用户名: 密码: 验证码:
短枝木麻黄小枝单宁形成的环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木麻黄是滨海沙地上重要的防护树种。本研究选择福建东山的短枝木麻黄作为研究对象,探讨了不同海岸梯度对其小枝发育和衰老过程中单宁含量、氮磷含量、N:P比和养分内吸收率的影响以及单宁含量的季节动态;并选择自然条件下对木麻黄生长影响较大的几个生态因子(养分、水分、pH值)进行控制实验,系统探讨不同生态因子及其交互效应对短枝木麻黄单宁形成的影响,以验证关于次生物质形成的不同假说,进一步揭示植物单宁的形成机制。研究结果表明:
     1.海岸带梯度对短枝木麻黄衰老小枝养分和单宁含量具有显著影响,基干林带短枝木麻黄衰老小枝养分含量显著高于后沿林带,而各种单宁含量和养分内吸收率则显著低于后沿林;海岸梯度对幼嫩、成熟小枝养分和单宁含量没有显著影响。
     2.首次利用成熟小枝的N:P比来指示短枝木麻黄林分的营养限制状况,各海岸带梯度上成熟小枝中的N:P比均高于28,表现为磷限制,相应地木麻黄小枝衰老过程中磷内吸收率显著高于相应海岸梯度上的氮内吸收率。同时,养分胁迫可能是导致木麻黄高单宁含量的重要原因之一。
     3.首次对短枝木麻黄小枝单宁和氮含量的季节动态进行了研究。不同季节幼嫩和成熟小枝总酚、可溶性缩合单宁和蛋白质结合能力显著高于衰老小枝;而衰老小枝蛋白质结合缩合单宁显著高于幼嫩和成熟小枝。幼嫩和成熟小枝在夏季总酚含量最高,而总缩合单宁含量最低。氮在幼嫩小枝中的含量最高,并随着小枝的成熟和衰老而降低,且最低值均出现在夏季,而氮内吸收率(51.01±3.94%~63.00±8.61%)在不同季节间的差异不显著。短枝木麻黄小枝中总酚与氮含量存在显著负相关,而总缩合单宁与氮含量存在显著的正相关。衰老小枝中较高的总缩合单宁与氮的比率(TCT:N)能够降低凋落物的分解率,从而延缓凋落物中养分的释放,是短枝木麻黄重要的养分保存机制之一。
     4.在养分效应的控制实验中,施加氮肥使短枝木麻黄幼苗小枝中总酚、可溶性缩合单宁含量显著降低,而促进了可溶性糖的形成,但对养分含量没有显著影响,从而导致总酚与氮的比率(TP:N)和可溶性缩合单宁与氮的比率(ECT:N)降低;施加磷肥对总酚和可溶性缩合单宁含量没有显著影响,但促进了淀粉、叶绿素、类胡萝卜素的合成和对养分的吸收。
     5.在养分和pH效应的控制实验中,短枝木麻黄幼苗小枝总酚和可溶性缩合单宁含量随着氮肥的施加而显著降低,氮含量和ECT:N与施加氮肥的水平也存在显著的负相关;施加磷肥对总酚和可溶性缩合单宁含量没有显著影响;随着pH值的升高,总酚含量显著升高,可溶性缩合单宁含量没有显著变化,而淀粉、叶绿素a、叶绿素a/b、类胡萝卜素和氮磷含量显著降低,因而TP:N和ECT:N水平均显著升高。
     6.在养分和水分效应的控制实验中,施加氮肥和磷肥对短枝木麻黄幼苗小枝总酚和可溶性缩合单宁含量均具有显著影响,且总酚和可溶性缩合单宁含量随着氮肥和磷肥水平的升高而降低;水分胁迫导致总酚和可溶性缩合单宁含量显著升高。
     在控制实验中,随着处理时间的延长,短枝木麻黄幼苗小枝总酚含量升高而可溶性缩合单宁含量降低;施加氮肥使小枝中的总酚和可溶性缩合单宁含量均降低,支持碳氮平衡假说和生长分化平衡假说;总酚和可溶性缩合单宁与营养物质的关系相反,表明不同类型的单宁存在不同的合成途径,但由于总酚和可溶性缩合单宁均与氮含量没有显著的相关性,故不支持蛋白质竞争模型;TP:N和ECT:N的水平在养分缺乏和干旱条件下较高,有利于提高短枝木麻黄的防御水平和降低凋落物的分解率,减少养分的损失,从而保持较高的生产力。
Casuarina equisetifolia is an important shelter tree in coastal sandy areas.Changesin the N and P concentrations,N:P ratios and tannin content in C.equisetifoliabranchlets during development and senescence across a coastal gradient,and seasonalchanges in tannin content were studied at Chishan Forestry Center of DongshanCounty,Fujian Province,China.In addition,the effects of fertility,pH and soilmoisture on tannin contents of C.equisetifolia seedlings were discussed in a sandculture system,so as to find proof about secondary metabolism production.
     The results showed as follows:
     1.Nutrients and tannin contents of C.equisetifolia branchlets varied significantly inresponse to changes in a coastal gradient.Nutrient contents of senescent branchlets atseaward sites were higher,while tannin contents and nutrient resorption efficiencywere lower than those at inland sites.The coastal gradients have no significant effectson nutrient and tannin contents of young and mature branchlets.
     2.N:P ratios of mature branchlets was firstly used to indicate the nutrient limitationin C.equisetifolia forests.Based on N:P ratios(above 28),C.equisetifolia forestswere P-limited.Accordingly,phosphorus resorption efficiency was higher thannitrogen resorption efficiency of corresponding coastal gradient.Nutrient deficiencymay be one of the important reasons for high tannin levels in C.equisetifolia.
     3.The seasonal variation of tannin and nitrogen contents of C.equisetifoliabranchlets at different developmental and senescent stages were studied firstly.Indifferent seasons,total phenolics(TP),extractable condensed tannins(ECT) contentand protein precipitation capacity(PPC) in young and mature branchlets were higherthan those in senescent branchlets,but protein-bound condensed tannins(PBCT) weresignificantly higher in senescent branchlets than in young and mature branchlets.Thehighest of TP in young and mature branchlets occurred in summer,when TCT contentwas lowest.Nitrogen content in young branchlets was highest,and decreased withmaturity and senescence.The lowest of nitrogen content also was in summer,but thenitrogen resorption efficiency(51.01±3.94% to 63.00±8.61%) didn't change withseason.In this study,TP contents were inversely related to N contents.However,therewas a positive correlation between TCT and N contents.The high TCT:N ratios in senescent branchlets was one of the important nutrient conservation strategies for C.equisetifolia.
     4.In fertilized soil treatment plots,TP and ECT contents of branchtets of C.equisetifolia seedlings decreased,soluble sugars increased,while nutrient contentschanged little with nitrogen fertilizer addition.TP:N and ECT:N ratios decreased.TPand ECT contents remained stable,while starch,chlorophyll,carotenoid and nutrientcontents increased with phosphorus fertilizer addition.
     5.In pH and fertilized soil treatment plots,TP and ECT contents significantlydecreased with nitrogen fertilizer addition.Nitrogen contents and ECT:N ratios werealso inversely related to levels of nitrogen fertilizer.Phosphorus fertilizer applicationhas no significant effects on TP and ECT contents.TP contents increased,and ECTcontents remained unchange with the increasing of pH.But starch,chlorophyll a,chlorophyll a/b ratios,carotenoid and nutrient contents decreased significantly,Accordingly,TP:N and ECT:N ratios significantly increased.
     6.In moisture and fertilized soil treatment plots,nitrogen and phosphorus fertilizerhave significant effects on TP and ECT contents of branchlets of C.equisetifoliaseedlings.TP and ECT contents decreased with nitrogen and phosphorus fertilizeraddition.TP and ECT contents increased under drought-stressed conditions.
     In controlled experiments,TP contents increased,and ECT contents decreased withprolonged treatment time.Both TP and ECT contents decreased with nitrogenfertilizer addition.This pattern lends to support source-sink hypotheses such as thecarbon-nutrient balance(CNB) hypothesis and the growth-differentiation(GDB)hypothesis.The discrepancy of relationship between nutrition with TP or ECT showedthat the biosynthetic route of different tannins were different.In this study,nosignificant correlation between TP and N,or ECT and N did not support proteincompetition model(PCM).TP:N and ECT:N ratios were higher under nutrientdeficiency and arid conditions,which was one of the important nutrient conservationstrategies for C.equisetifolia.
引文
[1] Hernes, P. J., Hedges, J. I. Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts [J]. Analytical Chemistry, 2000, 72(20): 5115-5124.
    [2] Booker, F. L., Maier, C. A. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles [J].Tree Physiology, 2001,21 (9): 609-616.
    [3] Mansfield, J. L., Curtis, P. S., Zak, D. R., Pregitzer, K. S. Genotypic variation for condensed tannin production in trembling aspen (Populs tremuloides, Salicaceae) under elevated CO_2 and in high- and low-fertility soil [J]. American Journal of Botany, 1999,86(8): 1154-1159.
    [4] Osier, T. L., Lindroth, R. L. Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance [J]. Journal of Chemical Ecology, 2001,27(7): 1289-1313.
    [5] Ossipov, V., Haukioja, E., Ossipova, S., Hanhimaki, S., Pihlaja, K. Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect [J]. Biochemical Systematics and Ecology, 2001,29(3): 223-240.
    [6] Stewart, J. L., Mould, F., Mueller-Harvey, I. The effect of drying treatment on the fodder quality and tannin content of two provenances of Calliandra calothyrsus Meissner [J].Journal of the Science of Food and Agriculture, 2000, 80(10): 1461-1468.
    [7] Yu, Z., Dahlgren, R. A. Evaluation of methods for measuring polyphenols in conifer foliage [J]. Journal of Chemical Ecology, 2000, 26(9): 2119-2140.
    [8] Kuiters, A. T. Role of phenolic substances from decomposing forest litter in plant-soil interactions [J]. Acta botanica neerlandica, 1990, 39(4): 329-348.
    [9] Matthews, S., Mila, I., Scalbert, A., Donnelly, D. M. X. Extractable and non-extractable proanthocyanidins in barks [J]. Phytochemistry, 1997,45(2): 405-410.
    [10] Lin, Y. M., Liu, J. W., Xiang, P., Lin, P, Ye, G F., Sternberg, L. D. S. L. Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China [J]. Biogeochemistry, 2006, 78(3): 343-359.
    [11] Lin, Y. M., Liu, J. W., Xiang, P., Lin, P., Ding, Z. H., Sternberg, L. D. S. L. Tannins and nitrogen dynamics in mangrove leaves at different age and decay stages (Jiulong River Estuary, China) [J]. Hydrobiologia, 2007, 583: 285-295.
    [12] Benner, R., Hatcher, P. G, Hedges, J. I. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses [J]. Geochimica et Cosmochimica Acta, 1990, 54(7): 2003-2013.
    [13] Booker, F. L., Shafer, S. R., Wei, C. M., Horton, S. J. Carbon dioxide enrichment and nitrogen fertilization effects on cotton (Gossypium hirsutum L.) plant residue chemistry and decomposition [J]. Plant and Soil, 2000, 220(1-2): 89-98.
    [14] Entry, J. A., Runion, G B., Prior, S. A., Mitchell, R. J., Rogers, H. H. Influence of CO_2 enrichment and nitrogen fertilization on tissue chemistry and carbon allocation in longleaf pine seedlings [J]. Plant and Soil, 1998, 200(1): 3-11.
    [15] Gallet, C, Lebreton, P. Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem [J]. Soil Biology & Biochemistry, 1995, 27(2):157-165.
    [16] Gebauer, R. L. E., Strain, B. R., Reynolds, J. P. The effect of elevated CO_2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine (Pinus taeda) [J]. Oecologia, 1998, 113(1): 29-36.
    [17] Moore, J. A., Mika, P. G, Shaw, T. M. Root chemistry of mature Douglas-fir differs by habitat type in the interior northwestern United States [J]. Forest Science, 2000, 46(4):531-536.
    [18] Muller, R. N., Kalisz, R. J., Luken, J. O. Fine root production of astringent phenolics [J].Oecologia, 1989, 79(4): 563-565.
    [19] Stevens, G. N., Jones, R. H., Mitchell, R. J. Rapid fine root disappearance in a pine woodland: a substantial carbon flux [J]. Canadian Journal of Forest Research, 2002,32(12): 2225-2230.
    [20] Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., OHara, J., Asbjornsen, H. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species [J]. Plant and Soil, 1996, 187(2): 159-219.
    [21] Kraus, T. E. C, Dahlgren, R. A., Zasoski, R. J. Tannins in nutrient dynamics of forest ecosystems - a review [J]. Plant and Sbil, 2003,256(1): 41-66.
    [22] Grundh(?)fer, P., Niemetz, R., Schilling, G, Gross, G. G Biosynthesis and subcellular distribution of hydrolyzable tannins [J]. Phytochemistry, 2001, 57(6): 915-927.
    [23] Racon, L., Sadaka, N., Gil, G, Le Petit, J., Matheron, R., Poinsot-Balaguer, N., Sigoillot,J. C, Woltz, P. Histological and chemical changes in tannic compounds of evergreen oak leaf litter [J]. Canadian Journal of Botany 1988, 66(4): 663-667.
    [24] Chalker-Scott, L., Krahmer, R. L. Microscopic studies of tannin formation and distribution in plant tissues [M]. New York: Plenum Press, 1989.
    [25] Feucht, W., Treutter, D. The role of flavan-3-ols and proanthocyanidins in plant defense [M]. Boca Raton: CRC Press, 1999.
    [26] Enstone, D. E., Peterson, C. A., Hallgren, S. W. Anatomy of seedling tap roots of loblolly pine (Pinus taeda L.) [J]. Trees, 2001, 15(2): 98-111.
    [27] Peterson, C. A., Enstone, D. E., Taylor, J. H. Pine root structure and its potential significance for root function [J]. Plant and Soil, 1999, 217(1-2): 205-213.
    [28] Handayanto, E., Giller, K. E., Cadisch, G Regulating N release from legume tree prunings by mixing residues of different quality. [J]. Soil Biology & Biochemistry, 1997,29(9-10): 1417-1426.
    [29] Preston, C. M., Trofymow, J. A., Sayer, B. G, Niu, J. ~(13)C Nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies [J].Canadian Journal of Botany, 1997, 75(9): 1601-1613.
    [30] Bending, G D., Read, D. J. Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi [J]. Soil Biology & Biochemistry, 1996, 28(12):1595-1602.
    [31] Bhat, T. K., Singh, B., Sharma, O. P. Microbial degradation of tannins - A current perspective [J]. Biodegradation, 1998, 9(5): 343-357.
    [32] Kraus, T. E. C. Tannins and nutrient dynamics in forest soils: plant-litter-soil interactions [D]. PhD thesis: University of California, Davis, CA, 2002.
    [33] Fierer, N., Schimel, J. P., Cates, R. G, Zou, J. P. Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils [J]. Soil Biology & Biochemistry, 2001,33(12-13): 1827-1839.
    [34] Benoit, R. E., Starkey, R. L. Inhibition of decomposition of cellulose and some other carbohydrates by tannin [J]. Soil Science, 1968,105: 291-296.
    [35] Benoit, R. E., Starkey, R. L., Basaraba, J. Effect of purified plant tannin on decomposition of some organic compounds and plant materials [J]. Soil Science, 1968, 105: 153-158.
    [36] Howard, P. J. A., Howard, D. M. Ammonification of complexes prepared from gelatin and aqueous extracts of leaves and freshly-fallen litter of trees on different soil types [J]. Soil Biology and Biochemistry, 1993, 25(9): 1249-1256.
    [37] Butler, L. G. Effects of condensed tannin on animal nutrition [M]. New York: Plenum Press, 1989.
    [38] Muir, A. D., Gruber, M. Y., Hinks, C. F., Lees, G L., Onyilagha, J., Soroka, J., Erlandson,M. Effect of condensed tannin in the diets of major crop insects [M]. New York: Kluwer Academic/Plenum Publishers, 1999.
    [39] Osborne, N. J. T., McNeill, D. M. Characterisation of Leucaena condensed tannins by size and protein precipitation capacity [J]. Journal of the Science of Food and Agriculture,2001,81(11):1113-1119.
    [40] Bate-Smith, E. C. Astringent tannins of Acer species [J]. Phytochemistry, 1977, 16(9):1421-1426.
    [41] Dawra, R. K., Makkar, H. P. S., Singh, B. Protein-binding capacity of microquantities of tannins [J]. Analytical Biochemistry, 1988, 170(1): 50-53.
    [42] Roux, D. G, Ferreira, D., Botha, J. J. Structural considerations in predicting the utilization of tannins [J]. Journal of Agricultural and Food Chemistry, 1980, 28(2): 216-222.
    [43] Goldstein, J. L., Swain, T. The inhibition of enzymes by tannins [J]. Phytochemistry, 1965,4: 185-192.
    [44] Kraus, T. E. C, Yu, Z., Preston, C. M., Dahlgren, R. A., Zasoski, R. J. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins [J].Journal of Chemical Ecology, 2003,29(3): 703-730.
    [45] Porter, L. J., Woodruffe, J. Haemanalysis: the relative astringency of proanthocyanidin polymers [J]. Phytochemistry, 1984,23(6): 1255-1256.
    [46] Hagerman, A. E., Butler, L. G The specificiry of proathocyanidin-protein interactions [J]. Journal of Biological Chemistry, 1981, 256: 4494-4497.
    [47] Davies, R. I., Coulson, C. B., Lewis, D. A. Polyphenols in plant humus and soil. ? Stabilization of gelatin by polyphenol tanning [J]. Journal of Soil Science, 1964, 15:299-309.
    [48] Martin, J. S., Martin, M. M. Tannin assays in ecological studies: precipitation of ribulose-1, 5-bisphosphate carboxylase/oxygenase by tannic acid, quebracho, and oak foliage extracts [J]. Journal of Chemical Ecology, 1983, 9(2): 285-294.
    [49] Lorenz, K., Preston, C. M., Raspe, S., Morrison, I. K., Feger, K. H. Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and ~(13)C CPMAS NMR [J]. Soil Biology and Biochemistry, 2000, 32(6):779-792.
    [50] Handley, W. R. C. Mull and mor formation in relation to forest soils [J]. Forestry Commission Bulletin No. 23, HMSO London, 1954.
    [51] Ya, C, Gaffney, S. H., Lilley, T. H., Haslam, E. Carbohydrate-polyphenol compiexation [M]. New York: Plenum Press, 1989.
    [52] Lewis, J. A., Starkey, R. L. Vegetable tannins, their decomposition and effects on decomposition of some organic compounds [J]. Soil Science, 1968, 106: 241-247.
    [53] Baldwin, I. T., Olson, R. K., Reiners, W. A. Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils [J]. Soil Biology & Biochemistry, 1983, 15(4):419-423.
    [54] Field, J. A., Lettinga, G Toxicity of tannic compounds to microorganisms [M]. New York:Plenum Press, 1992.
    [55] Scalbert, A. Antimicrobial properties of tannins [J]. Phytochemistry, 1991, 30(12):3875-3883.
    [56] Blum, U., Shafer, S. R. Microbial populations and phenolic acids in soil [J]. Soil Biology & Biochemistry, 1988,20(6): 793-800.
    [57] Schultz, J. C, Hunter, M. D., Appel, H. M. Antimicrobial activity of polyphenols mediates plant-herbivore interactions [J]. Plant Polyphenols; synthesis, properties,significance, 1992,621-637.
    [58] Makkar, H. P. S., Singh, B., Dawra, R. K. Effect of tannin-rich leaves of oak (Quercus incana) on various microbial enzyme activities of the bovine rumen [J]. British Journal of Nutrition, 1988,60(2): 287-296.
    [59] Zucker, W. V. Tannins: does structure determine function? An ecological perspective [J].The American Naturalist, 1983, 121(3): 335-365.
    [60] Nichols-Orians, C. Differential effects of condensed and hydrolyzable tannin on polyphenol oxidase activity of attine symbiotic fungus [J]. Journal of Chemical Ecology,1991,17(9): 1811-1819.
    [61] Blum, U., Rice, E. L. Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid,and possible roles in old-field succession [J]. Bulletin of the Torrey Botanical Club, 1969,96(5): 531-544.
    [62] Lodhi, M. A. K., Killingbeck, K. T. Allelopathic inhibition of nitrification and nitrifying bacteria in a ponderosa pine (Pinus ponderosa Dougl.) community [J]. American Journal of Botany, 1980,67(10): 1423-1429.
    [63] Olson, R. K., Reiners, W. A. Nitrification in subalpine balsam fir soils: Tests for inhibitory factors [J]. Soil Biology and Biochemistry, 1983, 15(4): 413-418.
    [64] Rice, E. L., Pancholy, S. K. Inhibition of nitrification by climax ecosystems. ?. Additional evidence and possible role of tannins [J]. American Journal of Botany, 1973, 60(7):691-702.
    [65] Clein, J. S., Schimel, J. P. Nitrogen turnover and availability during succession from alder to poplar in Alaskan taiga forests [J]. Soil Biology and Biochemistry, 1995, 27(6):743-752.
    [66] DeLuca, T. H., Nilsson, M.-C, Zackrisson, O. Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden [J]. Oecologia, 2002,133(2): 206-214.
    [67] McCarty, G W., Bremner, J. M. Effects of phenolic compounds on nitrification in soil [J].Soil Science Society of America Journal, 1986, 50(4): 920-923.
    [68] Schimel, J. P., Van Cleve, K., Cates, R. G, Clausen, T. P., Reichardt, P. B. Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain: soil implications for changes in N cycling during succession [J]. Canadian Journal of Botany, 1996,74(1): 84-90.
    [69]Schimel,J.P.,Cates,R.G.,Ruess,R.The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga [J].Biogeochemistry,1998,42(1-2):221-234.
    [70]李继泉,金幼菊.环境因子对植物他感化合物的影响[J].河北林果研究,1999,14(3):285-292.
    [71]Hall,A.B.,Blum,U.,Fites,R.C.Stress modification of allelopathy ofHelianthus annuus L.debris on seed germination [J].American Journal of Botany,1982,69:776-783.
    [72]Koeppe,E.D.E.,Southwick,L.M.,Bittell,J.E.The relationship of tissue chlorogenic acid concentrations and leaching of phenolics from sunflowers grown under varying phosphates nutrient conditions [J].Canadian Journal of Botany,1976,54:593-599.
    [73]宋君.植物间的他感作用[J].生态学杂志,1 990,9(6):43-47.
    [74]Gershenzon,J.Changes in the levels of plant secondary metabolites under water and nutrient stress [J].Recent Advances in Phytochemistry,1984,18:273-320.
    [75]Lorio,P.L.Growth-differentiation balance:A basis for understanding southern pine beetle-tree interactions [J].Forest Ecology and Management,1986,14:259-273.
    [76]Ross,D.W.,Berisford,C.W.Nantucket pine tip moth (Lepidoptera:Tortricidae) response to water and nutrient status ofloblolly pine [J].Forest Science,1990,36(3):719-733.
    [77]Craig,T.P.,Wagner,M.R.,McCullough,D.(.,Frantz,D.P.Effects of experimentally altered plant moisture stress on the performance of Neodiprion sawflies [J].Forest Ecology and Management,1991,39:247-261.
    [78]Mopper,S.,Whitham,T.G.The plant stress paradox:Effects on pinyon sawfly sex ratios and fecundity [J].Ecology,1992,73(2):515-525.
    [79]Tang,C.S.,Cai,W.F.,Kohl,K.,Nishimoto,R.K.Plant stress and allelopathy [M].Washington:American Chemical Society,1995.
    [80]Wagner,M.R.Influence of moisture stress and induced resistance in ponderosa pine,Pinus ponderosa Dougl.Ex.Laws,on the pine sawfly,Neodiprion autumnalis Smith [J].Forest Ecology and Management 1986,1543-53.
    [81]Cobb,N.S.,Mopper,S.,Gehring,C.A.,Caouette,M.,Christensen,K.M.,Whitham,T.G.Increased moth herbivory associated with environmental stress of pinyon pine at local and regional levels [J].Oecologia,1997,109(3):389-397.
    [82] Roth, S., McDonald, E. P., Lindroth, R. L. Atmospheric CO_2 and soil water availability:consequences for tree-insect interactions [J]. Canadian Journal of Forest Research, 1997,27(8): 1281-1290.
    [83] Hunter, M. D. Effects of elevated atmospheric carbon dioxide on insect-plant interactions [J]. Agricultural and Forest Entomology, 2001,3(3): 153-159.
    [84] Bezemer, T. M., Jones, T. H. Plant-insect herbivore interactions in elevated atmospheric CO_2: quantitative analyses and guild effects [J]. Oikos, 1998, 82(2): 212-222.
    [85] Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., Ceulemans, R. Tree responses to rising CO_2 in field experiments: implications for the future forest [J]. Plant Cell and Environment, 1999,22(6): 683-714.
    [86] Penuelas, J., Estiarte, M. Can elevated CO2 affect secondary metabolism and ecosystem function? [J]. Trends in Ecology & Evolution, 1998, 13(1): 20-24.
    [87] Veteli, T. O., Kuokkanen, K., Julkunen-Tiitto, R., Roininen, H., Tahvanainen, J. Effects of elevated CO_2 and temperature on plant growth and herbivore defensive chemistry [J].Global Change Biology, 2002, 8(12): 1240-1252.
    [88] Kinney, K. K., Lindroth, R. L., Jung, S. M., Nordheim, E. V. Effects of CO_2 and NO_3 availability on deciduous trees: Phytochemistry and insect performance [J]. Ecology, 1997,78(1): 215-230.
    [89] Julkunen-Tiitto, R., Tahvanainen, J., Silvola, J. Increased CO_2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals in Salix myrsinifolia (Salisb.) [J]. Oecoiogia, 1993, 95(4): 495-498.
    [90] Kainulainen, P., Holopainen, J. K., Holopainen, T. The influence of elevated CO_2 and O_3 concentrations on Scots pine needles: changes in starch and secondary metabolites over three exposure years [J]. Oecoiogia, 1998, 114(4): 455-460.
    [91] Hillis, W. E., Swain, T. The phenolic constituents of Prunus domestica. ?. The analysis of tissues of the Victoria plum tree [J]. Journal of the Science of Food and Agriculture, 1959,10: 135-144.
    [92] Mole, S., Ross, J. A. M., Waterman, P. G Light-induced variation in phenolic levels in foliage of rain-forest plants. I. Chemical changes [J]. Journal of chemical ecology, 1988,14(1): 1-21.
    [93]Rosenthal,G.A.Secondary plant metabolites-round table discussion [J].In 5th International Symposium on Insect Plant Relationships,1982,331-334.
    [94]Grace,S.C.,Logan,B.A.,Adams,W.W.Seasonal differences in foliar content of chlorogenic acid,a phenylpropanoid antioxidant,in Mahonia repens [J].Plant Cell and Environment,1998,21 (5):513-521.
    [95]Close,D.C.,Davies,N.W.,Beadle,C.L.Temporal variation of tannins (galloylglucoses),flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings:implications for light attenuation and antioxidant activities [J].Australian Journal of Plant Physiology,2001,28(4):269-278.
    [96]Close,D.C.,McArthur,C.Rethinking the role of many plant phenolics-protection from photodamage not herbivores? [J].Oikos,2002,99(1):166-172.
    [97]阎秀峰,王洋,李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007,27(6):2554-2562.
    [98]姚银安,祖艳群,李元.紫外线B辐射与植物体内酚类次生代谢的关系[J].植物生理学通讯,2003,39(2):179-184.
    [99]薛慧君,岳明.UV-B辐射增强对陆地植物次生代谢的影响[J].西北植物学报,2004,24(6):1131-1137.
    [100]Pietrini,F.,Iannelli,M.A.,Massacci,A.Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature,without further limitation to photosynthesis [J].Plant,Cell and Environment,2002,25(10):1251-1259.
    [101]Janas,K.M.,Cvikrova,M.,Palagiewicz,A.,Szafranska,K.,Posmyk,M.M.Constitutive elevated accumulation ofphenylpropanoids in soybean roots at low temperature [J].Plant Science,2002,163(2):369-373.
    [102]李雪莹,武永刚,王文杰,祖元刚.不同生长季节和地域对兴安落叶松单宁质量分数的影响[J].东北林业大学学报,2007,35(3):18-20.
    [103]Dury,S.J.,Good,J.E.G.,Perrins,C.M.,Buse,A.,Kaye,T.The effects of increasing CO_2 and temperature on oak leaf palatability and the implications for herbivorous insects [J].Global Change Biology,1998,4(1):55-61.
    [104]Loponen,J.,Ossipov,V.,Koricheva,J.,Haukioja,E.,Pihlaja,K.Low molecular mass phenolics in foliage of Betula pubescens Ehrh in relation to aerial pollution [J].Chemosphere,1997,34(4):687-697.
    [105]Lavola,A.Soluble carbohydrates and secondary phytochemicals in betula as affected by SO(o|¨)2-pollution [J].Water Air and Soil Pollution,1998,107(1-4):25-34.
    [106]Menser,H.,Chaplin,J.Air pollution:Effects on the phenol and alkaloid content of cured tobacco leaves [J].Tobacco Science,1969,13:169-170.
    [107]Roland,J.,Myers,J.H.Improved insect performance from host-plant defoliation:winter moth on oak and apple [J].Ecological Entomology,1987,12(4):409-414.
    [108]管致和.植物医学导论[M].北京:中国农业大学出版社,1996.
    [109]李镇宇,陈华盛,袁小环,许志春,王燕.油松对赤松毛虫的诱导化学防御[J].林业科学,1998,34(2):43-50.
    [110]王琛柱,钦俊德.植物蛋白酶抑制素抗虫作用的研究进展[J].昆虫学报,1997,40(2):212-218.
    [111]Bryant,J.P.,Julkunen-Tiitto,R.Ontogenic development of chemical defense by seedling resin birch:Energy cost of defense production [J].Journal of Chemical Ecology,1995,21(7):883-896.
    [112]Bazzaz,F.A.,Chiariello,N.R.,Coley,P.D.,Pitelka,L.F.Allocating resources to reproduction and defense [J].Plant Physiological Ecology,1987,37(1):58-67.
    [113]Chapin,F.S.I.,Bloom,A.J.,Field,C.B.,Waring,R.H.Plant responses to multiple environmental factors [J].Bioscience,1987,37(1):49-57.
    [114]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004.
    [115]Coley,P.D.,Bryant,J.P.,Chapin,F.S.I.Resource availability and plant antiherbivore defense [J].Science,1985,230(4728):895-899.
    [116]李永科.沉水植物与牧食性螺类的关系研究[D].武汉:武汉大学博士学位论文,2004.
    [117]Bryant,J.P.,Chapin,F.S.I.,Klein,D.R.Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory [J].Oikos,1983,40:357-368.
    [118]Herms,D.A.,Mattson,W.J.The dilemma of plants:to grow or defend [J].Quarterly Review of Biology,1992,67(3):283-335.
    [119]Cronin,G.,Lodge,D.M.Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes [J]. Oecologia, 2003, 137(1): 32-41.
    [120] Lerdau, M., Litvak, M., Monson, R. Plant chemical defense: Monoterpenes and the growth-differentiation balance hypothesis [J]. Trends in Ecology & Evolution, 1994, 9(2):58-61.
    [121] Stout, M. J., Brovont, R. A., Duffey, S. S. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum [J].Journal of Chemical Ecology, 1998,24(6): 945-963.
    [122] Koricheva, J., Larsson, S., Haukioja, E., Keinanen, M. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis [J]. Oikos, 1998, 83(2): 212-226.
    [123] Haukioja, E., Ossipov, V., Koricheva, J., Honkanen, T., Larsson, S., Lempa, K.Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization? [J]. Chemoecology, 1998, 8: 133-139.
    [124] Ossipov, V., Loponen, J., Ossipova, S., Haukioja, E., Pihlaja, K. Gallotannins of Birch Betula pubescens leaves: HLPC separation and quantification [J]. Biochemical Systematics and Ecology, 1997,25(6): 493-504.
    [125] Jones, C. G, Hartley, S. E. A protein competition model of phenolic allocation [J]. Oikos,1999, 86(1): 27-44.
    [126] Muzika, R. M., Pregitzer, K. S. Effect of nitrogen fertilization on leaf phenolic production of grand fir seedlings [J]. Trees, 1992, 6(4): 241-244.
    [127] Gershenzon, J. Metabolic costs of terpenoid accumulation in higher plants [J]. Journal of Chemical Ecology, 1994, 20(6): 1281-1328.
    [128] Margna, U. Control of the level of substrate supply-an alternative in the regulation of phenylpropanoid accumulation in plant cells [J]. Phytochemistry, 1977, 16(4): 419-426.
    [129] Keski-Saari, S., Julkunen-Tiitto, R. Resource allocation in different parts of juvenile mountain birch plants: effect of nitrogen supply on seedling phenolics and growth [J].Physiologia Plantarum, 2003, 118(1): 114-126.
    [130] Kraus, T. E. C, Zasoski, R. J., Dahlgren, R. A. Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots [J]. Plant and Soil, 2004, 262(1-2): 95-109.
    [131] Hyv(?)rinen, M., Walter, B., Koopmann, R. Impact of fertilisation on phenol content and growth rate of Cladina stellaris: a test of the carbon-nutrient balance hypothesis [J].Oecologia, 2003, 134(2): 176-181.
    [132] Demmig-Adams, B., Adams ?, W. W., Barker, D. H., Logan, B. A., Bowling, D. R.,Verhoeven, A. S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [J]. Physiologia Plantarum, 1996,98(2): 253-264.
    [133] Knox, J. P., Dodge, A. D. Singlet oxygen and plants [J]. Phytochemistry, 1985, 24(5):889-896.
    [134] Kaiser, W. M. Reversible inhibition of the calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide [J]. Planta, 1979,145(4): 377-382.
    [135] Wise, R. R., Naylor, A. W. Chilling enhanced photooxidation: evidence for the role of singlet oxygen and endogenous antioxidants [J]. Plant Physiology, 1987, 83: 278-282.
    [136] Terashima, I., Evans, J. R. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach [J]. Plant and Cell Physiology, 1988, 29(1):143-155.
    [137] Sugiharto, B., Miyata, K., Nakamoto, H., Sasakawa, H., Sugiyama, T. Regulation of expression of carbon-assimilating enzymes by nitrogen in maize leaf [J]. Plant Physiology,1990,92(4): 963-969.
    [138] Seemann, J. R., Sharkey, T. D., Wang, J. L., Osmond, B. C. Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants [J]. Plant Physiology, 1987, 84: 796-802.
    [139] Dicke, M. Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant-carnivore mutualism [J]. Journal of plant physiology, 1994, 143(4-5):465-472.
    [140] Hunter, M. D., Schultz, J. C. Fertilization mitigates chemical induction and herbivore responses within damaged oak trees [J]. Ecology, 1995, 76(4): 1226-1232.
    [141] 娄永根,程家安.植物的诱导抗虫性 [J].昆虫学报,1997,40(3): 320-331.
    [142]Asborn,H.T.,Turlings,T.C.J.,Jones,T.H.,Stenhagen,G.,Loughrin,J.H.An elicitor of plant volatiles from beet armyworm oral secretion [J].Science,1997,276(5314):945-949.
    [143]De Moraes,C.M.,Lewis,W.J.,Pare,P.W.,Alborn,H.T.,Tumlinson,J.H.Herbivore-infested plants selectively attract parasitoids [J].Nature,1998,393(6685):570-573.
    [144]张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报,1998,41:204-212.
    [145]Dicke,M.,Baarlen,P.V.,Wessels,R.,Dijkman,H.Herbivory induces systemic production of plant volatiles that attract predators of the herbivore:Extraction of endogenous elicitor [J].Journal of Chemical Ecology,1993,19(3 ):581-599.
    [146]Bryant,J.P.,Reichardt,P.B.,Clausen,T.P.,Werner,R.A.Effects of mineral nutrition on delayed inducible resistance in Alaska paper birch [J].Ecology,1993,74(7):2072-2084.
    [147]杨政川,张添荣,陈财辉.木贼叶木麻黄在台湾之种源试验Ⅰ.种子重与苗木生长[J].林业试验研究报告季刊,1995,10(2):2-7.
    [148]徐燕千,劳家骐.木麻黄栽培[M].北京:中国林业出版社,1984.
    [149]仲崇禄,白嘉雨,张勇.我国木麻黄种质资源引种与保存[J].林业科学研究,2005,18(3):345-350.
    [150]张水松,林武星,叶功富,徐俊森,谭芳林.海岸带风口沙地提高木麻黄造林效果的研究[J].林业科学,2000,36(6):39-46.
    [151]池方河,陈青英.玉环木麻黄沿海防护林体系设计及防护效益分析[J].华东森林经理,2005,19(4):29-31.
    [152]陈胜,李永林,韩金发,徐俊森,叶功富,林武星,谭芳林,黄荣钦.木麻黄小枝沙培育苗技术研究[J].防护林科技,2000,专刊1:76-78.
    [153]叶功富,谭芳林,徐俊森,张水松,林武星,郑天汉,曾国强,林捷,隆学武.木麻黄基干林带的防风效应及其与林带结构关系的研究[J].防护林科技,2000,专刊1:103-107.
    [154]徐俊森,施纯淦,姚庆端,叶功富,林武星,谭芳林,傅忠华,李永林,陈胜,黄荣钦.木麻黄基干林带多树种混交造林技术及防风效能研究[J].防护林科技,2000,专刊1:111-115.
    [155]何学友.福建省沿海木麻黄衰枯原因的研究[J].福建林业科技,1998,25(3):40-45.
    [156]张水松,叶功富,徐俊森,林武星,林光,谭芳林,傅忠华,李永林,陈胜,黄荣钦,高美玲,曾国强.海岸带木麻黄防护林更新方式、树种选择和造林配套技术研究[J].防护林科技,2000,专刊1:51-63,
    [157]叶功富,王维辉,施纯淦,张水松,林武星,徐俊森,谭芳林,隆学武.木麻黄低效林改造方式、树种选择和改造效果研究[J].防护林科技,2000,专刊1:64-68.
    [158]杨涛,严重玲,李裕红,梁洁,汤惠华.盐胁迫下木麻黄幼苗Na~+、Cl~-的累积及其抗盐能力评价[J].福建农业学报,2003,18(3):155-159.
    [159]梁洁.木麻黄生理生态特征对NaCl胁迫的响应[D].厦门:厦门大学,2003.
    [160]苏祖荣.木麻黄抗盐能力及降盐技术试验研究[J].防护林科技,1999,38(1):15-17.
    [161]Morris,J.D.,Collopy,J.J.Water use and salt accumulation by Eucalyptus camaldulensis and Casuarina cunninghamiana on a site with shallow saline groundwater [J].Agricultural Water Management,1999,39(2-3):205-227.
    [162]陈小勇,林鹏.我国木麻黄林的衰退现象及其成因[J].福建环境,1997,14(5):37-39.
    [163]张水松,叶功富,徐俊森,林武星,林光,谭芳林,傅忠华,施纯淦,王维辉,苏全兴,姚庆端,李永林,陈胜,黄荣钦,曾国强,高美玲.海岸带多树种结构基干林带的构建及其调控技术研究[J].防护林科技,2000,专刊1:90-10 2.
    [164]叶功富,张水松,徐俊森,林武星,姚庆端,黄芙蓉,徐耀昌,谭芳林.木麻黄主要类型防护林的防护成熟期和更新期研究[J].防护林科技,2000,专刊1:19-23,78.
    [165]林武星.木麻黄((Casuarina equisetifolia)自身他感作用响应规律的研究[D].福州:福建农林大学博士学位论文,2005.
    [166]祖元刚.能量生态学引论[M].长春:吉林科学技术出版社,1990.
    [167]张振珏,林锦仪,陈忠仁,张永田.三种重要单宁植物营养器官中单宁的分布[J].热带亚热带植物学报,1997,5(2):89-92.
    [168]郭启荣,林益明,周涵滔,林鹏.4种木麻黄亲缘关系的RAPD分析[J].厦门大学学报(自然科学版),2003,42(3):378-383.
    [169]Sasidharan,K.R.,Balu,A.,Deeparaj,B.,Nicodemus,A.Screening Casuarina equisetifolia provenances against the bark caterpillar,lndarbela quadrinotata and possible biochemical factors determining resistance [J].Journal of Tropical Forest Science,2005,17(4):625-630.
    [170]黄舒静.木麻黄单宁对盐胁迫的响应和化感作用的研究[D].厦门:厦门大学硕士学位论文,2007.
    [171]陈超凡.广东港口镇滨海砂地生镜与木麻黄生态质量的研究[J].热带地理,1990,10(2):125-131.
    [172]罗云裳,高茂成.滨海沙土微量元素与木麻黄生长的关系[J].华南农业大学学报,1989,10(1):71-76.
    [173]叶功富,黄宝龙.木麻黄林生态系统营养元素的地球化学循环[J].南京林业大学学报(自然科学版),1998,22(1):5-8.
    [174]陈小勇,林鹏.厦门木麻黄种群交配系统及近交衰退[J].应用生态学报,2002,13(1):1377-1380.
    [175]邓兰桂,孔垂华,骆世明.木麻黄小枝提取物的分离鉴定及其对幼苗的化感作用[J].应用生态学报,1996,7(2):145-149.
    [176]谭芳林.木麻黄防护林生态系统凋落物及养分释放研究[J].林业科学,2003,39(S1):21-26.
    [177]沙济琴,郑达贤,方祖光,谢皎如,黄义雄.木麻黄林下pH值的下降及其有效态铜,锌,硼,钼质量分数的影响[J].福建师范大学学报,1991,7(4):113-120.
    [178]Kaupenjohann,M.Mineral nutrition on root development in stands of Casuarina equisetifolia of differing vigour on coastal stands of the people's Republic of Benin [J].West Africa Potash Review,1990,(5):5-10.
    [179]阎凤鸣.化学生态学[M].北京:科学出版社,2003.
    [180]林武星,洪伟,叶功富.木麻黄水浸液对其幼苗生长的影响[J].江西农业大学学报,2005,27(1):46-51.
    [181]Aerts,R.,Chapin,E S.The mineral nutrition of wild plants revisited:A re-evaluation of processes and patterns [J].Advances in Ecological Research,2000,30:1-67.
    [182]Venterink,H.O.,Wassen,M.J.,Verkroost,A.W.M.,de Ruiter,P.C.Species richness-productivity patterns differ between N-,P-,and K-limited wetlands [J].Ecology,2003,84(8):2191-2199.
    [183]Davis,J.A.Adsorption of natural dissolved organic matter at the oxide/water interface [J].Geochimca et Cosmochimica Acta,1982,46(11):2381-2393.
    [184]Hingston,F.J.Activity of polyphenolic constituents of leaves of Eucalyptus and other species in complexing and dissolving iron oxide [J]. Australian Journal of Soil Research,1962,1:63-73.
    [185] Lortie, C. J., Cushman, J. H. Effects of a directional abiotic gradient on plant community dynamics and invasion in a coastal dune system [J]. Journal of Ecology, 2007, 95(3):468-481.
    [186] Hadley, J. L., Smith, W. K. Influence of wind exposure on needle desiccation and mortality for timberline conifers in Wyoming, USA [J]. Arctic and Alpine Research, 1983,15: 127-135.
    [187] Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Dacey, J. W. H.,Nobel, P. S., Smith, S. D., Winner, W. E. Stress physiology and the distribution of plants [J]. Bioscience, 1987, 37(1): 38-48.
    [188] Ennos, A. R. Wind as an ecological factor [J]. Trends in Ecology & Evolution, 1997,12(3): 108-111.
    [189] Fryrear, D. W., Stubbendieck, J., McCully, W. G Grass seedling response to wind and windblown sand [J]. Crop Science, 1973, 13: 622-625.
    [190] Grace, J., Russell, G The effect of wind on grasses ?. Influence of continuous drought or wind on anatomy and water relations in Festuca arundinacea schreb [J]. JOurnal of Experimental Botany, 1977,28(2): 268-278.
    [191] Kamata, N., Igarashi, Y, Ohara, S. Induced response of the Siebold's beech (Fagus crenata Blume) to manual defoliation [J]. Journal of Forest Research, 1996, 1(1): 1-7.
    [192] Yoshida, K. Histology of current shoots of Japanese cedar (Cryptomeria japonica D. don) inoculated with Cercospora sequoiae Ellis et Everhart [J]. Journal of Forest Research,1998, 3(1): 49-53.
    [193] Covelo, F., Gallardo, A. Temporal variation in total leaf phenolics concentration of Quercus robur in forested and harvested stands in northwestern Spain [J]. Canadian Journal of Botany, 2001, 79(11): 1262-1269.
    [194] Palm, C. A., Sanchez, P. A. Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents [J]. Soil Biology and Biochemistry,1991,23(1): 83-88.
    [195] Gallardo, A., Merino, J. Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain {J]. Biochemistry, 1992, 15(3): 213-228.
    [196] Serrano, L. Leaching from vegetation of soluble polyphenolic compounds, and their abundance in temporary ponds in the Do(?)ana National Park (SW Spain) [J].Hydrobiologia, 1992,229(1): 43-50.
    [197] Northup, R. R., Yu, Z., Dahlgren, R. A., Vogt, K. A. Polyphenol control of nitrogen release from pine litter [J]. Nature, 1995, 377: 227-229.
    [198] Northup, R. R., Dahlgren, R. A., McColl, J. G. Poiyphenols as regulators of plant-litter-soil interactions in northern California's pygmy forest: A positive feedback? [J].Biogeochemistry, 1998, 42(1-2): 189-220.
    [199] Graham, H. D. Stabilization of Prussian blue color in the determination of poiyphenols [J].Journal of Agricultural and Food Chemistry, 1992, 40: 801-805.
    [200] Terrill, T. H., Rowan, A. M., Douglas, G. D., Barry, T. N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains [J]. Journal of the Science of Food and Agriculture, 1992, 58(3):321-329.
    [201] Hagerman, A. E. Radial diffusion method for determining tannin in plant extracts [J].Journal of Chemical Ecology, 1987, 13(3): 437-449.
    [202] Hagerman, A. E. Tannin Chemistry [Z]. http://www.users.muohio.edu/hagermae/tannin.pdf, 2002.
    [203] Mae, T., Makino, A., Ohira, K. Changes in the amounts of ribulose-1, 5- bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.) [J]. Plant and Cell Physiology, 1983, 24(6): 1079-1086.
    [204] 中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社,1978.
    [205] Jones, C. An essay on juvenility, phase change, and heteroblasty in seed plants [J].International Journal of Plant Sciences, 1999, 160(S6): 105-111.
    [206] Schultz, J. C. Many factors influence the evolution of herbivore diets, but plant chemistry is central [J]. Ecology, 1988, 69(4): 896-897.
    [207] Makkar, H. P. S., Dawra, R. K., Singh, B. Changes in tannin content, polymerisation and protein precipitation capacity in oak (Quercus incana) leaves with maturity [J]. Journal of the Science of Food and Agriculture, 1988,44(4): 301-307.
    [208] Rossiter, M. C, Schultz, J. C, Baldwin, I. T. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction [J]. Ecology, 1988,69(1): 267-277.
    [209] Coley, P. D., Barone, J. A. Herbivory and plant defenses in tropical forests [J]. Annual Review of Ecology and Systematics, 1996,27: 305-335.
    [210] Chaves, N., Escudero, J. C. Variation of flavonoid synthesis induced by ecological factors [J]. Principles and Practices in Plant Ecology Allelochemical Interactions. Inderjit,Dakshini K MM, Foy CH. Eds. Barcelona, Spain, 1999,267-285.
    [211] Lindroth, R. L., Kopper, B. J., Parsons, W. F. J., Bockheim, J. G, Karnosky, D. F.,Hendrey, G R., Pregitzer, K. S., Isebrands, J. G, Sober, J. Consequences of elevated carbons dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) [J]. Environmental Pollution, 2001,115(3): 395-404.
    [212] Nabeshima, E., Murakami, M., Hiura, T. Effects of herbivory and light conditions on induced defense in Quercus crispula [J]. Journal of Plant Research, 2001, 114(4):403-409.
    [213] Koike, T., Tobita, H., Shibata, T., Matsuki, S., Konno, K., Kitao, M., Yamashita, N.,Maruyama, Y. Defense characteristics of seral deciduous broad-leaved tree seedlings grown under differing levels of CO_2 and nitrogen [J]. Population Ecology, 2006, 48(1):23-29.
    [214] Jackson, F. S., Barry, T. N., Lascano, C. E., Palmer, B. The extractable and bound condensed tannin content of leaves from tropical tree, shrub and forage legumes [J].Journal of the Science of Food and Agriculture, 1996,71(1): 103-110.
    [215] Frutos, P., Hervas, G, Ramos, G, Giraldez, F. J., Mantecon, A. R. Condensed tannin content of several shrub species from a mountain area in northern Spain, and its relationship to various indicators of nutritive value [J]. Animal Feed Science and Technology, 2002,95(3-4): 215-226.
    [216] Martin, J. S., Martin, M. M. Tannin assays in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species [J]. Oecologia, 1982, 54(2): 205-211.
    [217] Deshpande, S. S., Cheryan, M., Salunkhe, D. K. Tannin analysis of food products [J]. Critical Review in Food Science and Nutrition, 1986,24(4): 401-449.
    [218] Makkar, H. P. S., Dawra, R. K., Singh, B. Protein precipitation assay for quantitation of tannins: Determination of protein in tannin-protein complex [J]. Analytical Biochemistry,1987, 166(2): 435-439.
    [219] Gusewell, S. N:P ratios in terrestrial plants: variation and functional significance [J]. New Phytologist, 2004, 164(2): 243-266.
    [220] Knecht, M. F., Goransson, A. Terrestrial plants require nutrients in similar proportions [J].Tree Physiology, 2004, 24(4): 447-460.
    [221] Koerselman, W., Meuleman, A. F. M. The vegetation N:P ratio: A new too! to detect the nature of nutrient limitation [J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.
    [222] Gusewell, S., Koerselman, M. Variation in nitrogen and phosphorus concentrations of wetland plants [J]. Perspectives in Plant Ecology Evolution and Systematics, 2002, 5(1):37-61.
    [223] Rejmankova, E. Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status [J]. New Phytologist, 2005, 167(2): 471-482.
    [224] Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A.,Interlandi, S., Kilham, S. S., McCauleyk, E., Schulz, K. L. Nutritional constraintsin terrestrial and freshwater food webs [J]. Nature, 2000, 408: 578-580.
    [225] Pugnaire, F. I., Chapin, F. S. Controls over Nutrient Resorption from Leaves of Evergreen Mediterranean Species [J]. Ecology, 1993, 74(1): 124-129.
    [226] Aerts, R. Nutrient resorption from senescing leaves of perennials: are there general patterns? [J]. Journal of Ecology, 1996, 84(4): 597-608.
    [227] Wright, 1. J., Westoby, M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species [J]. Functional Ecology, 2003, 17(1): 10-19.
    [228] Walbridge, M. R. Phosphorus availability in acid organic soils of the lower North Carolina coastal plain [J]. Ecology, 1991, 72(6): 2083-2100.
    [229] Escudero, A., Del Arco, J. M., Sanz, I. C, Ayala, J. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species [J]. Oecologia, 1992,90(1): 80-87.
    [230] Mudau, F. N., Soundy, P., du Toit, E. S., Olivier, J. Variation in polyphenolic content of Athrixia phylicoides (L.)(bush tea) leaves with season and nitrogen application [J]. South African Journal of Botany, 2006,72(3): 398-402.
    [231] Mafongoya, P. L., Giller, K. E., Palm, C. A. Decomposition and nitrogen release patterns of tree prunings and litter [J]. Agroforestry Systems, 1997, 38(1): 77-97.
    [232] Teklay, T. Seasonal dynamics in the concentrations of macronutrients and organic constituents in green and senesced leaves of three agroforestry species in southern Ethiopia [J]. Plant and Soil, 2004, 267(1-2): 297-307.
    [233] Constantinides, M., Fownes, J. H. Nitrogen mineralization from leaves and litter of tropical plants: relationship to nitrogen, lignin and soluble polyphenol concentrations [J].Soil Biology and Biochemistry, 1994, 26(1): 49-55.
    [234] Koricheva, J. The Carbon-Nutrient Balance Hypothesis is dead; long live the carbon-nutrient balance hypothesis? [J]. Oikos, 2002, 98(3): 537-539.
    [235] Nitao, J. K., Zangerl, A. R., Berenbaum, M. R., Hamilton, J. G, DeLucia, E. H. CNB:requiescat in pace? [J]. Oikos, 2002, 98(3): 540-546.
    [236] Maie, N., Behrens, A., Knicker, H., Kogel-Knabner, I. Changes in the structure and protein binding ability of condensed tannins during decomposition of fresh needles and leaves [J]. Soil Biology & Biochemistry, 2003, 35(4): 577-589.
    [237] Gayler, S., Grams, T. E. E., Heller, W., Treutter, D., Priesack, E. A dynamical model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees [J]. Annals of Botany, 2007, 1-10.
    [238] Harper, J. L. The value of a leaf [J]. Oecologia, 1989, 80(1): 53-58.
    [239] McKey, D. Adaptive patterns in alkaloid physiology [J]. The American Naturalist, 1974,108(305-320): 305.
    [240] Mafongoya, P. L., Nair, P. K. R., Dzowela, B. H. Mineralization of nitrogen from decomposing leaves of multipurpose trees as affected by their chemical composition [J].Biology and Fertility of Soils, 1998, 27(2): 143-148.
    [241] Hattenschwiler, S., Vitousek, P. M. The role of polyphenols in terrestrial ecosystem nutrient cycling [J]. Trends in Ecology & Evolution, 2000, 15(6): 238-243.
    [242] Kuhajek, J. M., Payton, I. J., Monks, A. The impact of defoliation on the foliar chemistry of southern rata (Metrosideros umbellata) [J]. New Zealand Journal of Ecology, 2006, 30(2): 237-249.
    [243] Wareing, P. F. Problems of juvenility and flowering in trees [J]. Botanical Journal of the Linnean Society, 1959, 56(366): 282-289.
    [244] Moorby, J., Wareing, P. F. Aging in woody plants [J]. Annals of Botany, 1963, 27:291-308.
    [245] Riipi, M., Ossipov, V., Lempa, K., Haukioja, E., Koricheva, J., Ossipova, S., Pihlaja, K.Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth, and accumulation of phenolics? [J]. Oecologia, 2002, 130(3): 380-390.
    [246] Moony, H. A., Gulmon, S. L. Constraints on leaf structure and function in reference to herbivory [J]. BioScience, 1982, 32(3): 198-206.
    [247] Salminen, J. P., Ossipov, V., Haukioja, E., Pihlaja, K. Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens [J]. Phytochemistry, 2001, 57(1):15-22.
    [248] Kleiner, K. W., Raffa, K. F., Dickson, R. E. Partitioning of C-14-labeled photosynthate to allelochemicals and primary metabolites in source and sink leaves of aspen: evidence for secondary metabolite turnover [J]. Oecologia, 1999, 119(3): 408-418.
    [249] Koricheva, J. Interpreting phenotypic variation in plant allelochemistry: problems with the use of concentrations [J]. Oecologia, 1999, 119(4): 467-473.
    [250] Aerts, R. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks [J]. Journal of Experimental Botany, 1999, 50(330): 29-37.
    [251] Morton, J. F. The australian pine or beefwood (Casuarina equisetifolia L.), an invasive "weed" in Florida [J]. Proceedings of the Florida State Horticultural Society, 1980, 93:87-95.
    [252] Lambers, H., Chapin, F. S., Pons, T. L. Plant physiological ecology [M]. New York:Spinger, 1998.
    [253] Horner, J. D., Cates, R. G, Gosz, J. R. Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas-fir foliage [J]. Oecologia, 1987, 72: 515-519.
    [254] Dudt, J. F., Shure, D. J. The influence of light and nutrients on foliar phenolics and insect herbivory [J]. Ecology, 1994, 75(1): 86-98.
    [255] Hattenschwiler, S., Hagerman, A. E., Vitousek, P. M, Polyphenols in litter from tropical montane forests across a wide range in soil fertility [J].Biogeochemistry,2003,64(1):129-148.
    [256]Iason,G.R.,Hester,A.J.The response of heather (Calluna vulgaris) to shade and nutrients-predictions of the carbon-nutrient balance hypothesis [J].The Journal of Ecology,1993,81(1):75-80.
    [257]Iason,G.R.,Hartley,S.E.,Duncan,A.J.Chemical composition of Calluna vulgaris (Ericaceae):Do responses to fertilizer vary with phenological stage? [J].Biochemical Systematics and Ecology,1993,21 (3):315-321.
    [258]叶宝兴,朱新产.生物科学基础实验(植物类)[M].北京:高等教育出版社,2007.
    [259]Simon,J.,Miller,R.E.,Woodrow,I.E.Variation in defence strategies in two species of the genus Beilschmiedia under differing soil nutrient and rainfall conditions [J].Plant Biology,2007,9(1):152-157.
    [260]Muller,R.N.,Kalisz,P.J.,Kimmerer,T.W.Intraspecific variation in production of astringent phenolics over a vegetation-resource availability gradient [J].Oecologia,1987,72(2):211-215.
    [261]Leser,C.,Treutter,D.Effects of nitrogen supply on growth,contents of phenolic compound,s and pathogen (scab) resistance of apple trees [J].Physiologia Plantarum,2005,123(1):49-56.
    [262]Hale,B.K.,Herms,D.A.,Hansen,R.C.,Clausen,T.P.,Arnold,D.Effects of drought stress and nutrient availability on dry matter allocation,phenolic glycosides,and rapid induced resistance of poplar to two lymantriid defoliators [J].Journal of Chemical Ecology,2005,31(11):2601-2620.
    [263]Ferwerda,J.G.,van Wieren,S.E.,Skidmore,A.K.,Prins,H.H.T.Inducing condensed tannin production in Colophospermum mopane:Absence of response to soil N and P fertility and physical damage [J].Plant and Soil,2005,273(1-2):203-209.
    [264]Mulligan,D.R.Leaf phosphorus and nitrogen concentrations and net photosynthesis in Eucalyptus seedlings [J].Tree Physiology,1989,5(2):149-157.
    [265]王满莲,冯玉龙,李新.紫茎泽兰和飞机草的形态和光合特性对磷营养的响应[J].应用生态学报,2006,17(4):602-606.
    [266]吴楚,范志强,王政权.磷胁迫对水曲柳幼苗叶绿素合成、光合作用和生物量分配格 局的影响[J].应用生态学报,2004,15(6):935-940.
    [267]吴楚,王政权,孙海龙,郭盛磊.氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响[J].林业科学,2005,41(4):31-36.
    [268]郭盛磊,阎秀峰,白冰,于爽.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,25(6):1291-1298.
    [269]郭盛磊,阎秀峰,白冰,于爽.落叶松幼苗光合特性对氮和磷缺乏的响应[J].应用生态学报,2005,16(4):589-594.
    [270]Mattson,W.J.,Julkunen-Tiitto,R.,Herms,D.A.CO_2 enrichment and carbon partitioning to phenolics:do plant responses accord better with the protein competition or the growth differentiation balance models? [J].Oikos,2005,111(2):337-347.
    [271]Chapin,F.S.I.,Shaver,G.R.,Kedrowski,R.A.Environmental controls over carbon,nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra [J].Journal of Ecology,1986,74(1):167-195.
    [272]Hobbie,S.E.Effects of plant species on nutrient cycling [J].Trends in Ecology & Evolution,1992,7(10):336-339.
    [273]Horner,J.D.,Gosz,J.R.,Cares,R.G.The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems [J].American Naturalist,1988,132(6):869-883.
    [274]崔喜艳,陈展宇,张美善,王思远.土壤pH值对烤烟叶片生理生化特性的影响[J].植物生理学通讯,2005,41(6):737-740.
    [275]翁忙玲,吴震,李谦盛,刘高琼,李式军.营养液浓度及pH值对山葵生长及光合速率的影响[J].园艺学报,2004,31(1):101-102.
    [276]黄立华,梁正伟,马红媛,闫超.直播羊草在不同pH土壤环境下的生物学特性和生理反应[J].生态学杂志,2008,27(7):1084-1088.
    [277]Mauricio,R.Natural selection and the joint evolution of tolerance and resistance as plant defenses [J].Evolutionary Ecology,2000,14(4):491-507.
    [278]Stamp,N.Out of the quagmire of plant defense hypotheses [J].Quarterly Review of Biology,2003,78(1):23-55.
    [279]宋立江,狄莹,石碧.植物多酚研究与利用的意义及发展趋势[J].化学进展,2000,12(2):161-170.
    [280]Kouki,M.,Manetas,Y.Resource availability affects differentially the levels of gallotannins and condensed tannins in Ceratonia siliqua [J].Biochemical Systematics and Ecology,2002,30(7):631-639.
    [281]Katjiua,M.L.J.,Ward,D.Resistance and tolerance of Terminalia sericea trees to simulated herbivore damage under different soil nutrient and moisture conditions [J].Journal of Chemical Ecology,2006,32(7):1431-1443.
    [282]Alonso-Amelot,M.E.,Oliveros-Bastidas,A.,Calcagno-Pisarelli,M.P.Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure,elevation,and rain regime [J].Biochemical Systematics and Ecology,2007,35(1):1-10.
    [283]Shure,D.J.,Mooreside,P.D.,Ogle,S.M.Rainfall effects on plant-herbivore processes in an upland oak forest [J].Ecology,1998,79(2):604-617.
    [284]刘松.极端干旱环境下植物体内多酚类物质含量及其对逆境的响应研究[D].北京:北京林业大学博士学位论文,2007.
    [285]李予霞,崔百明,董新平,王雪莲.水分胁迫下葡萄叶片脯氨酸和可溶性总糖积累与叶龄的关系[J].果树学报,2004,21(2):170-172.
    [286]史玉炜,王燕凌,李文兵,高述民,李霞.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8.
    [287]喻方圆,徐锡增,G uy,R.D.水分和热胁迫对苗木针叶可溶性糖含量的影响[J].南京林业大学学报(自然科学版),2004,28(5):1-5.
    [288]杨书运,严平,梅雪英.水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响[J].中国农学通报,2007,23(12):229-233.
    [289]张大鹏,罗国光.不同时期水分胁迫对葡萄果实生长发育的影响[J].园艺学报,1992,19(4):296-300.
    [290]武维华.植物生理学[M].北京:科学出版社,2003.
    [291]王邦锡,王辉,黄久常.沙拐枣同化枝的光合作用和呼吸作用对生长季节、光照强度、高温和干旱的响应[J].林业科学,1997,33(1):18-24.
    [292]赵广东,刘世荣,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应Ⅰ.叶片养分、叶绿素、可溶性糖和淀粉的变化[J].植物生态学报,2003,27(2):228-234.
    [293]Rodriguez,D.,Goudriaan,J.Effects of phosphorus and drought stresses on dry matter and phosphorus allocation in wheat [J]. Journal of Plant Nutrition, 1995, 18(11):2501-2517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700