用户名: 密码: 验证码:
曲折波导行波管的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
行波管作为微波频段应用最为广泛的电真空器件,在毫米波雷达、通信、微波遥感、辐射测量、电子对抗等方面都具有非常广阔的应用前景。慢波结构是行波管的核心部件,它的性能优劣与行波管的技术指标息息相关,成为研究的热点和难点。同时,对行波管中注-波互作用的研究也是设计行波管的关键环节之一,电子注的调制以及与高频场的能量交换是在此过程中实现的,并且互作用的强弱也直接决定着行波管放大器的各种性能。因此,对慢波结构的探索和注-波互作用的计算在行波管放大器的设计中占有举足轻重的地位。
     传统的螺旋线行波管和耦合腔行波管在功率容量和工作带宽上存在矛盾。曲折波导行波管作为二者的折中,在实现大功率容量的同时,具有良好的带宽性能,并且可以采用微细加工技术来制造,克服了传统慢波结构加工难的问题。以上的这些特点使得以曲折波导慢波结构为核心的微型曲折波导行波管在毫米波、太赫兹波段成为很有潜力的一种大功率的小型辐射源,并且将在宽带毫米波通信领域具有很好的应用前景。
     本论文以曲折波导慢波结构为基础,从传输线理论出发,利用级联转移矩阵的方法,分析了曲折波导及其一系列变形结构的高频特性。等效电路理论的计算结果和常用的高频分析软件HFSS所得的模拟结果吻合。利用一维注-波互作用模型编写了曲折波导的注-波互作用计算软件,并利用此软件对3毫米波段对脊加载曲折行波管进行了设计,同时与实验结果进行了比较,证明此程序软件可以指导设计。为进一步提高计算精度,在一维互作用模型的基础上,采用等效模型的方法,将三维曲折波导结构化为二维轴对称的盘荷波导模型,进行基础理论推导。论文主要的工作和创新点如下:
     1.完善了曲折波导慢波结构的等效电路理论。曲折波导具有非常复杂的边界条件,用场论的方法难以求解其高频特性。在充分考虑了弯曲部分和电子注通道存在的情况下,利用传输线转移矩阵的方法建立了曲折波导慢波结构的电路理论,模拟结果和理论分析具有很好的一致性。
     2.建立了单脊加载曲折波导慢波结构的等效电路模型,包括E面脊加载曲折波导结构和H面脊加载曲折波导慢波结构。对单脊加载曲折波导结构的等效电路做了数值计算,所得结果与常用的高频分析软件HFSS的模拟结果相吻合。
     3.提出了一种新的慢波结构:双脊加载曲折波导慢波结构。该结构具有功率容量大,耦合阻抗高等特点,并且与工作在相同频段的其他曲折波导相比,具有更大的横向尺寸。采用等效电路模型分析了它的高频特性,理论计算结果与HFSS的模拟结果一致。在此基础上,设计了工作在220GHz频段的行波管,建立了注-波互作用的三维模型,分析了注-波互作用过程中的能量交换情况,给出了频率响应特性。
     4.为了提高功率容量和互作用效率,研究了一种新的慢波结构—渐变H面脊加载曲折波导慢波结构,并利用这个慢波结构完成了W波段行波管注波互作用电路的设计。粒子模拟结果表明该行波管具有较大的输出功率和较高的电子效率,为研制高效、高功率行波管奠定了基础。
     5.为了进一步改善增益性能和电子效率,提出了一种新的慢波结构—渐变双脊加载曲折波导,并利用该结构与带状电子注为基础,完成了140GHz频段行波管注波互作用电路的设计。粒子模拟结果表明该行波管管具有较大的输出功率和较高的电子效率,为研制高效、高功率行波管奠定了基础。
     6.采用MATLAB语言,编写了曲折波导类慢波结构的高频特性分析程序,并结合曲折波导类行波管的一维非线性互作用理论,建立了曲折波导类行波管的数值分析系统:FWTWT SUITE,利用该软件对加工装配的一只W波段E面单脊加载曲折波导实验管进行了初步计算和测试,实验测试结果与FWTWT SUITE计算结果比较表明:FWTWT SUITE在曲折波导行波管前期设计上,具有指导意义,大大节约了资源,缩减了费用,提高了设计效率。
     7.将传统的非线性注波互作用理论与等效电路理论结合在一起,建立了曲折波导行波管非线性注波互作用的改进模型。为了研究曲折波导行波管的空间电荷场,提出了用于研究曲折波导行波管空间电荷场的等效模型—盘荷结构,根据等效模型从理论上推导了曲折波导慢波结构空间电荷场。
Traveling wave tubes (TWTs) become the most important vacuum electron devices(VEDs), which are widely used in millimeter radar, communication, remote sensing,spectroscopy, electronic countermeasure application. The slow wave structure (SWS) isthe core part of the traveling wave tube for generating or amplifying the microwave.Therefore, the performance of the SWS is closely related to the technical level oftraveling wave tube. The SWS gradually becomes one of the reaserch hot and difficultpoints. Meanwhile, the process of beam-wave interaction is the most important part ofthe mechanism and kernel theory for TWT that would impact on the performancebecause of the modulation of the electron beam and the beam-wave energy exchange.So, it is significant for the study on the novel SWS and calculation the nonlinearbeam-wave interaction process.
     Compared to the conventional Helix-TWTs and coupled cavity (CC) TWT, the foldedwave-guide (FWG) TWT can provide larger bandwidth and higher average powerhandling capability. In principle, FWGTWT circuits are also easier to fabricate thanCCTWT circuits. This feature has motivated an investigation of the FWGTWT as acompact coherent source in the submillimeter or terahertz spectrum.
     In this dissertation, the high frequency characteristics of the traditional foldedwave-guide (FWG) TWT and different kind of ridge-loaded SWS have been analyzedby the equivalent circuit method based on the transmission cascadeing network. Thetheoretical results agree well with those obtained by the3-D electromagnetichigh-frequency simulation software (HFSS). In order to improve the nonlinearinteraction model, disk-loaded waveguide play an important role in calculation thespace charge field of the FWGSWS. Finally, ridge loaded FWGTWT which works atW-band is assembled and the relative experimental test results are reported.Severalimportant and valuable results in this doctoral dissertation are listed as follows:
     1、The equivalent circuit theory of the conventional FWTWT has been improved. It isdifficult to analyze the high frequency characteristics according to the field-matchingmethod because of the complicated boundary conditions of this kind of the structure.We have improved the equivalent circuit theory of FWTWT by considering the bendingand the discontinuity of the path of the electromagnetic wave propagation. It can be included that the HFSS simulation datas agree with the numerical calculation datas fromthe equivalent theory, which can support our theory.
     2、The equivalent circuit models of the signal ridge-loaded FWGSWS are presentedinnovatively, including the E-plane ridge-loaded FWGSWS and the H-planeridge-loaded FWGSWS. We have analyzed the high frequency characteristics of theFWGSWS with the help of the equivalent circuit theory and the HFSS. It can beincluded that the HFSS simulation datas agree with the numerical calculation datas fromthe equivalent theory, which can support our theory.
     3、A novel double ridge-loaded FWGSWS with is proposed innovatively. Comparedto the other kind of the FWGSWS, this structure possesses higher power capacity,electronic efficiency and larger transverse dimensions. The equivalent circuit model ofthis novel SWS has been established based on the previous research results aboutconventional FWGTWT and signal ridge-loaded FWGTWT. The results show that theHFSS simulation datas agree with the numerical calculation datas from the equivalenttheory of the novel SWS. The interaction circuit for220GHz TWT is designed by usingthis structure. The particle-in-cell (PIC) simulation results reveal that the220GHzdouble ridge-loaded TWT can provide higher power in a broad band.
     4、A novel tapered H-plane ridge-loaded FWGSWS is proposed. The design of theW-band high-power TWT is completed by using this structure. The particle-in-cell (PIC)simulation results reveal that the W-band tapered H-plane ridge-loaded TWT canprovide higher power in a broad band. This study lays a solid foundation for developinghigh efficiency and high power sub-millimeter wave amplifiers.
     5、A novel double ridge-loaded FWGSWS is proposed. The design of the140GHzhigh-power TWT is completed by using this structure. The particle-in-cell (PIC)simulation results reveal that the140GHz double ridge-loaded TWT can provide higherpower in a broad band. This study lays a solid foundation for developing high efficiencyand high power sub-millimeter wave amplifiers.
     6、The software analysis platform of these FWGTWT called FWTWT SUITE hasbeen set up by combining the numerical calculation of the high frequency characteristicsand the1-D nonlinear theory of beam-wave interaction of the FWTWT. All the codesare written in MATLAB programming language. Moreover, according to the results ofthe parameter optimization by the FWTWT SUITE, an E-plane ridge loaded FWGTWTwhich works at W-band has been assembled and the relative experimental test are carried out to study the performance. The experimental results and the calculationresults of FWTWT SUITE have the same trend in the operating frequency band. Itmeans that the software analysis platform of the FWGTWT would bring manyadvantages for rapid parametric studies in the early TWT design.
     7、Combining the traditional nonlinear beam-wave interaction theory with theequivalent circuit method, the improved model of the nonlinear beam-wave interactionabout the FWGTWT has been proposed in the dissertation. In order to analize the spacecharge field of the FWGTWT, the disk-loaded waveguide should be a suitableequivalentstructure of the FWGTWT for the calculation of the space charge field based on thesimulation results of the Maxwell software.
引文
[1]王文祥.微波工程技术[M].北京:国防工业出版社.2009,1-677
    [2]薛良金.毫米波工程基础[M].北京:国防工业出版社,1998,1-14
    [3] R. H. Abrams, B. Levush, A. A. Mondelli, et al. Vacuum electronics for the21st century[J].IEEE Microwave Magazine,2001,2(3):61-72
    [4] J. X. Qiu, B. Levush, J. Pasour, et al. Vacuum tube amplifiers[J]. IEEE Microwave Magazine,2009,10(7):38-51
    [5] C. K. Chong, W. L. Menninger. Latest Advancements in High Power Millimeter-wave HelixTWTs[J]. IEEE Trans. Plasma Science,2010,38(6):1227-1238
    [6]王娟,吴刚,样明华,等.大功率毫米波行波管发展现状[J].真空电子技术,2010,52(5):38-42
    [7]刘盛纲.太赫兹科学技术的新发展[J].中国基础科学,2006,8(1):7-12
    [8]廖复疆.真空电子技术[M].北京:国防工业出版社,2008,1-390
    [9]甘体国.毫米波工程[M].成都:电子科技大学出版社,2006,1-4
    [10]廖复疆.微型真空电子器件和太赫兹辐射源技术进展[J].电子学报,2003,31(9):1361-1364
    [11]冯进军.国外大功率微波真空功率器件的发展[C].中国电子学会真空电子学分会第十六届学术年会论文集(上册),包头,2007,1-9
    [12]刘军华.不断发展的行波管技术[J].真空电子技术,2010,52(4):83-86
    [13]瞿波,冯进军.高效率毫米波行波管[J].真空电子技术,2010,52(2):16-20
    [14]廖复疆.大功率微波电真空电子学技术进展[J].电子学报,2006,34(3):513-516
    [15]字张雄.大功率行波管的现状与发展[J].真空电子技术,2008,52(5):58-61
    [16] G. K. Kornfeld, E. Bosch, W. Gerum, et al.60GHz Space TWT to Address Future Market [J].IEEE Trans. Electron Devices,2001,48(1):68-71
    [17] R. Komfner.The Traveling Wave Tube[J].Wireless World,1946,52(11):369-372
    [18] J. R. Pierce.Theory of The beam-type traveling-wave tube[J].Proc.IRE,1947,35(2):111-123
    [19] V. L. Granatstein, P. K. Parker, C. M. Armstrong. Vacuum electronics at the dawn of thetwenty-first century [J]. Proceedings of the IEEE,1999,87(5):702-716
    [20]廖复疆.真空电子器件在100GHz以上频域的应用[J].真空电子技术.2011,53(5):50-53
    [21] S. Kharkovsky, et al. Millimeter-wave detection of localized anomalies in the space shuttleexternal fuel tank insulating foam [J]. IEEE Transactions on Instrumentation and Measurement,2006,55(4):1250-1257
    [22]廖复疆.大功率微波电子注器件及其发展[J].真空电子技术,1999,(1):1-7
    [23]邬显平.毫米波技术应用及其进展[J].电子科技导报,1999,(12):7-15
    [24] N. Gopalsami, A. C. Raptis. Millimeter-wave radar sensing of airborne chemicals[J]. IEEETransactions on MTT,2001,49(4):646-653
    [25] J. H. Wehling. Multifunction millimeter-wave systems for armored vehicle application[J]. IEEETransactions on MTT,2005,53(3):1021-1025
    [26] R. Ives. Microfabrication of high-frequency vacuum electron devices[J]. IEEE Trans. PlasmaScience,2004,32(3):1277-1291
    [27]杨祥林.微波器件原理[M].北京:电子工业出版社,1994,139-141
    [28]刘盛纲,李宏福,王文祥,等.微波电子学导论[M].北京:国防工业出版社,1985
    [29]邮电部506厂《行波管》编写组.行波管[M].北京:人民邮电出版社,1979
    [30] A. S. Gilmour, Jr., Principles of traveling-wave tubes[M]. Boston, MA: Artech House,1994
    [31] B. James, D. A. Shepard, and J. R. Legarra. A cfppm focused250-watt CW millitron at27-30GHz. in Proc. Tech. Dig[C]. Int. Electron Devices Meeting, Washington,1987,489-491
    [32]王文祥,余国芬,宫玉彬,等.行波管慢波系统的新进展一全金属慢波结构[J].真空电子技术,1995,5:30-37
    [33] D. R. Whaley, R. Duggal, C. M. Armstrong, et al.100watt operation of a cold cathode TWT[J].IEEE Trans. Electron Devices,2009,56(5):896-90
    [34] J. Waterman. Folded-waveguide millimeter-wave circuit model[M]. Engineer thesis, Dept. ofElectrical Engineering, Stanford Univ. Stanford, California,1979
    [35] G. Dohler, D. Gagne, D. Gallagher, et al. Serpentine waveguide TWT[C]. International ElectronDevices Meeting,1987,(33):485-488
    [36] D. Gallagher, J. Richards, C. Armstrong. Millimeter-wave folded waveguide TWT developmentat Northrop Grumman[C]. IEEE International Conference on Plasma Science, San Diego,California,1997,161
    [37] D. Gallagher, J. Tucek, M. Converse, et al. Optimized design of folded waveguide TWTs[C].IEEE International Vacuum Electronics Conference, Monterey,2002,46
    [38] V. O. Heinen, K. E. Kreischer, M. A. Basten, et al. Vacuum electronics development atNorthrop Grumman[C]. IEEE International Vacuum Electronics Conference, Monterey,California,2004,288
    [39] J. Tucek, M. Basten, D. Gallagher, et al.220GHz folded waveguide circuits for high poweramplifiers[C]. IEEE International Vacuum Electronics Conference, Rome, Italy,2009,108-109
    [40] J.Tucek, M. Basten, D. Gallagher, et al. Sub-Millimeter and THz Power Amplifier Developmentat Northrop Grumman[C]. IEEE International Vacuum Electronics Conference, Monterey,2010,19-20
    [41] O. V. Makarova, R. Divan, J. Tucek, et al. Fabrication of solid copper220ghz foldedwaveguide circuits by uv lithography[C]. IEEE International Vacuum Electronics Conference,Monterey, California,2010,183-184
    [42] A. J. Theiss, D. B. Lyon, Y. Hiramatsu. An integral-polepiece folded-waveguide slow-wavecircuit for high-power millimeter-wave TWTs[C]. IEEE International Electron Devices Meeting,San Francisco, CA, USA,1993,149-151
    [43] D. B. Lyon, A. J. Theiss. Litton folded-waveguide high-power millimeter-wave TWTs[C]. IEEEInternational Electron Devices Meeting, San Francisco, CA, USA,1994,918-920
    [44] S.Bhattacharjee, J.H.Booske, C.L.Kory, et al. Folded waveguide traveling-wave tube sourcesfor terahertz radiation[J]. IEEE Transactions on Plasma Science,2004,32(3):1002-1014
    [45] S.Bhattacharjee, J.H.Booske, C.L.Kory, et al. Accurate parametric modeling of foldedwaveguide circuits for millimeter-wave traveling wave tubes[J]. IEEE Transactions on ElectronDevices,2005,52(5):685-694
    [46] J. D. Wilson, C. T. Chevalier. Robust Design Algorithm for High-Frequency Traveling-WaveTube Slow-Wave Circuits[C]. IEEE International Vacuum Electron Sources Conference,Monterey, California,2006,285-286
    [47] H. J. Ha, S. S. Jungy, G. S. Park. Linear Theory of a Folded Waveguide Traveling-Wave Tube(TWT)[J]. Journal of the Korean Physical Society,1999,34(3):297-300
    [48] H. J. Ha, W. K. Han, G. S. Park. Nonlinear theory of folded waveguide TWT[C]. InternationalVacuum Electronics Conference, Monterey, California,2000,35
    [49] S. T. Han, J. I. Kim, K. H. Jang, et al. Experimental investigation of millimeter wavefolded-waveguide TWT[C]. Proc. Int. Vacuum Electronics Conf., Monterey, California,2003,322-323
    [50] J. K. So, Y. M. Shin, K. H.Jang, et al. Experimental investigation of micro-fabricated foldedwaveguide backward wave oscillator for submillimeter application[C]. Joint31st InternationalConference on Infrared Millimeter Waves and14th International Conference on TeraherzElectronics, Shanghai,2006,315
    [51]冯进军,胡银富,蔡军,等.W波段行波管发展评述[J].真空电子技术,2010,52(2):27-32
    [52] Xu Ao, Wang Wen Xiang, Wei Yan Yu, et al. Analysis of space harmonic selectivity ofperiod-varying folded waveguide[J]. Chinese Physics B,2009,18(3):1270-1275
    [53] Xu Ao, Wang Wen Xiang, Wei Yan Yu, et al. The study of synchronization in the periodicnonuniform folded waveguide[J]. Chinese Physics B,2009,18(2):810-814
    [54] Y. B. Gong, H. R. Yin, L. N. Yue, et al. A140-GHz two-beam overmoded folded-waveguidetraveling-wave tube[J]. IEEE Trans. on Plasma Science,2011,39(3):847-851
    [55] Y. B. Gong, H. R. Yin, Y. Y. Wei. Study of traveling wave tube with folded-waveguide circuitshielded by photonic crystals[J]. IEEE Transactions on Electron Devices,2010,57(5):1137-1145
    [56]廖明亮,魏彦玉,何俊,等.两种新型毫米波曲折波导慢波线的研究[C].中国电子学会真空电子学分会第十七届学术年会论文集,2009,89-92
    [57] Huarong Gong, Yubin Gong, Tao Tang, et al.1KW ka-band folded waveguide traveling-wavetube[C]. IEEE International Vacuum Electronics Conference, Bangalore,2011,331-332
    [58] Guo Guo, Yanyu Wei, Linna Yue, et al. A tapered ridge-loaded folded waveguide slow-wavestructure for millimeter-wave traveling-wave tube[J]. Journal of Infrared, Millimeter, andTerahertz Waves,2012,33(2):131-140
    [59] Yang Liu, Lingna Yue, Yanyan Tian, et al. V-shape folded rectangular groove waveguide formillimeter-wave traveling-wave tube[J]. IEEE Transactions on Plasma Science,2012,40(4):1027-1031
    [60]张长青.大功率毫米波折叠波导行波管的研究[D].成都:电子科技大学,2011,78-100
    [61]何俊.毫米波新型曲折波导行波管的研究[D].成都:电子科技大学,2010,35-41
    [62] H. R. Gong, Y. B. Gong, T. Tang, et al. Experimental investigation of a high-power ka-bandfolded waveguide traveling-wave tube[J]. IEEE Trans. Electron Devices,2011,58(7):2159-2163
    [63] Yan Hou, Yubin Gong, Jin Xu, Shaomeng Wang, et.al. A novel ridge-vane loaded foldedwaveguide slow-wave structure for0.22thz traveling-wave tube[J]. IEEE Trans. ElectronDevices,2013,60(3):1228-1235
    [64] Y. Hou, J. Xu, H.-R. Yin, et al. Equivalent circuit analysis of ridge-loaded folded-waveguideslow-wave structures for millimeter-wave traveling-wave tubes[J]. Progress InElectromagnetics Research,2012,129:215-229
    [65] Y. Hou, J. Xu, S. Wang, et al. Study of high efficiency novel folded waveguide traveling-wavetube with sheet electron beam[J]. Progress In Electromagnetics Research,2013,141:431-441
    [66] Yan Hou, Jin Xu, Yubin Gong. A simple equivalent model analysis of ac space-charge fields forfolded-waveguide twt[C]. International Conference on microwave and Millimeter waveTechnology, Shenzhen,2012,1-2
    [67] Yan Hou, Jin Xu, Yanyu Wei, et al. Study of0.14GHz ridge-loaded folded-waveguidetranveling-wave tube[C]. The37thInternational Conference on Infrared, Millimeter andTerahertz Waves, University of Wollongong, Australia,2012
    [68] Yan Hou, Jin Xu, Shaomeng Wang, et al. Investigation of a novel folded waveguide slow-wavestructure for traveling-wave tube[C]. IEEE International Vacuum Electronics Conference, Paris,2013,389-390
    [69] Yan Hou, Jin Xu, Shaomeng Wang, et al. A Novel h-plane loaded folded waveguide slow-wavestructure for traveling wave tube[C].6thUK, Europe, China Millimetre Waves and TerahertzTechnologies Workshop National Roman Museum, Rome, Italy,2013
    [70] D. R. Whaley, R. Duggal, C. M. Armstrong, et al.100watt operation of a cold cathode TWT[J].IEEE Trans. Electron Devices,2009,56(5):896-90
    [71]吴万春,梁昌洪.微波网络及其应用[M].北京:国防工业出版社,1980,180-300
    [72]廖承恩.微波技术基础[M].陕西:西安电子科技大学出版社,1994,221-345
    [73] R.E.Collin.微波工程基础[M].北京:人民邮电出版社,1981,42-300
    [74] N. Marcuvitz. Waveguide Handbook [M].New York: McGraw-Hill,1951,278-369
    [75] Ansoft Corp. Ansoft HFSS user’s reference.[EB/OL]. Available: http://www.ansoft.com/,2006
    [76] CST Corp. CST MWS Tutorials.[EB/OL]. Available: http://www.cst-china.cn/CST2009/proudct/mws/,2009
    [77] Y. H. Na, S. W. Chung, J. J. Choi. Analysis of a broadband Q band folded waveguidetraveling-wave tube[J]. IEEE Trans. Plasma Sci.,2002,30(3):1017-1023
    [78] L. Sadwick, R. J. Hwu, G. Scheitrum. Microfabrication of vacuum compatible millimeter wavesources[C]. IEEE International Vacuum Electronics Conference, Seoul, Korea,2003,360-361
    [79] J. H. Booske. New opportunities in vacuum electronics through the application ofmicrofabrication technologies[C]. IEEE International Vacuum Electronics Conference,Monterey,2002,11-12
    [80] C. Kory, R. L. Ives, M. Read, et al. W-band MEMS-based TWT development[C]. IEEEInternational Vacuum Electronics Conference, Monterey,2004,88-89
    [81] C. Kory, R. L. Ives, M. Read, et al. Microfabricated W-band traveling wave tubes[C]. The Joint30th International Conference on Infrared and Millimeter Waves and13th InternationalConference on Terahertz Electronics, Williamsburg, Virginia,2005,85-86
    [82] C. Kory, R. L. Ives, M. Read, et al. Overview of W-band traveling wave tube programs[C].IEEE International Vacuum Electronics Conference, Monterey,2006,447-448
    [83] S. T. Han, K. H. Jang, J. K. So, et al. Low-voltage operation of Ka-band folded waveguidetraveling-wave tube[J]. IEEE Trans. Plasma Science,2004,32(1):60-66
    [84] J. K. So, Y. M. Shin, et al. Experimental investigation of micro-fabricated folded waveguidebackward wave oscillator for submillimeter application[C]. Joint31st International Conferenceon Infrared Millimeter Waves and14th International Conference on Teraherz Electronics,Shanghai,2006,2006,315
    [85] Jinjun Feng, Yinfu Hu, Jun Cai, et al. Progress of W-band10W CW TWT[C]. IEEEInternational Vacuum Electronics Conference, Paris,2013,501-502
    [86] J. H. Booske, M. C. Converse, M. C. Kory, et al. Accurate parametric modeling of foldedwaveguide circuits for millimeter-wave traveling wave tubes[J]. IEEE Transactions on ElectronDevices,2005,52(5):685-694
    [87] S. Liu. Folded waveguide circuit for broadband MM wave TWTs[J]. Int. J. Infrared MillimWaves,1995,Vol.16:809–815
    [88] Y. H. Na, S. W. Chung, J. J. Choi. Analysis of a broadband Q-band folded-waveguidetraveling-wave tube[J]. IEEE Trans. Plasma Science.2002,30:1017–1022
    [89] M. Sumathy, K. J. Vinoy, and S. K. Datta. Analysis of ridge-loaded folded-waveguideslow-wave structures for broadband traveling-wave tubes[J]. IEEE Trans. Electron Devices,2010,57(6):1440-1446
    [90] Jun He, Yanyu Wei, Yubin Gong, et al. Investigation on a W band ridge-loaded foldedwaveguide TWT[J]. IEEE Transactions on Plasma Science,2011,39(8):1660–1664
    [91]张长青,宫玉彬,巩华荣,等.太赫兹翼片加载折叠波导行波管放大器的研究[J].半导体光电,2011,32(4):484-488
    [92] T.M. Antonsen,Jr., B.Levush.CHRISTINE:A multifrequency parametric simulation code fortraveling wave tube amplifiers[R]. NRL Memo report NRL/FR/6840-97-9845,1997
    [93] T.M.Antonsen Jr., B.Levush.Traveling-wave tube devices with nonlinear dielectric elements[J].IEEE Trans.Plasma Sci.,1998,26(3):774-786

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700