lett., 1985, 115: 259.
    [125] JANAF Thermochemical Tables, 3rd ed., edited by M. W. Chase, Jr., C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, National Bureau of Standards, Washington D.C., 1985, Vol. 14.
    [126] G. Herzberg, K. B. Huber. Constants of Diatomic Molecules Molecular Spectra and Molecular Structure [M]. New Jersey: Van Nostrand, Princeton, 1979: vol. 4.
    [127] K. D. Dobbs, D. A. Dixon. Ab Initio Prediction of the Activation Energy for the Abstraction of a Hydrogen Atom from Methane by Chlorine Atom [J]. J. Phys. Chem., 1979, 98: 12584.
    [128] NIST Computational Chemistry Comparison and Benchmark Database IVA Reaction Comparison Experimental Enthalpies at 0 K.
    [129] Y. Chen, E. Tschuikow-Roux, A. Rauk. Intermediate complexes and transition structure for the reactions methyl + hydrogen halide .fwdarw. methane + halogen: application of G1 theory [J]. J. Phys. Chem., 1991, 95: 9832.
    [130] M. J. T. Jordan, R. G. Gilbert. Classical trajectory studies of the reaction CH4+H→CH3+H2 [J]. J. Chem. Phys., 1995, 102: 5669.
    [131] T. R. Joseph, R. Steckler, D. G. Truhlar, A new potential energy surface for the CH3+H2?CH4+H reaction: Calibration and calculations of rate constants and kinetic isotope effects by variational transition state theory and semiclassical tunneling calculations [J]. J. Chem. Phys. 1987, 87: 7036.
    [132] R. J. Duchovic, W. L. Hase, H. B. Schlegel. Analytic function for the atomic hydrogen + methyl .dblarw. methane (H+CH3?CH4) potential energy surface [J]. J. Phys. Chem., 1984, 88: 1339.
    [133] L. M. Raff. Theoretical investigations of the reaction dynamics of polyatomic systems: Chemistry of the hot atom (T* + CH4) and (T* + CD4) systems [J]. J. Chem. Phys., 1974, 60: 2220.
    [134] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes [M]. Cambridge: Cambridge University Press, 1986: 418-422.
    [135] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes [M]. Cambridge: Cambridge University Press, 1986: 412.
    [136] M. Page, and J. W. Mclver. One valuating the reaction Path Hmailtonian [J]. J. Chem. Phys., 1988, 88: 922.
    [137] Y. Y. Chuang, J. C. Corchado, P. L. Fast, et al., POLYRATE Version 9.3, University of Minnesota, Minneapolis, 2003.
    [138] D. G. Truhlar, A. D. Isaacson, B. C. Garrett, in: M. Baer (Ed.), Theory of Chemical Reaction Dynamics [M]. vol. 4, CRC, Boca Raton, FL, 1985: 65.
    [139] W. T. Duncan, T. N. Truong. Thermal and vibrational-state selected rates of the CH4+Cl HCl+CH3 reaction [J]. J. Chem. Phys., 1995, 103: 9642; 1998, 109: 3703.
    [140] J. Klos. Ab initio calculations and modeling of diabatic potential energy surfaces for the Van der Waals complex Cl(2P) CH4(X 1A1) [J]. Chem. Phys. Lett., 2002, 359: 309.
    [141] P. McGuire, D. J. Kouri. Quantum mechanical close coupling approach to molecular collisions. jz -conserving coupled states approximation [J]. J. Chem. Phys., 1974, 60: 2488.
    [142] R. T. Pack. Space-fixed vs body-fixed axes in atom-diatomic molecule scattering. Sudden approximations [J]. J. Chem. Phys., 1974, 60: 633.
    [143] M. H. Qiu, Z. F. Ren, L. Che, D. X. Dai, S. A. Harich, X. Y. Wang, X. M. Yang, C. X. Xu, D. Q. Xie, M. Gustafsson, R. T. Skodje, Z. G. Sun, D. H. Zhang. Observation of Feshbach resonances in the F+H2→HF+H reaction [J]. Science 2006, 311: 1440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700