用户名: 密码: 验证码:
驱动蛋白马达动力学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
驱动蛋白马达是一类以微管为轨道向其正向运动的线性分子马达。它们广泛存在于真核细胞中,并在细胞内的输运过程、细胞形成、有丝分裂及细胞功能等方面扮演着重要角色。对于驱动蛋白马达运动定向性、行进性和较高能量转化效率的研究,不仅有助于人们理解驱动蛋白马达两个头部之间的协同作用、步行机制以及各种相干因素对定向运动的影响,而且对于生物体内诸多生物蛋白马达行为的理解以及人工合成纳米机械都具有重要意义。
     本文采用基于布朗运动理论的布朗棘轮模型研究了驱动蛋白马达两个地位对等的头部交替与轨道蛋白结合,并沿微管做定向运动的物理学机制。研究内容主要包括以下两个大的方面:
     驱动蛋白马达的开环棘轮模型。驱动蛋白的两个头部弹性连接,马达与轨道的相互作用用不对称势描述,不对称势随机或周期性变化于马达的几个状态之间,但是不对称势的变化与系统的状态无关。主要提出了三个模型,包括(1)闪烁势中弹性耦合的双头分子马达模型。势能在两态间随机跃迁,马达定向流的大小和方向依赖于噪声强度、颈部尺度以及跃迁速率三者的耦合;另外,后两者大小的变化会引起流的反转,这很好地解释了拥有不同颈部尺度的分子马达沿细胞骨架不同方向运动的情况。(2)弹性耦合双头分子马达的inchworm模型。马达两个头部在一维不对称周期势下,周期性闪烁对应于一个ATP水解循环,运动轨迹呈现inchworm模式。随弹性系数k的增加,几率流趋于定值,且存在最优的颈部原长a使几率流达到最大值。马达效率随噪声强度变化存在有极大值,且随势打开时间ton的增加,马达效率呈现非线性递减。(3)二维弹性耦合双头分子马达的hand-over-hand模型。二维相互作用势下,双头分子马达的闪烁棘轮模型模拟了驱动蛋白马达的hand-over-hand运动。虽然粒子在y方向上的几率不为零,但是依然表现为x正方向上的定向运动。当存在外部负载情况下,流可以发生反转。马达做功的效率与温度和负载力有关,且随二者的变化都存在有极大值。
     反馈控制作用下的布朗棘轮模型。分别研究了马达系统根据马达的位置,或者环境温度的变化,通过系统的态来控制势的开关的信息模型。(1)在前一个模型中,无负载存在时,流随颈部尺度原长的变化在一定温度范围内呈现出周期性变化,当原长近似为势周期的整数倍时,耦合粒子的流为最小;施加外部负载力时,存在最优的颈部原长,流随负载力的变化会发生反转,马达的效率随温度及负载力的变化都存在有极大值。(2)布朗马达在温度控制的反馈作用下可以产生定向运动。反馈控制下的平均速度与能量比参数α、温度比参数β以及势的不对称参数α有关。当温度梯度发生反转时,粒子的平均速度也发生了反转。当α=0或者是β=1时,没有定向运动。当α和β与1的绝对值的差值越大,即参数的不对称性越大时,粒子的平均速度就越大。
Kinesins are a class of linear molecular motors, which move along microtuble towards its plus end. In all eukaryotic cells, kinesin plays an important role in intracellular transport, mitosis, cellular morphogenesis and cellar functions. Study on directionality, processivity and higher efficency of kinesin, can not only help people to understand the two-headed cooperation, walking manner and influence of related factors, but also can help people to understan other biological molecular motors' motility and can shed light on synthesizing nano-machines.
     In this paper, we focus on the physical mechanics of kinesin by using Brownin ratchet method, which identical heads attach to the microtuble alternatively and step unidirectionally along linear track. The research mainly includes the following two aspects:
     First, open-loop ratchet models of kinesin are presented. In which, the two heads coupled through an elastic spring, asymmetrical periodical potential flash between two states stochastically or perodically which is applied independently of the state of the systems to be controlled. There are three models, including:(1) A model of elastically coupled two-headed molecular motors in flashing potential. In the model, the potential swtiches on or off between two states stochastically. The current is sensitive to the transition rates, neck length and other parameters. The coupling of transition rates and neck length leads to variations both in the values and directions of current, which is very likely the case of different molecular motors with different neck length can move along cytoskeleton in different direction.(2) A model for inchworm motion of elastically-coupled molecular motors. Corresponding to ATP hydrolyzed circle, the motor has four states which each head submitted to a one-dimension flashing ratchet potential. It is concluded that the trajectory is inchworm manner, and the probability current changes with the neck's initial length a and the elastic coefficient k.With the increase of k, the probability current reaches to some a certain value, and there is optimal values for initial length to achieve the maximal current. Efficiency decrease nonlinearly with the increase of the open time of potential ton, and a maximum value can be obtained for some certain noise strength.(3) Two-dimensional model of elastically coupled molecular motors. A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins. The directed motion is obtained along the x direction, although the probability finding the particle along the y direction is non zero. When the external load is present, the current reversion is observed. The efficiency varies with both the temperature and the load, and there is a maximum value for a certain temperature and a certain load, which accords with experimental obserbations.
     Secondly, feedback controls of Brownian ratchet models are studied.(1)In the former model, the positions of the two Brownian motors are monitored and the flashing ratchet potential can be switched on or off depending on the positions of the two particles. Without external load, the currents of Brownian motors show a periodic change in a certain temperatur range, and when the initial length of the spring reaches a value that approximately equals an integer times of the period of the potential, the average velocity reaches a minimum. Under external load, there is an optimal value of spring constant. And the dependence of the current on the opposing force is reversed. There are optimal values of temperature and the opposing force to obtain the better efficiency.(2)In the latter model, a feedback-controlled Brownian ratchet is operated by a temerature switch. The velocity induced by the feedback ratchet is a function of several parameters, including the ratio of the potential height and the noise strenghth α, the ratio of the two switching temperatures β and the asymmetry parameter of the potential field. The motor shows a current inversion when the gradient of β inverse, and there is no current when α=0or β=1. When the absolute values of difference between a and1, or β and1is big (ie. The intension of asymmetry actions is stronger), the mean velocity is big as well.
引文
[1]Lodish H A, Berk A, Zipursky S L, et al. Molecular Cell Biology.4th ed[M]. New York:Scientific American,1999.1084-1090
    [2]Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell.4th ed [M].New York:Garland Science,2002.1463-1468
    [3]Vale R D. The molecular motor toolbox for intracellar transport[J]. Cell,2003.112: 467-470
    [4]Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport[J]. Science,1998,279:519-526
    [5]Vale R D and Milligan R A. The way things move:looking under the hood of molecular motor proteins [J]. Science,2000,288:88-95
    [6]Junge W, Sielaff H, Engelbrecht S. Torque generation and elastic power transmission in the rotary F0F1-ATPase[J]. Nature,2009,459:364-370
    [7]Wordeman L. Microtubule-depolymerizing kinesins[J]. Curr Opin Cell Biol,2005, 17:82-88
    [8]Block S M. Nanometres and piconewtons:the macromolecular mechanics of kinesin[J].Trends Cell Biology,1995,5:169-175
    [9]Svoboda K. Block S M. Force and velocity measured for single kinesin molecules[J]. Cell,1994,77:773-784
    [10]Gittes F, Meyhofer E, Baek S, et al. Directional loading of the kinesin motor molecule as it buckles a microtubule[J]. Biophys J,1996,70:418-429
    [11]Rice S, Lin AW, Safer D, et al. A structural change in the kinesin motor protein that drives motility[J]. Nature,1999,402:778-784
    [12]Nishiyama M, Higuchi H, Yanagida T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules[J]. Nat Cell Biol,2002,4:790-797
    [13]Kaseda K, Higuchi H, Hirose K. Coordination of kinesin's two heads studied with mutant heterodimers[J]. Proc Natl Acad Sci USA,2002,99:16058-63
    [14]Asbury C L, Fehr A N, Block S M. Kinesin moves by an asymmetric handover-hand mechanism[J]. Science,2003,302:2130-34
    [15]Forkey J N, Quinlan M E, Shaw M A, et al. Three dimensional structural dynamics of myosin V by single-molecule fluorescence polarization[J]. Nature,2003, 422:399-404
    [16]Snyder G E, Sakamoto T, Hammer J A, et al. Nanometer localization of single green fluorescent proteins:evidence that myosin V walks hand-over-hand via telemark configuration[J]. Biophys J,2004,87:1776-83
    [17]Carter N J, Cross R A. Mechanics of the kinesin step[J]. Nature 2005,435:308-12
    [18]Toba S, Watanabe TM, Yamaguchi-Okimoto L,et al. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein[J]. Proc Natl Acad Sci USA,2006,103:5741-45
    [19]Reck-Peterson SL, Yildiz A, Carter AP,et al. Single-molecule analysis of dynein processivity and stepping behavior[J]. Cell,2006,126:335-48
    [20]Wong Y L, Rice S E. Kinesin's light chains inhibit the head and microtubule-binding activity of its tail[J]. Proc Natl Acad Sci U S A,2010, 107:11781-6
    [21]Cai D, Hoppe A D, Swanson J A, et, al. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells [J]. J Cell Biol,2007,176:51-63
    [22]Julicher F, Ajdari A, Prost J. Modeling molecular motors[J]. Rev Mod Phys,1997, 69:1269-81
    [23]Kolomeisky A B, Widom B A. Simplified"ratchet"model of molecular motors[J]. J Stat Phys,1998,93:633-645
    [24]Keller D, Bustamante C. The mechanochemistry of molecular motors[J]. Biophys J, 2000,78:541-56
    [25]Fisher M E, Kolomeisky A B. Simple mechanochemistry describes the dynamics of kinesin molecules[J]. Proc Natl Acad Sci USA,2001,98:7748-53
    [26]Bustamante C, Keller D, Oster G. The physics of molecular motors[J]. Ace Chem Res,2001,34:412-20
    [27]Reimann P. Brownian motors:noisy transport far from equilibrium[J]. Phys Rep, 2002,361:57-265
    [28]Perez-Carrasco R and Sancho J M. Molecular motors in conservative and dissipative regimes[J]. Physical Review E,2011,84:041915
    [29]Foroutan M. Investigation of the stochastic dynamics of kinesin nanomotor protein: effect of average potential value [J]. Journal of Computational and Theoretical Nanoscience,2010,7:2416-2417
    [30]Schmidt C, Kim B, Grabner H, et al. Tuning the "roadblock" effect in Kinesin-based transport[J]. Nano Lett,2012,12:3466-3471
    [31]Oster G, Wang H Y. Reverse engineering a protein:the mechanochemistry of ATP synthase[J]. Biochimica et Biophysica Acta,2000,1458:482-510
    [32]Kinesin Home Page[EB]. http://www.proweb.org/kinesin/
    [33]Hanggi P, Marchesoni F. Articial Brownian motors:Controlling transport on the nanoscale[J]. Rev Mod Phys,2008,81:387-442
    [34]B6hm K J, Steinmetzer P, Daniel A, et al. Kinesin driven microtuble motility in the presence of alkaline-earth metal ions:indication for a calcium ion-dependent motility[J]. Cell Motility and the Cytoskeleton,1997,37:226-231
    [35]Sharyn A E, Hideo H. A mutant of the motor protine kinesin that moves in both directions on microtubules[J]. Nature,2000,406:913-916
    [36]Delius M von. Geertsema E M, Leigh D A. A Synthetic Small Molecule That Can Walk[J]. Down a Track Nat Chem,2010,2:96-101
    [37]Z Wang. Synergic mechanism and fabrication target for bipedal nanomotors [J]. Proc Natl Acad Sci,2007,104:17921-17926
    [38]Schliwa M, Woehlke G. Molecular motors [J]. Nature,2003,422:759-765
    [39]Finer J T, Simmons R M and Spudich J A. Single myosin molecule mechanixs:piconewton force and nanometre steps[J]. Nature,1994,368:113-119
    [40]Molloy J E, Burns J E, Kendrick-Jones J, et al. Movement and force produced by a single myosin head[J]. Nature,1997,378:209-212
    [41]Shiroguchi K, Kinosita K. Myosin V walks by lever action and Brownian motion [J].Science,2007,316:1208-1212
    [42]Yildiz A, Forkey J N, McKinney. S A, et al. Myosin V Walks Hand-Over-Hand:Single Fluorophore Imaging with 1.5-nm Localization[J]. Science,2003,300:2061-2065
    [43]Yasuda R, Noji H, Kinosita K jr, et al. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree step s[J]. Cell,1998,93:1117-1124
    [44]Noji H, Yasuda R, Yoshida M, et al. Nature, Direct observation of the rotation of F1-ATPase[J]. Nature,1997,386:299-302
    [45]Toyabe S, Watanabe-Nakayama T, Okamoto T, et al. Thermodynamic efficiency and mechanochemical coupling of F-1-ATPase[J]. Proc Natl Acad Sci USA,2011, 108:17951-17956
    [46]Vale R D, Reese T S, Sheetz M P. Identification of a noval force-generating, Kinesin, in microtuble-based motility[J]. Cell,1985,42:39-50
    [47]Hirokawa N, Noda Y and Tanaka Y et al. Kinsen superfamily motor proteins and introcellar transport [J]. Nature Reviews Molecular Cell Biology,2009, 10:682-696.
    [48]Miki H, Setou M, Kaneshiro K, et al. All kinesin superfamily protein. KIF, genes in mouse and human[J]. PNAS,2001,98:7004-7011
    [49]潘章,陈静,耿轶钊,张辉,覃静宇,纪青.驱动蛋白研究进展[J].生命科学研究,2012,16(4);350-356
    [50]刘梅,徐娜,阮世龙等.驱动蛋白及其作用研究进展[J].杭州师范大学学报,2013,12(1):40-43
    [51]Vale R D, Fletterick R J. The design plain of kinesin motors [J]. Annu Rev Cell Dev Biol,1997,13:745-777
    [52]Sharp D J, Rogers C C, Scholey M. Microtubule motors in mitosis[J]. Nature, 2000,407:41-47
    [53]Manning A L, Ganem N J, Bakhoum S F, et al. The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells [J]. Mol Boil Cell,2007,18:2970-2979
    [54]Ohi R, Burbank K, Liu C, et al. Nonredundant functions of kinesin-13s during meiotic spindle assembly [J]. Curr Biol,2007,17:953-959
    [55]Howard J, Hudspeth A J, Vale R D. Movement of microtubules by single kinesin molecules [J]. Nature,1989,342:154-158
    [56]Berliner E, Young E C, Anderson K, et al. Failure of a single-headed kinesin to track parallel to microtubule protofilaments[J]. Nature,1995,373:718-721
    [57]Vale R D, Funatsu T, Pierce D W, et al. Nature, Direct observation of single kinesin molecules moving along microtubules[J]. Nature,1996,380:451-453
    [58]Hua W, Young E C, Fleming M L, et al. Coupling of kinesin steps to ATP hydrolysis [J]. Nature,1997,388:390-393
    [59]Block S M. Kinesin:what gives? [J]Cell,1998,93:5-8
    [60]Asbury C L, Fehr A N, Block S M. Science,Kinesin Moves by an Asymmetric Hand-Over-Hand Mechanism [J]. Science,2003,302:2130-2134
    [61]Yildiz A, Tomishige M, Vale R D, et al. Kinesin walks hand-over-hand[J]. Science,2004,303:676-678
    [62]Dixit R, Ross J L, Goldman Y E, et al. Differential regulation of dynein and kinesin motor proteins by tau[J]. Science,2008,319:1086-1089
    [63]Guydosh N R, Block S M. Nature, Direct observation of the binding state of the kinesin head to the microtubule[J]. Nature,2009,461:125-128
    [64]Friedman D S, Vale R D. Singe-molecule analysis of kinesin motility reveals regulation by the cargobinding tail domain [J]. Nature Cell Biology,1999, 1:293-297
    [65]Kaan H Y, Hackney D D, Kozielski F. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition[J]. Science,2011,333:883-885
    [66]Vale R D and Milligan R A. The way things move:looking under the hood of molecular motor proteins[J]. Science,2000,288:88-95
    [67]Mandelkow E and Mandelkow Eva-Maria.Microtubules and icrotubule-associated proteins[J].Current Opinion in Cell Biology,1995,1:72-81
    [68]Visscher K, Schnitzer M J, Block S M. Single kinesin molecules studied with a molecular force clamp[J]. Nature,1999,400:184-189
    [69]Asbury C L, Fehr A N, Block S M. Kinesin moves by an asymmetric hand-over-hand mechanism [J]. Science,2003,302:2130-2134
    [70]Nishiyama M, Higuchi H, Yanagida T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules[J]. Nature Cell Biology,2002, 4:790-797
    [71]Carter N J and Cross R A. Mechanics of the kinesin step[J]. Nature,2005, 435:308-312
    [72]Sovobada K, Block S M. Cell. Force and velocity measured for single kinesin molecules [J].1994,77:773-784
    [73]Kural C, Kim H, Seyd S, et al. Kinesin and dynein move a peroxisome in vivo:a tug-of-war or coordinated movement? [J]. Science,2005,308:1469-1472
    [74]Rafii-Tabar H and Tavakoli-Darestani R. Modelling the stochastic dynamics of biological nano-motors:an overview of recent results[J]. J Comput Theor Nanasci, 2009,6(4):806-819
    [75]Yildiz A, Tomishige M, Vale R D, et al. Kinesin walks hand-over-hand[J]. Science, 2004,303(5658):676-678
    [76]Asbury C L, Fehr A N, Block S M. Kinesin moves by an asymmetric hand-over-hand mechanism [J]. Science,2003,302(5653):2130-2134
    [77]Block S M. Kinesin motor mechanics:Binding, stepping, tracking, gating, and limping [J]. Biophys J,2007,92:2986-2995
    [78]Toprak E, Yildiz A, Hoffman M T, et al. Why kinesin is so processive[J]. Proc Natl Acad Sci,2009,106:12717
    [79]von Delius M and Leigh D A. Walking molecules [J]. Chemical Society Reviews, 2011,40(7):3656-3676
    [80]Tomishige M. Stuuman N, Vale R D. Single-molecule observation of neck linker conformational changes in the kinesin motor proteins [J]. Nat Struc Mol Biol, 2006,13(10):887-894
    [81]Hariharan V, Hancock W O. Insight into the mechanical properties of the kinesin neck linker domain from sequence analysis and molecular dynamics simulations [J]. Cell Mole Bioeng,2009,2(2):177-189
    [82]Kahane J P. A century of interplay between Taylor series, Fourier series and Brownian motion[J]. Bulletin of the London Mathematical Society,1997,29 (3): 257-279
    [83]王竹溪.统计物理学导论[M].北京:人民教育出版社,1965.
    [84]范岱年,赵中立,许良英编译.爱因斯坦文集(第二卷)[M].北京:商务印书馆,1979
    [85]汪志诚.热力学·统计物理学[M].北京:高等教育出版社,第三版,2003
    [86]Risken H. The Fokker-Plank Equation[M]. Berlin:Springer-Verlag,1984.1-30
    [87]Kuwada N J. Simulation studies of Brownian motors[D]. [PhD Dissertation]. Eugune:The University of Oregon,2010
    [88]高天附.三种典型布朗马达的定向输运与非平衡态热力学分析[D].[博士学位论文].厦门:厦门大学,2009
    [89]Smoluchowski M V, Experimentally demonstrable molecular phenomena contradicting conventional thermodynamics[J]. Phys Z,1912,13:1069-1080
    [90]Parrondo J M R, Espanol P, Critieism of Feynman's analysis of the ratehet as engine[J]. Am J Phys,1996,64:1125
    [91]Magnaseo M O, Stolovizky G. Feynman's ratehet and Pawl[J]. J Stat Phys,1998, 93:615-632
    [92]Jarzynski C, Mazonka O. Feynman's ratehet and Pawl:an exactly solvable model[J]. Phys Rev E,1999,59:6448-6459
    [93]Houdou T, Takaga F. Irreversible operation in a stalled state of Feynman's ratehet[J]. J Phys Soc JPn.,1998,67:2974-2976
    [94]Sekimoto K. Kinetic characterization of heat bath and the energetic of the thermal ratehet models[J]. J Phys Soc JPn.,1997,66:1234-1237
    [95]Sakaguehi H. Fluetuation theorem for a Langevin model of the Feynman' sratehet[J]. J Phys Soc JPn.,2000,69:104-108
    [96]Feynman R P, Leighton R B, Sands M.The Feynman lectures on Physies[M]. M A: Addison-Wesley, Reading,1966, Vol.1, Chap.46
    [97]Bier M. Brownian ratchets in physics and biology[J]. Contemp Phys,1997, 38:371-379
    [98]Astumian R D, Derenyi I. Fluctuation driven transport and models of molecular motors and pumps[J]. Eur Biophys J,1998,27:474-489
    [99]Bustamante C, Keller D, Oster G. The Physics of Molecular Motors[J]. Acc Chem Res,2001,34:412-420
    [100]Astumian R D. Protein conformational fluctuations and free-energy transduction[J]. Appl Phys A:Mater Sci Process,2002,75:193-206
    [101]Mahadevan L, Matsudaira P. Motility powered by supramolecular springs and ratchets[J]. Science,2000,288:95-100
    [102]Hanggi P, Marchesoni F. Artificial Brownian motors:Controlling transport on the nanoscale[J]. Rev Mod Phys,2009,81:387-442
    [103]Kurzynski M,Chelminiak P. Stochastic action of actomyosin motor Original Research Article[J]. Physica A:Statistical Mechan,2004,336:123-132
    [104]Tu Z C. Recent advance on the efficiency at maximum power of heat engines[J].Chin Phys B,2012,21:020513
    [105]卓益忠,赵同军,展永.分子马达与布朗马达[J].物理,2000,29:712-718.
    [106]Anatoly B K and Michael E F. Molecular motors:a theorist's perspective[J]. Annu Rev Phys Chem.,2007,58:675-695
    [107]Lisowski B, Swiatek M, Zabicki M, Gudowska-Nowak E. Unerstanding operating principles and processivity of molecular motors[J]. Acta Physic Polonica B,2012, 43:1073-1092
    [108]耿轶钊.驱动蛋白颈链对接过程的模拟研究[D].[硕士学位论文].天津:河北工业大学,2010
    [109]Chen H B and Zheng Z G. Deterministic collective directional transport in one-dimensional flashing ratchet potential[J]. Moderm Physics Letters B,2011, 25:1179-1192
    [110]Bug A L R, Berne B J. Shaking-induced transition to a nonequilibrium state[J]. Phys Rev Lett,1987,59:948
    [111]赵同军.分子马达输运及能量转化效率的动力学[D].[博士学位论文].长春:吉林大学,1999
    [112]Rozenbaum V M, Yang D, Lin S H, et al. Energy losses in a flashing ratchet potential well shapes[J]. Physica A,2006,363:211-216
    [113]Shimokawa T, Kazunari M. The enhancement of the energetic efficiency by the cooperation of two-efficient flashing ratchets[J]. Biosystems,2007,88:316-322
    [114]Julicher F. Ajdari A, Prost J. Modeling molecular motors [J]. Rev Mod Phys,1997, 69:1269-1282
    [115]Derenyi I, Ajdari A. Collective transport of particles in a"flashing" periodic potential[J]. Phys Rev E,1996,54:R5-R8
    [116]Moon H Y, Park Y. Modified Miehaelis law in a two-state ratchet model for a molecular motor as a function of diffusion constant[J]. Phys Rev E,2003, 67:051918
    [117]Lattanzi G, Maritan A. Force Dependence of the Miehaelis Constant in a Two-State ratehet model for molecular motors[J]. Phys Rev Lett,2001, 86:1134-1137
    [118]GaoT F, Zhang Y, Chen J C. The current characteristic of two-state flashing ratchets composed of two asymmetric potentials [J]. Modern Physics Letters B, 2008,22:2967-2978.
    [119]Csahok Z, Family F, Vicsek T. Transport of elastically coupled particles in an asymmetric periodic potential[J]. Phys. Rev. E,1997,55:5179
    [120]Wilson R J. Kinesin's walk:Springy or gated head coordination? [J]. Biosystems, 2009,96:121-126
    [121]Hendricks A G, Epureanu B I, Meyhofer E. Collective dynamics of kinesin[J], Phys Rev E,2009,79:031929
    [122]Dan D, Jayannavar A M,Gautam I M. A biologically inspired model of two coupled Brownian motors[J]. Physica A,2003,318:40-47
    [123]Li Y X, Wu X Z, Zhuo Y Z. Directed motion induced by shifting ratchet[J]. Mod Phys Lett B,2000,14:2609-2616
    [124]Doering C R, Horsthemke W, Riordan J. Nonequilibrium fluctuation induced transport[J]. Phys Rev Lett,72,1995:2984-2987
    [125]Zheng Z G, Hu G, Hu B. Collective Directional Transport in Coupled Nonlinear Oscillators without External Bias[J]. Phys Rev Lett,2001,86:2273
    [126]Kanada R, Sasaki K. Theoretical model for motility and processivity of two-headed molecular motors[J]. Phys Rev E.2003,67:061917-061929
    [127]Ciudad A, Sancho J M, Tsironis G P. Kinesin as an electrostatic machine[J]. J Biol Phys,2007,32:455-463
    [128]Xie P, Dou S X, Wang P Y. A model for processivity of molecular motors[J]. Chinese Phys,2004,13:1569
    [129]Shao Q, Gao YQ. On the hand-over-hand mechanism of kinesin[J]. Proc Nat Acad Sciences,2006,103:8072-8077
    [130]Zabicki M, Gudowska-Nowak E. The efficiency of energy conversation for an entropy driven stepper motor walking hand-over-hand[J]. Acta Phys Pol B,2010, 41:1181-1189
    [131]Cilla S, Falo F, Floria L M. Mirror symmetry breaking through an internal degree of freedom leading to directional motion[J]. Phys Rev E,2001,63:031110
    [132]Ciudad A, Sancho J M, Lacasta A M. Dynamics of an inchworm nano-walker[J]. Physica A,2006,371:25-28
    [133]Derenyi I, Bier M, Astumian R D. Generalized Efficiency and its application to microscopic engines[J]. Phys Rev Lett,1999,83:903-906
    [134]Asfaw M, Bekele M. Currentent, maximum power and optimized effieiency of a Brownian heat engine[Jl. Eur Phys J B,2004,8:457-461
    [135]Marconi V I. Rocking ratchets in two-dimensional Josephson networks:collective effects and current reversal[J]. Phys Rev Lett,2007,98:047006
    [136]Munarriz J, Mazo J J, Falo F. A model for hand-over-hand motion of molecular motors[J]. Phys Rev E,2008,77:031915
    [137]Marchesoni F, Savelev S. Rectification currents in two-dimensional artificial channels[J]. Phys Rev E,2009,80:011120
    [138]Zheng Z G, Chen H B. Cooperative two-dimensional directed transport[J]. Europhys Lett,2010,92:30004
    [139]Carter N J, Cross R A. Mechanics of the kinesin step[J]. Nature,2005, 435:308-312
    [140]Tomishige M, Stuurman N, Vale R D. Single-molecule observations of neck linker conformational changes in the kinesin motor protein[J]. Nat Struct Mol Biol,2006, 10:887-894
    [141]Hanggi P, Marchesoni F. Artifical Brownian motors controlling transport on the nanoscale[J]. Rev Mod Phys,2009,81:387-442
    [142]Zhao A K, Zhang H W, Li Y X. Feedback control of two-headed Brownian motors in flashing ratchet potential[J]. Chin Phys B,2010,19:110506
    [143]Carter N J, Cross R A. Mechanics of the kinesin step[J]. Nature,2005, 435:308-312
    [144]Linke H. Ratchets and Brownian Motors:Basics, Experiments and Applications [J]. Springer-Verlag. Appl Phys A,2002,75:183
    [145]Denisov S, Zolotaryuk Y, Flach S, et al. Vortex and translational currents due to broken time-space symmetries[J]. Phys Rev Lett,2008,100:224102
    [146]Flach S, Yevtushenko O, Zolotaryuk Y. Directed current due to broken time-space symmetry[J]. Phys Rev Lett,2000,84:2358-2361
    [147]Yevtushenko O, Flach S, Zolotaryuk Y, et al. Rectification of current in ac-driven nonlinear systems and symmetry properties of the Boltzmann equation[J]. Europhys Lett.,2001,54:141-147
    [148]Cao F J, Dinis L, Parrondo J M R. Feedback control in a collective flashing ratchet[J]. Phys Rev Lett,2004,93:040603
    [149]Touchette H, Lloyd S. Information-theoretic limits of control[J]. Phys Rev Lett, 2000,84:1156-1159
    [150]Villegas J E, Savel'ev S, Nori F, et al. A Superconducting reversible rectifier that controls the motion of magnetic flux quanta[J]. Science,2003,302:1188-1191.
    [151]Siwy Z. Fabrication of a synthetic nanopore ion pump[J]. Phys Rev Lett,2002,89: 198103
    [152]Savel'ev S, Marchesoni F, Nori F. Controlling transport in mixtures of interacting particles using Brownian motors [J]. Phys Rev Lett,2003,91:010601
    [153]Bechhoefer J. Feedback for physicists:A tutorial essay on control[J]. Rev Mod Phys,2005,77:783-836
    [154]Bier M. The stepping motor protein as a feedback control ratchet[J]. Biosystems, 2007,88:301-307
    [155]Astumian R D, Bier M. Fluctuation driven ratchets:molecular motors[J]. Phys Rev Lett,1994,72:1766-1769
    [156]Feito M, Cao F J. Threshold feedback control for a collective flashing ratchet:threshold dependence[J]. Phys Rev E,2006,74:041109
    [157]Feito M, Cao F J. Optimal operation of feedback flashing ratchets[J]. J Stat Mech, 2009,1:31-35
    [158]Feito M, Cao F J. Time-delayed feedback control of a flashing ratchet[J]. Phys Rev E,2007,76:061113
    [159]Craig E M, Long B R, Parrondo J M R, et al. Effect of time delay on feedback control of a flashing ratchet[J]. Europhys Lett,2008,81:10002
    [160]Feito M, Cao F J. Transport reversal in a delayed feedback ratchet[J]. Physica A 2008,387:4553-4559
    [161]Erin M C, Nathan J K, Benjamin J L, et al. Feedback control in flashing ratches[J]. Ann Phys(Berlin),2008,17:115-129
    [162]Cao F J, Feito M, Touchette H. Information and flux in a feedback controlled Brownian ratchet [J]. Physica A,2009,388:113-119
    [163]Cao F J, Feito M. Thermodynamics of feedback controlled systems [J]. Phys Rev E, 2009,79:041118
    [164]Craig E M, Kuwada N J, Lopez B J, et al. Feedback control in flashing ratchets[J]. Ann Phys(Berlin),2008,17:115-129
    [165]Lopez B J, Kuwada N J, Craig E M, et al. Realization of a feedback controlled flashing ratchet[J]. Phys Rev E,2008,101:220601
    [166]Zhou H X, Chen Y D. Chemically drivern motility of Brownian particles[J]. Phys Rev Lett,1996,77:194-197
    [167]Astumian R D, Derenyi I. Fluctuation driven transport and models of molecular motors and pumps[J]. Eur Biophys J,1998,27:474-489
    [168]Alvarez-Perez M, Goldup S M, Leigh D A, et al. A Chemically-Driven Molecular Information Ratchet[J]. J Am Chem Soc,2008,130:1836-1838
    [169]Rebecca L H. Stochastic Runge-Kutta algorithms [J]. Phys Rev A,1992,45: 600-603
    [170]Wang H Y, Bao J D. The roles of ratchet in transport of two coupled particles[J]. Physica A,2004,337:13-26
    [171]Igarashi A, Tsukamoto S, Goko H. Transport properties and effeciency of elastically coupled Brownian motors[J]. Phys Rev E,2001,64:051908
    [172]Wang H Y, Bao J D. Cooperation behavior in transport process of coupled Brownian motors[J]. Physica A,2005,357:373-382
    [173]Reimann P, Bartussek R, Haussler R, et al. Brownian motors driven by temperature oscillations, Phys Lett A,1996,215:26-31
    [174]Cordova N J, Ermentrout B, Oster G F. Dynamics of single-motor molecules:The thermal ratchet model[J]. Proc Natl Acad Sci USA,1992,89:339-343
    [175]Luczka J, Czernik T, Hanggi P. Symmetric white noise can induce directed current in ratchets[J]. Phys Rev E,1997,56:39683975
    [176]Li Y X. Transport generated by fluctuating temperature[J]. Physica A,1997, 238:245-251
    [177]Bao J D. Directed current of Brownian ratchet randomly circulating between two thermal sources[J]. Physica A,1999,273:286-293
    [178]Bao J D. Transport induced by dichotomic temperature fluctuations [J]. Commun Theor Phys,2000,34:441-446
    [179]Hua W, Young E C, Fleming M L, ea al. Coupling of kinesin steps to ATP hydrolysis[J]. Nature,1997,388:390-393
    [180]Schnitzer M J, Block S M. Kinesin hydrolyses one ATP per 8-nm step[J]. Nature 1997,388:386-390
    [181]Coy D L, Wagenbach M, Howard J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes[J]. J Biol Chem,1999,274:3667-3671
    [182]Asfaw M, BekeleM C. Maximum power and optimized efficiency of a Brownian heat engine[J]. Eur Phys J B,2004,38:457-461
    [183]Jarzynski C, Mazonka O. Feynman's ratchet and pawl:An exactly solvable model[J]. Phys Rev E,1999,59:6448-6459
    [184]Zhang Y, Lin B H, Chen J C. Performance chanracteristics of an irreversible thermally driven Brownian miroscopic heat engine [J]. Eur Phys J B,2006,53: 481-485
    [185]Velasco S, Roco J M M, Medina A, et al. Feynman's ratchet optimization: maximum power and maximum efficiency regimes [J]. J Phys D:Appl Phys,2001, 34:1000-1006
    [186]Sakaguchi H. A Langvien simulation for the Feynman ratchet model[J]. J Phys Soc Jpn,1998,67:709-712
    [187]Florian Berger, Tim Schmiedl, Udo Seifert. Optimal potentials for temperature ratchets[J]. Phys Rev E,2009,79:031118
    [188]Nakagawa N, Komatsu T S. A heat pump at a molecular scale controlled by a mechanical force[J]. Europhys Lett,2006,75:22
    [189]Asfaw M, Bekele M. Exploring the operation of a tiny heat engine[J]. Physica A, 2007,384:346-358
    [190]Lin F, Bao J D. Environment-dependent continuous time random walk[J]. Chin Phys B,2011,20:040502
    [191]Cao F J, Dinis L, Parrondo J M R. Feedback control in collective flashing ratchet[J]. Phys Rev Lett,2004,93:040603
    [192]Zhang H W, Wen S T, Chen G R, et al. Two-dimensional model of elastically coupled molecular motors[J]. Chin Phys B,2012,21(3):038701
    [193]Bustamante C, Chemla Y R, Forde N R, et al. Mechanical processes in biochemistry[J]. Annu.Rev.Biochem,2004,73:705-748
    [194]Golubeva N, Imparato A, Peliti L. Efficency of molecular machines with contiuous phase space[J]. Europhys Letts,2012,97:60005
    [195]Lv Y, Wang H Y, Bao J D, Internal ratchet[J]. Acta Phys Sin,2010,59:466-471 (in Chinese)
    [196]Gomez-Martin A, Sancho J M. Symmetric Brownian motor[J]. Phys Rev E,2005, 71:021101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700