用户名: 密码: 验证码:
福州城市片林与草坪碳吸存比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市绿地随城市化迅速扩大在改善城市生态环境的同时具有可观的碳汇效益。目前,我国已主动承诺大幅降低碳排放强度,但我国传统森林碳汇的提升难度正逐渐加大,如能准确评估城市绿地的固碳能力,则对我国缓解减排压力、实现减排承诺都非常有意义。
     本研究通过在城市化进程迅速的中国沿海省会城市——福州市内的闽江公园内(26003'N,119°15'E)选择临近分布的番石榴(Psidium guajava)、南洋杉(Araucaria cunninghamii)和黄花槐(Sophora xanthantha)片林以及各自毗邻的沟叶结缕草草坪(Zoysia matrella)为研究对象,采用样方清查法与碳平衡法,估算了各绿地的碳汇效益,并针对当前城市绿地碳循环研究的薄弱环节——地下碳过程开展了系统的研究,探讨了土壤关键碳通量——土壤呼吸和地下凋落物碳归还的调控机制,以及二者在两种城市绿地覆被下的差异,并进一步探讨城市绿地土壤有机碳的形成机制。这对客观评价城市绿地的碳源汇功能,揭示其碳汇机制,以及完善我国碳预算都具有重要意义。
     研究结果表明:片林植被碳库要明显高于比邻草坪,同时也具有更高的生态系统总碳库。与临近的片林相比,草坪土壤呼吸速率均表现出高值更高,低值更低的特点,草坪生态系统的土壤呼吸及其组分具有更高的Q1o值,表明草坪土壤呼吸对末来环境因子变化的响应更为敏感。片林地上凋落物动态呈现为双峰模式,峰值分别出现在春季4-5月份和夏末秋初的8-9月份。草坪的修剪分别在5月和10月,各草坪全年地上草屑总量(4.1-4.8t.C.hm-2.a-1)要高于片林全年地上凋落物总量(2.5-4.0t·C.hm-2.a-1)。各片林之间地下凋落物归还峰值出现的月份各不相同。相对而言,各草坪根系的死亡动态之间比较接近,基本上从4月份起根系死亡量开始逐渐增加,于秋季10月份达到最大值。片林全年根系碳归还量在4.2-7.2t·C·hm-2.a-1之间与各自毗邻草坪(5.8-7.0t·C·hm-2·a-1)并无显著差异(P>0.05)。各绿地中,黄花槐凋落物的分解速率最快,分解系数为3.54。各草坪凋落物的分解速率次之,并且彼此较为接近在2.90-2.98之间。南洋杉与番石榴的最小分别为1.09和1.22。
     野外同位素实测数据表明,在建植10a的草坪表层0-20cm土壤中,源自于草坪植物的SOC占42%,在整个培养过程中,5%(CL)和10%(CH)草屑添加量处理的C02的累计排放量(分别为2.94mg C·g-1soil和3.61mg C·g-1soil)显著高于对照(CK,1.2mg C·g-1soil,P<0.05)。其中C4-CO2为CL和CH累计排放C02的主要组成,分别占累积排放的64.5%和80.2%。此外,草屑添加处理还可显著提高培养土壤微生物生物量、土壤的潜在可矿化碳量SOC分解系数。这些结果表明C4相对于土壤原有的C3对于微生物代谢而言具有更高的底物可利用性,能刺激微生物生物量增加,同时提高土壤SOC潜在可矿化碳量,有助于SOC的形成。
     全年片林净初级生产力(NPP,10.3-14.0t.C.hm-2·a-1)与草坪NPP(11.8-13.1t·C·hm-2·a-1)相当,但片林的净生态系统生产力(NEP,4.20-6.47t.C·hm-2·a-1)明显高于草坪(1.8-3.4t·C.hm-2·a-1)。片林与草坪NEP的流向差异体现在:片林的植被碳库累积速率均高于毗邻草坪,而土壤碳库累积速率相对较低。造成这种差异的原因除了有片林和草坪植物自身碳分配的差异外,二者人为管理措施的不同也是原因之一。此外,片林人为移出地上凋落物的不同去向将给其碳汇估算带来一定的不确定性,而草坪土壤碳汇存在时间期限,建植4年和8年的草坪土壤固碳速率分别可达1.4t·C·hm-2·a-1和1.3t·C.hm-2.a-1,但建植10年的草坪土壤固碳速率就迅速降低自0.4t.C.hm-2.a-1。
     上述数据和研究结果表明,尽管草坪具有更高的土壤固碳速率,但城市片林比草坪具有更高的生态系统碳汇。因此在城市绿化中,从碳汇效益角度考虑,应尽量优先考虑种植片林,并采用合理的管理措施避免片林碳汇流失。
Urban green space expanding rapidly due to urbanization could improve urban environment and has considerable carbon (C) sequestered ability. Recently, Chinese government has committed to dramatically reduce CO2emissions intensity. However, increasing C sick of traditional forest has been more difficult. Therefore, accurate assessing the C sink of urban green space will be meaningful for China to relieve the pressure in reducing emission of CO2and to be helpful for fulfilling Chinese obligations towards the Kyoto Protocol.
     This study was conducted at the Minjiang Park in Fu'zhou City, the capital city of Fujian province (26°03'N,119°15'E) and one of the fastest urbanized inshore city in southeast China. In this study, ecosystem C sequestration in three urban forests and lawns were quantified by inventory method and C budget method. Below ground C allocation and soil organic C (SOC) formation mechanism were also investigated. This study is not only essential for objective evaluating C sink of urban green spaces, but also helpful for perfecting C budget of China.
     The result showed that three urban forests had higher vegetation and ecosystem C storage than abut lawns. Lawns have relative higher seasonal maximum of soil respiration rate and lower minimum than each close-by urban forest. Moreover, the Q10values of soil respiration and its components in lawns were also higher each close-by urban forest. These results suggest soil respiration in lawns will be more sensitive to future climate change. Seasonal dynamics of liiterfall in urban forests showed binomial patterns with the first peak occurring from April to May and the second peak occurring during August and September. Lawn mowing conducted in May and October. Annual clipping residue of lawns (4.1-4.8t·C·hm-2·a-1) were higher than the annual aboveground litterfall in urban forests (2.5-4.0t·C·hm-2·a-1). The peak values of belowground litterfall in urban forests were not appeared in same month, while those in lawns usually appeared in October. There was no significant difference in annual belowground litterfall between each urban green space (P>0.05). Litter decomposition rate (k) of yellow flower of pagodatree (k=3.54) was fastest among these urban green spaces. Lawns came next with k values from2.90to2.98. The k values of araucaria and guava were lowest (1.09and1.22, respectively).
     Field C isotope analysis indicated, lawn-derived C contributed42.0%soil organic C (SOC) under10years old lawn. Indoor simulative experiment showed that during incubation experiment, cumulative CO2emissions of5%(CL) and10%(CH) clipping addition treatments (2.94mg C·g-1soil and3.61mg C·g-1soil, respectively) were significantly higher than that of control (CK,0%clipping addition). The cumulative CO2emissions in CL and CH consisted chiefly of C4-CO2which accounted for64.5%and80.2%, respectively, of cumulative CO2emissions in CL and CH. Moreover, clipping addition could obviously increase soil microbial biomass, potential mineralizable C and SOC decomposition rate. These results indicate C4was easier than C3for microbe utilizing and could enhance both microbial biomass and potential mineralizable C, therefore improve C4-SOC formation.
     Annual net primary productivity (NPP) in urban forests (10.3-14.0t·C·hm-2·a-1) and lawns (11.8-13.1t·C·hm-2·a-1) were similar. However, urban forests had higher net ecosystem productivity (NEP,4.20-6.47t·C·hm-2·a-1) than that of lawns (1.8-3.4t·C·hm-2·a-1). There are different NEP distribution between urban forests and lawns. Urban forest has higher vegetation C accumulation rate and lower soil C accumulation rate than lawn. This discrepancy may partly due to the different C allocation strategy in arboreal and herbaceous species. On the other hand, the discrepancy was also likely attribute to different managements in these two types of green spaces. Moreover, various destinies of aboveground litterfall removed from urban forests add the uncertainty of there C budget. SOC accumulations in lawns are time limited. SOC accumulate rate in 4-years-old and8-years-old lawns were1.4and1.3t·C·hm-2·a-1, respectively. However, the rate in8-years-old lawn rapidly dropped to0.4t·C·hm-2·a-1.
     In conclusion, above results suggest that although urban lawns have faster SOC accumulate rate, urban forests have larger ecosystem C sick than lawns. Therefore, urban forest deserves to give priority in urban green space construction, and suitable managements should be adopted to avoid C loss.
引文
Acenolaza P, Zamboni L, Rodriguez E, et al. Litterfall production in forests located at the Pre-delta area of the Parana River (Argentina). Annals of Forest Science.2011,67(3):311-311.
    Aires L M I, Pio C A, Pereira J S. Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years. Global Change Biology.2008,14:539-555.
    Alvarez R, Alvarez C R. Soil organic matter pools and their associations with carbon mineralization kinetics. Soil Science Society of America Journal.2000,64:184-189.
    Anderson L J, Comas L H, Lakso A N, et al. Multiple risk factors in root survivorship:a 4-year study in Concord grape. New Phytologist.2003,158(3):489-501.
    Anderson M C, Norman J M, Kustas W P, et al. A thermal-based remote sensing technique for routine mapping of land surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment.2008,112:4227-4241.
    Arunachalam A, Arunachalam K M, Pandey H N, et al. Fine litterfall and nutrient dynamics during forest regrowth in the humid subtropics of north-eastern India. Forest Ecology and Managemen. 1998,110:209-219.
    Atkin O K, Tjoelker M G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science.2003,8(7):343-351.
    Aubinet M, Grelle A, lbrom A, et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX Methodology. Advances in Ecological Research.2000,30:113-175.
    Bahn M, Reichstein M, Davidson E A, et al. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences.2010,7(7):2147-2157.
    Baldocchi D D, Wilson K B. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modeling.2001,142:155-184.
    Balvanera P, Aguirre E. Tree diversity, environmental heterogeneity, and productivity in a Mexican tropical dry forest. Biotropica.2006,38:479-491.
    Berg B, Berg M P, Bottner P. Litter mass loss rate in pine forest of Europe and Eastern Unite States: some relationships with climate and litter quality. Biogeochemistry.1993,20:127-159.
    Beringer J, Hutley L B, Tapper N J, et al. Savanna fires and their impact on net ecosystem productivity in north Australia. Global Change Biology.2007,13:990-1004.
    Bernoux M, Cerri C C, Neill C, et al. The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma.1998,82:43-58.
    Bhupinderpal S, Nordgren A, Lofvenius M, et al. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest:extending observations beyond the first year. Plant Cell and Environment.2003,26(8):1287-1296.
    Blagodatskaya E V, Blagodatsky S A, Anderson T H, et al. Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. European Journal of Soil Science.2009,60:186-197.
    Blagodatskaya E, Yuyukina T, Blagodatsky S, et al. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change:Consideration of 13C fractionation and preferential substrate utilization. Soil Biology and Biochemistry.2011,43(1):159-166.
    Bol R, Poirier N, Balesdent J, et al. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Communications in Mass Spectrometry.2009,23:255-2558.
    Bontti E E, Decant J P, Munson S M, et al. Litter decomposition in grasslands of Central North America (US Great Plains). Global Change Biology.2009,15:1356-1363.
    Bowden R, Newkirk K, Rullo G. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biology and Biochemistry.1998, 30(12):1591-1597.
    Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry.2000,32(11):1625-1635.
    Burkart S, Manderscheid R, Weigel H J. Design and performance of a portable gas exchange chamber system for CO2 and H2O flux measurements in crop canopies. Environmental and Experimental Botany.2007,61:25-34.
    Cao M K, Zhang Q F, Shugart H H. Dynamic responses of African ecosystem carbon cycling to climate change. Climate Research.2001,17:183-193.
    Carbone M S, Winston G C, Trumbore S E. Soil respiration in perennial grass and shrub ecosystems: Linking environmental controls with plant and microbial sources on seasonal and diel timescales. Journal of Geophysical Research.2008,113:G02022, doi:10.1029/2007JG000611.
    Carreiro M M, Howe K, Parkhurst D F, et al. Variation in quality and decomposability of red oak leaf litter along an urban-rural gradient. Biology and Fertility of Soils.1999,30(3):258-268.
    Carvalhais N, Reichstein M, Collatz G J, et al. Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula. Biogeosciences Discuss.2010, 7(3):4801-4855.
    Celentano D, Zahawi R A, Finegan B, et al. Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica.2011,43(3):279-287.
    Chen G S, Yang Y S, Wang X G, et al. Root respiration in a natural forest and two plantations in subtropical China:seasonal dynamics and controlling factors. Acta Ecologica Sinica.2005,25(8): 1941-1947.
    Chen X, Hutley L B, Eamus D. Carbon balance of a tropical savanna of northern Australia. Ecosystem Ecology.2003,137:405-16.
    Churkina G, Brown D G, Keoleian G. Carbon stored in human settlements:the conterminous United States. Global Change Biology.2010,16(1):135-143.
    Ciais P, Reichstein M, Niovy N, et al. Europe-wide reduction in primary production caused by the heat and drought in 2003. Nature.2005,437:529-533.
    Collatz G J, Ball J T, Grivet C, et al. Regulation of stomatal conductance and transpiration:a physiological model of canopy processes. Agricultural and Forest Meteorology.1991,54: 107-136.
    Cornelissen J H C, Perez-Harguindegny N, Diaz S, et al. Leaf structure and defense control litter decomposition rate across species and life forms in regional floras of two continents. New Phytologist,1999,143:191-200.
    Coyle J S, Dijkstra P, Doucett R R, et al. Relationships between C and N availability, substrate age, and natural abundance 13C and 15N signatures of soil microbial biomass in a semiarid climate. Soil Biology and Biochemistry.2009,41:1605-1611.
    Davidson E A, Janssens I A, Luo Y Q. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology.2006,12 (2):154-164.
    Davies Z G, Edmondson J L, Heinemeyer A, et al. Mapping an urban ecosystem service:quantifying above-ground carbon storage at a city-wide scale. Journal of Applied Ecology.2011, doi: 10.1111/j.1365-2664.2011.02021.x
    Dawson J J C, Smith P. Carbon losses from soil and its consequences for land-use management. Science of The Total Environment.2007,382(2-3):165-190.
    Deb S K, Shukla M K. A review of dissolved organic matter transport processes affecting soil and environmental quality. Journal of Environmental and Analytical Toxicology.2011,1(2): doi:10.4172/2161-0525.1000106.
    Desjardins R L. A technique to measure CO2 exehange under field conditions. International Journal of Biometeorology.1974,18:76-83.
    Dhital D, Yashiro Y, Ohtsuka T, et al. Carbon dynamics and budget in a Zoysia japonica grassland, central Japan. Journal of Plant Research.2010,123(4):519-530.
    Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science. 1994,263:185-190.
    Don A, Schulze E-D. Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types. Biogeochemistry.2008,91(2):117-131.
    Ehleringer J R, Buchmann N, Flanagan L B. Carbon isotope ratios in belowground carbon cycle process. Ecological Application.2000,10:412-422.
    Eissenstat D M, Yanai R D. The ecology of root lifespan. Advances in Ecological Research.1997,27: 1-60.
    Esperschutz J, Buegger F, Winkler J B, et al. Microbial response to exudates in the rhizosphere of young beech trees (Fagus sylvatica L.) after dormancy. Soil Biology and Biochemistry.2009,41: 1976-1985.
    Esser G. Sensitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus. 1987,39B:245-260.
    Falk J H. Energetics of a suburban lawn ecosystem. Ecological Society of America.1976,57:141-150.
    Falk J H. The primary productivity of lawns in a temperate environment. Journal of Applied Ecology. 1980,17(3):689-695.
    Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science.2001,292:2320-2322.
    Fang J Y, Wang G G, Liu G H, et al. Forest biomass of China:an estimate based on the biomass-volume relationship. Ecological Applications.1998,8(4):1984-1991.
    Farquhar G D, Von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta.1980,149:78-90.
    Ford C R, McGee J, Scandellari F, et al. Long-and short-term precipitation effects on soil CO2 efflux and total belowground carbon allocation. Agricultural and Forest Meteorology.2012,156(15): 54-64.
    Gershenson A, Bader N E, Cheng W X. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biology.2009,15(1):176-183.
    Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biology and Biochemistry. 2003,35:1231-1243.
    Gilmanov T G, Soussana J F, Aires L, et al. Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems & Environment.2007,121(1-2):93-120.
    Golubiewski N E. Urbanization increases grassland carbon pools-effects of landscaping in Colorado's Front Range. Ecological Applications.2006,16:555-571.
    Green D M, Olesyszyn M. Enzyme activities and carbon dioxide flux in a Sonoran Desert urban ecosystem. Soil Science Society of America Journal.2002,66:2002-2008.
    Grimm N B, Stanley H F, Nancy E,et al. Global change and the ecology of cities. Science.2008, 319(5):756-760.
    Grimmond S. Urbanization and global environmental change:local effects of urban warming. Geographical Journal.2007,173(1):83-88.
    Groffman P M, Pouyat R V, Cadenasso M L, et al. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management.2006,236:177-192.
    Hanan N P, Kabat P, Dolman A J, et al. Photosynthesis and carbon balance of a Sahelian fallow savanna. Global Change Biology.1998:4,523-538.
    Hardiman B S, Bohrer G, Gough C M, et al. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology.2011,92(9):1818-1827.
    Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008,451(7176):289-292.
    Hobbie S E, Gough L. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia.2004,140:113-124.
    Houborg R, Anderson M C, Norman J M, et al. Intercomparison of a 'bottom-up" and 'top-down' modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regimes across the U.S. Agricultural and Forest Meteorology.2009,149(11):1875-1895.
    Huh K Y, Deurer M, Sivakumaran S, et al. Carbon sequestration in urban landscapes:the example of a turfgrass system in New Zealand. Soil Research.2008,46(7):610-616.
    Imada S, Yamanaka N, Tamai S. Fine-root growth, fine root mortality, and leaf morphological change of Populus alba in response to fluctuating water tables. Trees-Structure and Function.2010,24(3): 499-506.
    IPCC.2006 IPCC Guidelines for national greenhouse gas inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H S, Buendia L, Miwa K, Ngara T and Tanabe K (eds). Published:IGES, Japan.
    Ito A, Oikawa T. A simulation model of the carbon cycle in land ecosystems(Sim-CYCLE):a description based on dry-matter production theory and plot-scale validation. Ecological Modeling. 2002,151:143-176.
    Jassal R S, Black T A, Novak M D, et al. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology. 2008,14(6):1305-1318.
    Jastrow J D, Amonette J E, Bailey V L, et al. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change.2007,80:5-23.
    Jenerette G D, Wu J, Grimm N B, et al. Points, patches, and regions:scaling soil biogeochemical patterns in an urbanized arid ecosystem. Global Change Biology.2006,12:1532-1544.
    Jiang P K, Xu Q F. Abundance and dynamics of soil labile carbon pools under different types of forest vegetation. Pedosphere.2006,16(4):505-511.
    Jo H K, Mcpherson E G. Carbon storage and flux in urban residential greenspace. Journal of Environmental Management.1995,45:109-133.
    Jo H. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management.2002,64:115-126.
    Jobaggy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications.2000,10(2):423-436.
    John G, Jose S J, Meir P, et al. Montes4 Productivity and carbon fluxes of tropical savannas. Journal of Biogeography.2006,33(3):387-400.
    Johnson A D, Gerhold H D. Carbon storage by urban tree cultivars, in roots and above-ground. Urban Forestry and Urban Greening.2003,2:65-72.
    Jung J, Lal R, Ussiri D. Changes in CO2,13C abundance, inorganic nitrogen, β-glucosidase, and oxidative enzyme activities of soil during the decomposition of switchgrass root carbon as affected by inorganic nitrogen additions. Biology and Fertility of Soils.2011,47(7):801-813.
    Kaimal J C, Gaynor J E, Zimmerman H A, et al. Minimizing flow distortion errors in a sonic anemometer. Boundary-Layer Meteorology.1990,53:103-115.
    Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soilderived dissolved organic matter as related to its properties. Geoderma.2003,113:273-291.
    Kawahigashi M, Hiroaki S, Kazuhiko Y, et al. Seasonal changes in organic compounds in soil solutions obtained from volcanic ash soils under different land uses. Geoderma.2003,113: 381-396.
    Kaye J P, McCulley R L, Burke I C. Carbon fluxes, nitrogen cycling, and soil microbial, communities in adjacent urban, native and agricultural ecosystems. Global Change Biology.2005,11(4): 575-587.
    Koerner B, Klopatek J. Anthropogenic and natural CO2 emission sources in an arid urban environment. Environmental Pollution.2002,116:S45-S51.
    Kolari P, Pumpanen J, Rannikwu, et al. Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biology.2004,10:1106-1119.
    Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology and Biochemistry.2001,33(14):1915-1925.
    Kuzyakov Y. Review:factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science-zeitschrift Fur Pflanzenernahru.2002,165:382-396.
    Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry.2006,38 (3):425-448.
    Leuning R, Kelliher F M, de Pury D G G, et al. Leaf nitrogen, photosynthesis conductance and transpiration:scaling from leaves to canopies. Plant Cell Environ.1995,18:1183-1200.
    Lieth, H.1975. Modeling the primary productivity of the world.Pages 237-264 in H. Lieth and R. H. Whittaker, editors. Primary productivity of the biosphere. Springer-Verlag, New York, New York, USA.
    Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment.1997,62(2):158-175.
    Liu W Y, Fox J E D, Xu Z F. Litter fall and nutrient dynamics in a mountain moist evergreen broad-leaved forest in Ailao mountains. SW China. Plant Ecology.2002,164:157-170.
    Livesley S J, Kiese R, Miehle P, et al. Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Global Change Biology.2009,15(2):425-440.
    Luo Y Q, Wan S Q, Hui D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie. Nature.2001,413:622-625.
    Luyssaert S, Inglima I, Jung M, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology.2007,13(12):2509-2537.
    Ma S, Baldocchi D D, Xu L K, et al. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology.2007, 147:157-171.
    Malhi Y D D, Baldocehi P G J. The carbon balance of tropical.temperate and boreal forests. Plant, Cell and Environment.1999,22:715-740.
    Marchesini L B, Papalel D, Reichstein M, et al. Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach. Biogeosciences.2007,4:581-595.
    Massman W J, Lee X H. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology.2002,113:121-144.
    Matamala R, Gonzalez-Meier M A, Jastrow J D, et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science.2003,302:1385-1387.
    McCulley R L, Boutton T W, Archer S R. Soil respiration in a subtropical savanna parkland:response to water additions. Soil Science Society of America.2007,71(3):1-9.
    McPherson E G. Atmospheric carbon dioxide reduction by Sacramento's urban forest. Journal of Arboriculture.1998,24 (4),215-223.
    Milesi C, Elvidge C D, Nemani R R, et al. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sensing Of Environment.2003, 86:401-410.
    Milesi C, Running S W, Elvidge D C, et al. Mapping and modeling the biogeochemical cycling of turfgrasses in the United States. Environmental Management.2005,36:426-438.
    Moore T R, Trofymow J A, Taylor B, et al. Litter decomposition rates in Canadian forests. Global Change Biology.1999,5:75-82.
    Nair R, Juwarkar A, Wanjari T, et al. Study of terrestrial carbon flux by eddy covariance method in revegetated manganese mine spoil dump at Gumgaon, India. Climatic Change.2011,106(4): 609-619.
    Ni J. Carbon storage in grasslands of China. Journal of Arid Environments.2002,50(2):205-218.
    Ni J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology.2004,174(2):217-234.
    Nowak D J, Crane D E. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution.2002,116:381-389.
    Ohtaki E, Matsui T. Infrared device for simultaneous measurement of fluctuations of atmospheric carbon dioxide and water vapor. Boundary-Layer Meteorology.1982,24:109-119.
    Ojima D S, Dirks B O M, Glenn E P, et al. Assessment of C budget for grasslands and drylands of the world. Water, Air, and Soil Pollution.1993,70(1):95-109.
    Olson J S. Energy storage and the balance of producers and decomposers in ecological system. Ecology.1963,44:322-331.
    Oranger G, Ponge J F, Imnert D, et al. Leaf decomposition in two semi evergreen tropical forests: influence of litter quality. Biology and Fertility Soils.2002,35:247-252.
    Patton W J, Stewart J W B, Cole C V. Dynamics of C, N, S, and P in grassland soils:a model. Biogeochemistry.1988,5:109-131.
    Philips O L, Malhi Y, Higuchi N, et al. Changes in carbon balance of tropical forests:evidence from long-term plots. Science.1998,282:439-442.
    Phillips C L, Nickerson N, Risk D, et al. Interpreting diel hysteresis between soil respiration and temperature. Global Change Biology.2011,17(1):515-527.
    Phillips S C, Varner R K, Frolking S, et al. Interannual, seasonal, and diel variation in soil respiration relative to ecosystem respiration at a wetland to upland slope at Harvard Forest. Journal of Geophysical Research.2010,115:G02019, doi:10.1029/2008JG000858.
    Potter C, Klooster S, Myneni R, et al. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998. Global and Planetary Change. 2003,39:201-213.
    Pouyat R V, Groffman P, Yesilonis I D, et al. Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution.2002,116:S107-S118.
    Pouyat R V, Yesilonis I D, Nowak D J. Carbon Storage by Urban Soils in the United States. Journal of Environmental Quality.2006,35:1566-1575.
    Pouyat R, Groffman R, Yesilonis I, et al. Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution.2002,116:107-118.
    Pouyat R, Yesilonis I, Golubiewski N. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems.2009,12(1):45-62.
    Pregitzer K S. Woody plants, carbon allocation and fine roots. New Phytologist.2003,158(3): 421-423.
    Prince S D, Goward S N. Global primary production:A remote sensing approach. Journal of Biogeography.1995,22:815-835.
    Qian Y L, Bandaranayakea W, Parton W J, et al. Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics the century model simulation. Journal of Environmental Quality.2003,32:1694-1700.
    Qian Y L, Follett R F, Kimble J. Soil organic carbon input from urban turfgrasses. Soil Science Society of America.2010,74:366-371.
    Qian Y L, Follett R F. Assessing soil carbon sequestration in turfgrass systems using long-term soil testing data. American Society of Agronomy.2002,94:930-935.
    Raich J W, Rastetter E B, Melillo J M, et al. Potential net primary productivity in south America: application of a global model. Ecological Application.1991,4:399-429.
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus.1992,44B:81-99.
    Raich J W, Tufekcioglu A. Vegetation and soil respiration:correlations and controls. Biogeochemistry. 2000,48(1):71-90.
    Riveros-Iregui D A, Emanuel R E, Muth D J, et al. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content. Geophysical Research Letters.2007,34:L17404, doi:10.1029/2007GL030938.
    Riveros-Iregui D A, McGlynn B L, Epstein H E, et al. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux:Discrete surface chambers and continuous soil CO2 concentration probes. Journal of Geophysical Research.2008,113:doi:10.1029/2008JG000811.
    Ruehr N, Knohl A, Buchmann N. Environmental variables controlling soil respiration on diurnal, seasonal and annual time-scales in a mixed mountain forest in Switzerland. Biogeochemistry. 2010,98(1-3):153-170.
    Running S W, Coughlan J C. A general model of forest ecosystem processes for regional applications, I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modeling.1988,42:125-154.
    Running S W, Hunt E R.1993. Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global scale models scaling processes between leaf and landscape level. Ehleringe J R, Field C B. Scaling Physiological Process:Leaf of Globe. San Diego:Academic Press:141-158.
    Running S W. Ecosystem Disturbance, Carbon, and Climate. Science.2008,321(5889):652-653.
    Ryan M G, Law B E. Interpreting, measuring, and modeling soil respiration. Biogeochemistry.2005, 73(1):3-27.
    Samina Usman, Singh S P, Rawat Y S. Fine root productivity and turnover in two evergreen central Himalayan forests. Annals of Botany.1999,84(1):87-94.
    Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycle.1994,8:279-293.
    Schindlbacher A, Zechmeister-Boltenstern S, Glatzel G, et al. Winter soil respiration from an Austrian mountain forest. Agricultural and Forest Meteorology.2007,146:205-215.
    Scholes R J, Walker B H. An African savanna:synthesis of the Nylsvley study. Cambridge, UK: Cambridge University Press,1993.
    Schulze E D, Lloyd J, Kelliher F M, et al. Productivity of forests in the Eurosiberian boreal region and their potential to act as carbon sink-a synthesis. Global Change Biology.1999,5(6):703-722.
    Scott M J, Jones M N, Woof C, et al. Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system. Environment International.1998,24:537-546.
    Scurlock J M O, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology.2002,8(8):736-753.
    Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SIB2) for atmospheric GCMs. Part Ⅰ:Model Formulation Journal of Climate.1996,9:676-705.
    Shi W, Muruganandam S, Bowman D. Soil microbial biomass and nitrogen dynamics in a turfgrass chronosequence:a short-term response to turfgrass clipping addition. Soil Biology and Biochemistry.2006,38(8):2032-2042.
    Soussana J F, Loiseau P, Vuichard N, et al. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage.2004,20(Suppl.):19-23.
    Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation:implications for measurable carbon pool dynamics in long-term incubations. Soil Biology and Biochemistry.2009,41(2):357-366.
    Strong D T, Wever H D, Merckx R, et al. Spatial location of carbon decomposition in the soil pore system. European Journal of Soil Science.2004,55:739-750.
    Tang J, Baldocchi D D, Xu L. Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology.2005,11(8):1298-1304.
    Tipping E, Woof C, Rigg E, et al. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils.investigated by a field manipulation experiment. Environment International.1999,25:83-95.
    Tu C L, Liu C Q, Lu X H, et al. Sources of dissolved organic carbon in forest soils:evidences from the differences of organic carbon concentration and isotope composition studies. Environmental Earth Sciences.2011,63(4):723-730.
    Wang L, Niu K, Yang Y, et al. Patterns of above-and belowground biomass allocation in China's grasslands:Evidence from individual-level observations. SCIENCE CHINA Life Sciences.2010, 53(7):851-857.
    Wang W, Fang J. Soil respiration and human effects on global grasslands. Global and Planetary Change.2009,67(1-2):20-28.
    Wang W, Guo J, Oikawa T. Contribution of root to soil respiration and carbon balance in disturbed and undisturbed grassland communities, northeast China. Journal of Biosciences.2007,32(2): 375-384.
    Wang Y P, Leuning R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. Ⅰ:Model description and comparison with a multi-layered model. Agricultural and Forest Meteorology.1998,91,89-111.
    Wang W, Fang J Y. Soil respiration and human effects on global grasslands. Global and Planetary Change.2009,67:20-28.
    Weintraub M N, Scott-Denton L E, Schmidt S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia.2007,154(2):327-338.
    Werth M, Kuzyakov Y.13C fractionation in transformations at the interface between roots, microorganisms, and soil:a review and synthesis. Soil Biology & Biochemistry.2010,42: 1372-1384.
    Wolf S, Eugster W, Potvin C, et al. Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama. Agricultural and Forest Meteorology.2011,151(8): 1139-1151.
    Yang Y S, Chen G S, Guo J F, et al. Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecology.2007,193:71-84.
    Yao H, Bowman D, Rufty T, et al. Interactions between N fertilization, grass clipping addition and pH in turf ecosystems:implications for soil enzyme activities and organic matter decomposition. Soil Biology and Biochemistry.2009,41:1425-1432.
    Yao H, Shi W. Soil organic matter stabilization in turfgrass ecosystems:importance of microbial processing. Soil Biology and Biochemistry.2010,42(4):642-648.
    Zhan X, Kustas W P. A coupled model of land surface CO2 and energy fluxes using remote sensing data. Agricultural and forest meteorology.2001,107:131-152.
    Ziska L H, Bunce J A, Goins E W. Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia.2004, 139:454-458.
    于贵瑞,张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展.中国科学(D辑:地球科学).2004,34(增刊Ⅱ):15-29.
    佘文琴,刘星辉.越冬期番石榴叶片脂质的过氧化状况.福建农业大学学报.2001,30(3):357-361.
    余高镜,柯庆明,黄立洪,等.论大面积种植草坪的利与弊.草业科学.2005,22(1):82-85.
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报.2000,20(5):733-740.
    刘常富,何兴元,陈玮,等.基于QuickBird和CITYgreen的沈阳城市森林效益评价.应用生态学报.2008,19(9):1865-1870.
    刘惠,赵平,林永标,等.华南丘陵区不同土地利用方式下土壤呼吸.生态学杂志.2007,26(12):2021-2027.
    刘文飞,樊后保,袁颖红,等.杉木人工林凋落物量动态对氮沉降增加的响应.中山大学学报:自然科学版.2011,50(4):106-113.
    刘波,余艳峰,张赞齐,等.亚热带常绿阔叶林不同林龄细根生物量及其养分.南京林业大学学报:自然科学版.2008,32(5):81-84.
    卢华正,沙丽清,王君,等.西双版纳热带季节雨林与橡胶林土壤呼吸的季节变化.应用生态学报.2009,20(10):2315-2322.
    史建伟,于水强,于立忠,等.微根管在细根研究中的应用.应用生态学报.2006,17(4):715-719.
    吴仲民,卢俊培,杜志鹄.海南岛尖峰岭热带山地雨林及其更新群落的凋落物量与贮量.植物生态学报.1994,18(4):306-313.
    周存宇,周国逸,王迎红,等.鼎湖山针阔叶混交林土壤呼吸的研究.北京林业大学学报.2005,27(4):23-27.
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522.
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展.地球科学进展.2005,20(1):99-105.
    周萍,刘国彬,薛萐.草地生态系统土壤呼吸及其影响因素研究进展.草业学报.2009,18(2):184-193.
    周萍,潘根兴,李恋卿,等.南方典型水稻土长期试验下有机碳积累机制Ⅴ.碳输入与土壤碳固定.中国农业科学.2009,42(12):4260-4268.
    唐旭利,周国逸,温达志,等.鼎湖山南亚热带季风常绿阔叶林碳贮量分布.生态学报.2003,23(1):90-97.
    国家统计局.中国统计年鉴.北京:中国统计出版社,2010.
    姜红英,谷加存,邱俊,等.2004-2008年落叶松人工林细根生产和死亡的季节动态.应用生态学报.2010,21(10):2465-2471.
    孙倩,方海兰,刘鸣达,等.上海典型植物群落冬季土壤呼吸特征及其影响因子.上海交通大学学报:农业科学版.2009,27(3):231-234.
    季青,贺伶俐,余明,等.基于Landsat ETM+数据的福州市土地利用/覆被与城市热岛的关系研究.福建师范大学学报:自然科学版.2009,6:106-113.
    常顺利,杨洪晓,葛剑平.净生态系统生产力研究进展与问题.北京师范大学学报(自然科学版).2005,41(5):517-521.
    常骏,王忠武,李怡,等.内蒙古三种草地植物群落地上净初级生产力与水热条件的关系.内蒙古大学学报(自然科学版).2010,41(6):689-694.
    张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展.2005,20(7):778-785.
    张伟锋,陈平,姬承东.广州地区几种草坪草低温胁迫效应研究.草业科学.2006,23(8):85-88.
    张璇,唐庆龙,张铭杰,等.深圳市绿地植被凋落物存留特征及其影响因素.北京大学学报:自然科学版.2011,47:(3):545-551.
    张茂震,王广兴,刘安兴.基于森林资源连续清查资料估算的浙江省森林生物量及生产力.林业科学.2009,45(9):13-17.
    张金池,孔雨光,王因花,等.苏北淤泥质海岸典型防护林地土壤呼吸组分分离.生态学报.2010,30(12):3144-3154.
    张银龙,王月菡,王亚超,等.南京市典型森林群落枯枝落叶层的生态功能研究.生态与农村环境学报.2006,22(1):11-14.
    彭立华,陈爽,刘云霞,等Citygreen模型在南京城市绿地固碳与削减径流效益评估中的应用.应用生态学报.2007,18(6):1293-1298.
    徐飞,刘为华,任文玲,等.上海城市森林群落结构对固碳能力的影响.生态学杂志.2010,29(3):439-447.
    方精云,柯金虎,唐志尧,等.生物生产力的“4p”概念、估算及其相互关系.植物生态学报,2001,25(4):414-419.
    方精云,郭兆迪,朴世龙,等.1981-2000年中国陆地植被碳汇的估算.中国科学(D辑).2007,37(6):804-812.
    方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明.植物生态学报.2002,26(2):243-249.
    方精云.北半球中高纬度的森林碳库可能远小于目前的估算.植物生态学报.2004,24(5):635-638.
    曾宏达,杜紫贤,杨玉盛,等.城市沿江土地覆被变化对土壤有机碳和轻组有机碳的影响.应用生态学报.2010,(21)3:701-706.
    曾文静,李凡,李金全,等.城市片林与城市草坪细根生物量特征.亚热带资源与环境学报.2011,6(3):40-47.
    李俊英,王孟本,史建伟.应用微根管法测定细根指标方法评述.生态学杂志.2007,26(11):1842-1848.
    李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学(D辑),2003,1(33):71-79.
    李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究.应用生态学报.1998,9(4):337-340.
    李惠敏,陆帆,唐仕敏,等.城市化过程中余杭市森林碳汇动态.复旦学报:自然科学版.2004,43(6):1044-1050.
    李意德,曾庆波,吴仲民.尖峰岭热带山地雨林生物量的初步研究.植物生态与地植物学报.1992,16(4):293-300.
    李熙波,曾文静,李金全,等.短期寒潮天气对福州市绿地土壤呼吸及组分的影响.2011b,31(19):5728-5738.
    李熙波,杨玉盛,曾宏达,等.亚热带沟叶结缕草草坪土壤呼吸.生态学报.2011a,31(8):2096-2015.
    李琪,王云龙,胡正华,等.基于涡度相关法的中国草地生态系统碳通量研究进展.草业科学.2010,12:38-44.
    李荣华,邓琦,周国逸,等.起始时间对亚热带森林凋落物分解速率的影响.植物生态学报.2011,35(7):699-706.
    李辉,赵卫智.居住区不同类型绿地释氧固碳及降温增湿作用.环境科学.1999,20(6):41-44.
    李金全,王晶,曾文静,等.城市不同绿地类型土壤有机碳的垂直分布特征及储量.安徽农业科学.2011,39(21):12787-12788.
    杨智杰.杉木、木荷人工林碳吸存与碳平衡研究.福建农林大学大学硕士学位论文,2007.
    杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展.北京师范大学学报:自然科学版.2005,41(2):172-177.
    杨清培,李鸣,王伯荪.南亚热带森林群落演替过程中林下土壤的呼吸特征.广西植物.2004,24(5):443-449.
    杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较.林业科学.2004,40(5):19-25.
    杨玉盛,陈光水,林鹏,等.格氏栲天然林与人工林细根生物量、季节动态及净生产力.生态学报.2003,23(9):1719-1730.
    杨玉盛,陈光水,王义祥,等.格氏栲人工林和杉木人工林碳吸存与碳平衡.林业科学,2007,43(3):113-117.
    梅莉,王政权,程云环,等.林木细根寿命及其影响因子研究进展.植物生态学报.2004,28(5):704-710.
    樊晓亮,闫平.森林固碳能力估测方法及其研究进展.防护林科技.2010,1:60-63.
    樊江文,钟华平,梁飚,等.草地生态系统碳储量及其影响因素.中国草地.2003,25(6):51-58.
    毛留喜,孙艳玲,延晓冬.陆地生态系统碳循环模型研究概述.应用生态学报.2006,17(11):2189-2195.
    汪伟.中亚热带常绿阔叶林土壤有机碳活性组分的季节动态研究.福建师范大学.硕士毕业论文.
    沈文清,马钦彦,刘允芬.森林生态系统碳收支状况研究进展.江西农业大学学报.2006,28(2):312-317.
    涂成龙,刘丛强,武永锋,等.应用’3c值探讨林地土壤有机碳的分异.北京林业大学学报.2008,30(5):l-5.
    温家石,葛滢,焦荔,等.城市土地利用是否会降低区域碳吸收能力?-台州市案例研究.植物生态学报.2010,34(6):651-660.
    温达志,魏平,孔国辉,等.鼎湖山南亚热带森林细根生产力与周转.植物生态学报.1999,23(4):361-369.
    潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展.2003,18(4):609-618.
    潘辉,黄石德,洪伟,等.3种相思人工林凋落物量及其碳归还动态.福建林学院学报.2010,30(2):104-108.
    潘辉.三种相思树人工林凋落物养分归还功能及碳平衡研究.福建农林大学大学博士学位论文,2008.
    王华,黄宇,汪思龙,等.中亚热带几种典型森林生态系统碳、氮储存功能研究.中国生态农业学报.2010,18(3):576-580.
    王娟,蔺银鼎.城市绿地生态效应.草原与草坪.2004,4:24-27.
    王庚辰.陆地生态系统温室气体排放(吸收)测量方法简评.气候与环境研究.1997,2(3):251-263.
    王成.城镇不同类型绿地生态功能的对比分析.东北林业大学学报.2002,30(3):111-114.
    王文杰,于景华,毛子军,等.森林生态系统CO2通量的研究方法及研究进展.生态学杂志.2003,(5):102-107.
    王晓明,李贞,蒋昕,等.城市公园绿地生态效应的定量评估.植物资源与环境学报.2005,14(4):42-45.
    王琼,范志平,王满贵,等.冻融交替对科尔沁沙地不同土地利用方式土壤呼吸的影响.生态学杂志.2010,29(7):1333-1339.
    王秀元,孙玉军.森林生态系统碳储量估测方法及其研究进展.世界林业研究.2008,21(5):24-29.
    王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨.地理科学进展.1999,18(3):238-244.
    程云环,韩有志,王庆成,等.落叶松人工林细根动态与土壤资源有效性关系研究.植物生态学报.2005,29:403-410.
    窦森,张晋京,曹亚澄.用δ13C方法研究玉米秸秆分解期间土壤有机质数量动态变化.土壤学报.2003,40(3):328-334.
    窦荣鹏,江洪,余树全,等.柳杉凋落物在中国亚热带和热带的分解.生态学报.2010,30(7):1758-1763.
    章明奎,周翠.杭州市城市土壤有机碳的积累和特性.土壤通报.2006,37(1):19-21.
    翁轰,李志安,屠梦照,等.鼎湖山森林凋落物量及营养元素含量研究.植物生态学与地植物学学报.1993,17(4):299-304.
    肖复明,范少辉,汪思龙,等.毛竹杉木人工林生态系统碳平衡估算.林业科学,2010,46(11):59-65.
    肖复明,范少辉,汪思龙,等.毛竹、杉木人工林生态系统碳平衡估算.林业科学.2010,46(11):59-65.
    肖复明,范少辉,汪思龙,等.毛竹杉木人工林生态系统碳平衡估算.林业科学,2010,46(11):59-65.
    范少辉,肖复明,汪思龙,等.毛竹林细根生物量及其周转.林业科学.2009,45(7):2-6.
    董洁,王康,董宽虎.不同践踏程度对观赏草坪的影响.草地学报.2008,30(2):93-97.
    薛立,杨鹏.森林生物量研究综述.福建林学院学报.2004,24(3):283-288.
    解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子.土壤学报.2004,41(5):687-699.
    贾丙瑞,周广胜,王风玉,等.土壤微生物与根系呼吸作用影响因子分析.应用生态学报.2005,16(8):1547-1552.
    赵亮,王芳,杨志华,等.物候分化对天然草地群落生产力的影响.草业科学.2011,28(6):1048-1051.
    赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述.西北林学院学报.2008,23(1):59-63.
    邹碧,李志安,丁永祯,等.南亚热带4种人工林凋落物动态特征.生态学报.2006,26(3):715-721.
    郑辛酉,贾铁飞,倪少春.基于区域城市化LUCC的人类生态过程定量研究-以上海市区典型城市化样带为例.生态学报.2007,27(1):260-269.
    郑金兴,杨智杰,凌华,等.楠木人工林凋落物的产量与月动态.福建师范大学学报:自然科学版.2011,27(1):88-92.
    郭剑芬,陈光水,钱伟,等.万木林自然保护区2种天然林及杉木人工林凋落量及养分归还.生态学报.2006,26(12):4091-4098.
    郭培培,江洪,余树全,等.亚热带6种针叶和阔叶树种凋落叶分解比较.应用与环境生物学报.2009,15(5):655-659.
    郭瑞红.滨海沙地木麻黄林生态系统的碳贮量和碳吸存.福建农林大学大学硕士学位论文,2007.
    金钊,杨玉盛,董云社,等.福建万木林自然保护区米槠和杉木细根分解动态.地理研究.2007,26(3):492-500.
    陈仕贵,黄璜,杨知建,等.应用草坪生态系统于城市生态建设的思考.草业科学.2007,24(6):76-80.
    陈光水,杨玉盛,刘乐中,等.森林地下碳分配(TBCA)研究进展.亚热带资源与环境学报.2007,2(1):34-42.
    陈光水,杨玉盛,王小国,等.格氏栲天然林与人工林根系呼吸季节动态及影响因素.生态学报.2005,25(8):1941-1947.
    陈步峰,吴敏,潘勇军,等.广州城市林带森林群落的生物化学吸储效应.东北林业大学学报. 2010,38(3):66-68.
    马泽清,刘琪璟,徐雯佳,等.江西千烟洲人工林生态系统的碳蓄积特征.林业科学.2007,43(11):1-7.
    鲁如坤.土壤农业化学分析方法.北京:农业科技出版社.2000.
    黄梅芳.福州市酸雨现状及控制对策.福建环境.1999,16(5):11-13.
    齐丽彬,樊军,邵明安,等.黄土高原水蚀风蚀交错带不同土地利用类型土壤呼吸季节变化及其环境驱动.生态学报.2008,28(11):5428-5436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700