用户名: 密码: 验证码:
演化多目标优化多样性保持策略及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多目标优化问题广泛存在于科学和工程领域中,这类问题的子目标之间通常是相互冲突的,也就是说某个子目标性能的改善可能引起其他子目标性能的降低。传统的演化多目标优化算法往往通过将多目标优化问题转化为单目标问题而得到唯一的最优解,其权重的确定往往依赖于领域知识。基于Pareto支配关系的演化多目标优化算法因其能在一次运行得到一组可行解、不依赖于领域知识以及对问题的复杂性不敏感等特征已经成为研究多目标优化问题的重要方法和手段;因为种群规模的有限,演化多目标优化算法只能得到有限个离散的解组成的非劣解集,因此如何保证算法搜索到的非劣解集与最优解集的逼近程度以及非劣解集中解的分布均匀程度是衡量演化多目标优化方法两个重要的指标;在演化过程中尽量保持种群的多样性既有助于发现潜在的最优解,同时使得离散的非劣解集保持较好的均匀性,因而多样性保持策略和机制的研究就成为演化多目标优化算法的研究热点之一。论文主要围绕演化多目标优化算法的种群多样性保持和度量,收敛性和多样性的平衡进行研究,主要研究成果如下:
     针对演化多目标优化算法不仅要保持种群多样性,.而且需要提高算法收敛速度的问题,本文提出了基于层次聚类模型的演化多目标优化算法。该算法将整个种群根据个体的适应值等级划分为多个子种群,同一层次的个体之间独立地执行演化过程,避免了在演化初期适应值较差但具有潜力的个体因为与层次较高的个体竞争处于劣势过早被淘汰;在子种群间引入了个体的迁移策略,使子种群间能够以一定的迁移率进行个体的交换,实现优良基因的交互,不仅保持了种群的多样性,克服算法存在过早收敛的问题,而且平衡了种群的exploration和exploitation搜索,提高了算法收敛的速度。
     传统演化多目标优化算法大多采用单一的多样性保持策略,不能根据得到的近似Pareto前沿自适应地采用不同的多样性保持策略,以及演化算法的随机性,使得算法找到的优良个体呈现出一定的波动性,出现退化现象,针对这两个问题本文提出了一种自适应的多样性保持策略,包括分阶段多样性保持策略、插值策略和基于精度搜索的混合精英保持策略。分阶段多样性保持策略能使算法在演化过程前期,进行exploration搜索,开辟更多的非劣解,当非劣解数目达到一定的规模时,引导算法进行exploitation搜索,使算法搜索到尽可能多的近似Pareto前沿对应的非劣解;插值策略能在近似Pareto前沿出现间断或者解集集中在某一区域等情况时,进行插值或外推,增加算法在该区域的搜索能力,引导算法搜索到更多的非劣解;基于精度搜索的混合精英保持策略能使算法在出现波动时,采用外部归档集来保留和更新算法搜索到的非劣解,在一定程度上克服了演化算子(交叉、变异)的随机性。
     为了对演化多目标优化算法的收敛性和种群多样性策略进行度量和评价,设计了收敛性和多样性的度量指标。转化的代间距离既可以度量算法的收敛性也可以度量种群的多样性,本文根据这个指标来设计自适应的停机准则;种群的方差和信息熵来度量种群的多样性。
     为了验证本文所提出算法和策略的有效性,建立了无线传感器节点布局问题的最小化网络费用、最大化网络覆盖率的多目标优化模型。利用所提出的演化多目标模型和多样性保持策略对该模型进行求解,数值实验结果表明,算法搜索到的非劣解集对应的Pareto前沿分布较均匀,能够满足决策者的个人偏好或问题的需求。
There exist some multi-objective optimization problems (MOPs) in science and engineering, and these problems usually consist of several conflicting objectives that must be satisfied simultaneously. Only one optimal solution can be found in the classical multi-objective optimization algorithms by weighting method and most of these algorithms require some prior knowledge such as suitable weights.
     Evolutionary multi-objective optimization algorithms based on Pareto-optimal can find a set of solutions in a single run, and are less susceptible to the shape or continuity of the Pareto front. Therefore, evolutionary multi-objective optimization has become an important alternative approach to solve MOP. Due to the limitation of population size, evolutionary multi-objective optimization algorithms only can achieve a set of finite discrete solutions. So how to guarantee the distance between the approximation and the true Pareto set as possible as small and the spread of the Pareto solutions as possible as uniformly are the two key indexes of evolutionary multi-objective optimization algorithm; Maintaining the population diversity can not only help to find the promising optimal solutions, but make the discrete solutions spread uniformly. Therefore, the research of diversity maintenance strategy becomes one of the most important points of evolutionary multi-objective optimization algorithm. This dissertation mainly focuses on the study of population diversity maintenance and performance assessment of evolutionary multi-objective optimization algorithm and the balance between the convergence and the diversity, the major contributions of this dissertation are as follows:
     The evolutionary multi-objective optimization algorithms need to maintain the population diversity and to speedup the convergence. To achieve the balance between population and the algorithm convergence, a new evolutionary multi-objective optimization scheme based on hierarchical clustering model is proposed. In the scheme, the whole population is divided into multiple sub-populations according to the individual's fitness rank, moreover, individuals of different levels evolve independently, which prevent promising low-fitness individuals from eliminating in competition with individuals of higher-fitness at the beginning of evolutionary process. Individual migration strategies are constructed in the algorithm to carry out the interaction between sub-populations, which can allow individuals exchange at some migration rate to exchange promising genes. The evolutionary multi-objective optimization algorithm based on the hierarchical clustering model can maintain the diversity of population and avoid the premature solutions. The numerical experiments on benchmark test functions show that the proposed scheme can achieve the balance between the exploration and exploitation capability.
     Most of the conventional evolutionary multi-objective optimization algorithms employ single diversity maintenance strategy, which can't adapt the diversity maintenance strategies to the different approximate Pareto front. Due to the randomness of EA, the search process usually presents oscillation, even degeneration phenomenon at some extent. In order to address the above issues, this dissertation proposes an adaptive diversity maintenance strategy, which including staged diversity preservation strategy, interpolation- extrapolation strategy and hybrid diversity maintenance strategy based on exploitation.·The staged diversity maintenance strategy is used to exploration (global search) at the beginning of evolutionary process to find non-dominated solutions of a broader space and to exploitation (local search) at the end of evolutionary process to find as many non-dominated solutions of the approximate Pareto front as possible. When there exist the following two situations:approximate Pareto front disconnects or the non-dominated solutions concentrate in some regions, the interpolation- extrapolation strategy is used to improve the search capabilities and to find more non-dominated solutions in those regions. The hybrid diversity maintenance strategy based on exploitation employs an external archive to maintain and update the non-dominated solutions to mitigate the randomness of crossover and mutation operations of the evolutionary operators to some extent.
     This dissertation designs the metrics of convergence and diversity to measure and assess the convergence of evolutionary multi-objective optimization algorithm and the diversity of population. The inverted generation distance (IGD) can measure the convergence of algorithm and the diversity of population, which is also used to design the adaptive iteration termination criterion. The variance of population and informational entropy are used to assess the population diversity.
     To validate the effectiveness of the proposed scheme and strategy, this dissertation establishes a wireless sensor network node deployment model of minimizing the cost and maximizing network coverage. The proposed scheme and adaptive diversity maintenance strategy are used to solve the above problem. Numerical experiments demonstrate that the solutions set which distributed uniformly on the whole Pareto optimal front can fit the preference of decision makers and meet the requirement of problems.
引文
[1]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006:86-87
    [2]孟红云.多目标进化算法及其应用研究[D].西安:西安电子科技大学应用数学系,2005
    [3]Abraham A, Jain L. Evolutionary Multiobjective Optimization[M]. Theoretical Advances and Applications, Springer,2005
    [4]Deb K. Multi-Objective Optimization Using Evolutionary Algorithms[M]. New York: Wiley, John & Sons,2001
    [5]Zitzler E, Thiele L and Bader J. SPAM: Set Preference Algorithm for Multiobjective Optimization[C]. Lecture Notes in Computer Science 5199,2008, 847-858.
    [6]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007:1-50
    [7]Rosenberg R S. Simulation of Genetic Populations with Biochemical Properties [D]. University of Michigan, Ph.D.thesis,1967
    [8]Schaffer J D.Multiple Objective Optimization with Vector Evaluated Genetic A1 gorithms [C]. Proceedings of the First International Conference on Genetic Algorithms and their Applications,1985,93-100
    [9]Van Veldhuizen D A, Lamont G B. Multiobjective Evolutionary algorithms: Analyzing the state-of-the-art [J]. IEEE Transaction on Evolutionary Computation, 2000,8(2):125-147
    [10]Jaszkiewicz A. On the Performance of Multiple-objective Genetic Local Search on the 0/1 Knapsack Problem-A Comparative Experiment[J]. IEEE Transactions on Evolutionary Computation,2002,6:402-412
    [11]Zitzler E. Evolutionary Algorithms for Multiobjective Optimization:Methods and Application [D]. PhD thesis. Zurich:Swiss Federal Institute of Technology (ETH),1999
    [12]Fonseca C M, Fleming P J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization [C]. Proceedings of the Fifth International Conference on Genetic Algorithms. San Fransisco,1993,416-423
    [13]Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms [J]. Evolutionary Computation,1994,2(3):221-248
    [14]Horn J, Nafpliotis N, Goldberg D E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization[C]. Proceedings of the First IEEE Conference on Evolutionary Computation, Piscataway,1994,82-87
    [15]Erickson M, Mark,Mayer A, Horn J. The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems. Presented at First International Conference on Evolutionary Multi-Criterion Optimization [C]. Lecture Notes in Computer Science 1993,2001,681-695.
    [16]Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197
    [17]Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271
    [18]Zitzler E, Thiele L. An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach. Computer Engineering and Communication Networks Lab(TIK),Swiss Federal Institute of Technology (ETH), Zurich, Switzerlan, Technical Report 43,1988
    [19]Zitzler E, Laumanns M, Thiele L. SPEA2:Improving the Strength Pareto Evolutionary Algorithm [C]. Proceedings of Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems,2002,95-100
    [20]Hattori K, Torii Y. Effective Algorithms for the Nearest Neighbor Method in the Clustering Problem[J]. Pattern Reeognition.1993,26:741-746.
    [21]Knowles J, Corne D. The Pareto Archived Evolution Strategy:A New Baseline Algorithm for Pareto Multiobjective Optimisation [C]. Congress on Evolutionary Computation,1999,98-105.
    [22]Knowles J D, Corne D W. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy [J]. Evolutionary Computation,2000,8(2): 149-172
    [23]Corne D W, Knowles J D, Oates M J. The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization[C]. Parallel Problem Solving from Nature, Berlin,2000,839-848.
    [24]Corme D W, Jerram N R, Knowles J D, Oates M J. PESA-II:Region-based Selection in Evolutionary Multiobjective Optimization [C], Proceeding of Genetic and Evolutionary Computation Conference, Morgan Kaufmann,2001,283-293
    [25]Coello Coello C A, Toscano-Pulido G, Salazar Lechuga M. Handling Multiple Objectives with Particle Swarm Optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(3):256-279
    [26]Toscano-Pulido G, Coello Coello C A, Santana-Quintero L V. EMOPSO:a Multi-objective Particle Swarm Optimizer with Emphasis on Efficiency[C]. Lecture Notes in Computer Science 4403,2007,272-285
    [27]Yen G G, Lu H. Dynamic Multiobjective Evolutionary Algorithm:Adaptive Cell-based Rank and Density Estimation[J]. IEEE Transaction on Evolutionary Computation,2003,vol7(3):253-274.
    [28]Lu H, Yen G G. Rank-density-based Multiobjective Genetic Algorithm and Benchmark Test Function Study[J]. IEEE Transaction on Evolutionary Computation,2003,vol7(4):325-343.
    [29]Hu J, Goodman E D. The Hierarchical Fair Competition HFC Model for Parallel Evolutionary Algorithms[C]. Proceedings of the 2002 Congress on Evolutionary Computation. IEEE Press,2002,49-54
    [30]Hu J, Goodman E D, Seo K. Continuous Hierarchical Fair Competition Model for Sustainable Innovation in Genetic Programming [M]. Genetic Programming Theory and Practice, Ann Arbor,2003,81-98
    [31]Hu J, Goodman E D, Seo K, Pei M. Adaptive Hierarchical Fair Competition (AHFC) Model for Parallel Evolutionary Algorithms [C]. Proceedings of the Genetic and Evolutionary Computation Conference,2002,772-779.
    [32]Hiroyasu T, Ishida H, Miki M, Yokouchi H. Difficulties of Evolutionary Many-Objective Optimization. ISDL Report,2008.
    [33]Chaudhuri S, Deb K. An Interactive Evolutionary Multi-objective Optimization and Decision Making Procedure [J]. Applied Soft Computing,2009,497-499
    [34]Hakanen J, Aittokoski T. Comparison of MCDM and EMO Approaches in Wastewater Treatment Plant Design[C]. Lecture Notes in Computer Science 5467, 2009,350-364
    [35]Jaszkiewicz A, Branke J. Interactive Multiobjective Evolutionary Algorithms[C]. Lecture Notes in Computer Science 5252,2008,179-193
    [36]Mostaghim S, Teich J. The Role of Epsilon-dominance in Multi Objective Particle Swarm Optimization Methods [C]. Proceedings of the 2003 Congress on Evolutionary Computation (CEC'2003). Canberra,2003,1764-1771
    [37]Deb K, Mohan M, Mishra S. Evaluating the Epsilon-domination Based Multi-objective Evolutionary Algorithm for a Quick Computation of Pareto-optimal Solutions [J]. Evolutionary Computation,2005,13(4):501-525
    [38]Fernandez E, Lopez E, Bernal S. et al. Evolutionary Multiobjective Optimization Using an Outranking-based Dominance Generalization [J]. Computers & Operations Research.2009,37(2010):390-395
    [39]Branke J, Mostaghim S. About Selecting the Personal Best in Multiobjective Particle Swarm Optimization [C]. Lecture Notes in Computer Science 4193,2006, 523-532.
    [40]Gao J, Fang L. A Novel Artificial Immune System for Multiobjective Optimization Problems[J]. Lecture Notes in Computer Science 5553,2009,88-97.
    [41]Deb K, Goldberg D E. An Investigation of Niche and Species Formation in Genetic Function Optimization[C]. Proceedings of the Third International Conference on Genetic Algorithms. San Mateo:Morgan Kaufmann Publishers,1989,42-50
    [42]Mahfoud S W. Niching Methods for Genetic Algorithms [D]. Ph.D. dissertation, University of Illinois, Urbana-Champaign,1995.
    [43]史长琼,王大卫,黄辉,张大方.基于个体优化的自适应小生境遗传算法[J].计算机工程与应用,2009,45(5):110-112.
    [44]Sareni B, Krahenbuhl L. Fitness Sharing and Niching Methods Revisited[J]. IEEE Transactions on Evolutionary computation,1998,2(3):97-106.
    [45]Goldberg D E, Richardson J. Genetic Algorithm with Dynamic Niche Sharing for Multimodal Function Optimization [C]. Proceedings of Genetic Algorithms and Their Applications, the Second International Conference on Genetic Algorithms. Hillsdale:Lawrence Erlbaum,1987,41-49
    [46]Yin X, Germay N. A Fast Genetic Algorithm with Sharing Scheme Using Cluster Analysis Methods in Multimodal Function Optimization [C]. Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, Berlin, Germany,1993,450-457.
    [47]Miller B L, Shaw M J. Genetic Algorithms with Dynamic Niche Sharing for Multimodal Function Optimization [C]. Proceedings IEEE International Conference Evolutionary Computation, Piscataway,1996,786-791.
    [48]徐建伟,黄辉先,彭维,李密青.多目标进化算法的分布度评价方法[J].计算机工程,2008,34(20):208-209.
    [49]谢承旺,丁立新.多目标进化算法中多样性策略的研究[J].计算机科学.2010,2:175-179
    [50]Knowles J., et al. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. Swiss Feferal Institute of Technology (ETH) Zurich: Computer Engineering and Networks Laboratory (TIK), Technique Report: 214,2005, July
    [51]Zitzler E., et al. Performance Assessment of Multiobjective Optimizers:An Analysis and Review [J]. IEEE Transactions on Evolutionary Computation,2003, 7(2):117-132
    [52]Laumanns M, Thiele L, ZiZtler K, Deb E. Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization[J]. Evolutionary Computation,2002,10(3):263-282.
    [53]Bosman P, Thierens D. The Balance Between Proximity and Diversity in Multiobjective Evolutionary Algorithms[J]. IEEE Transactions on Evolutionary Computation,20s03,7(2):2-3
    [54]Van Veldhuizen D A, Multiobjective Evolutionary Algorithms:Classifications, Analyses, and New Innovations [D]. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May 1999.
    [55]Li H, Zhang Q. Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2009,13(2):284-302
    [56]Schott J R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization [D]. Master's thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1995.
    [57]曹雪虹,张宗橙.信息论与编码[M].北京:北京邮电大学出版社,2003.
    [58]Cui X X, Li M, Fang T J. Study of Population Diversity of Multiobjective Evolutionary Algorithm Based on Immune and Entropy Principles[C]. Proceedings of the Congress on Evolutionary Computation 2001 (CEC'2001). Piscataway:IEEE Service Center,2001,1316-1321
    [59]Farhang-Mehr A, Azarm S. Diversity Assessment of Pareto Optimal Solution Sets:an Entropy Approach[C]. Proceedings of Congress on Evolutionary Computation (CEC'2002). Piscataway:IEEE Service Center,2002,723-728
    [60]Farhang-Mehr A, Azarm S. Entropy-based Multi-objective Genetic Algorithm for Design Optimization[J]. Structural and Multidisciplinary Optimization,2002, 24(25):351-361
    [61]Qiong C,Shengwu X,Hongbing L. Evolutionary multi-objective optimization algorithm based on global crowding diversity maintenance strategy[C].Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation(GEC'2009),Shanghai, China,2009:803-806
    [62]巩敦卫,郝国生,周勇,孙晓燕.分层交互式进化计算及其应用[J].控制与决策.2004,19(10):1117-1120.
    [63]甄彤.基于层次与划分方法的聚类算法研究[J].计算机工程与应用.2006,42(8)178-1 80.
    [64]吴帆,李石君.一种高效的层次聚类分析算法[J].计算机工程,2004,30(9):70-71.
    [65]孙晓燕,巩敦卫.变种群规模合作型协同进化遗传算法及其在优化中的应用[J].控制与决策,2004,19(12):1437-1440
    [66]Sharma D, Deb K, Kishore N N. An Improved Initial Population Strategy for Compliant Mechanism Designs Using Evolutionary Optimization. KanGAL Report, 2008.
    [67]Haubelt C, Gamenik J and Teich J. Initial Population Construction for Convergence Improvement of MOEAs[C]. Lecture Notes in Computer Science.2005. 191-205.
    [68]蒋勇,李宏,焦永昌.改进NSGA-Ⅱ终止判断准则[J].计算机仿真.2009.26(2):196-200.
    [69]Zitzler E, Deb K and Thiele L. Comparison of Multi-objective Evolutionary Algorithms:Empirical Results[J]. Evolutionary Computation.1999,8(2):173-195
    [70]Babbar M, Lakshmikantha A, Goldberg D E. A Modified NSGA-II to Solve Noisy Multiobjective Problems [C]. AAAI, Chicago,2003,21-27
    [71]Jozefowiez N, Semet F, Talbi E G. Enhancements of NSGA Ⅱ and Its Application to the Vehicle Routing Problem with Route Balancing[C]. Lecture Note in Computer Science 3871,2005,131-142
    [72]Nojima Y, Narukawa K, Kaige S, Ishibuchi H. Effects of Removing Overlapping Solutions on the Performance of the NSGA-Ⅱ Algorithm [C]. Lecture Notes in Computer Science 3410,2005,341-354
    [73]K"oppen M, Yoshida K. Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems [C]. Lecture Notes in Computer Science 4403,2007,727-741
    [74]Garc'ia A J, Verdejo V G, Figueirasvidai A R. New Algorithms for Improved Adaptive Convex Combination of LMS Transversal Filters[J]. In:IEEE Tram Signal Processing.2005,54(6):2239-2249.
    [75]郑宁国.趋势外推法数学模型的几何凸性分析[J].高等数学研究,2007,10(1):4547.
    [76]Coello C A C. An Updated Survey of GA-Based Multiobjective Optimization Techniques[J]. ACM Computing Surveys,2000,32(2):109-143
    [77]Coello C A C. Evolutionary Multi-Objective Optimization:a Critical Review[M]. Evolutionary Optimization, New York:Kluwer Academic Publishers,2002:117-146
    [78]Bagchi T P. Multiobjective Scheduling by Genetic Algorithms[M]. Boston: Kluwer Academic Publisher,1999
    [79]Wanner E F, Guimar'aes F G, Takahashi R H C, Fleming P J. Local Search with Quadratic Approximations into Memetic Algorithms for Optimization with Multiple Criteria [J]. Evolutionary Computation,2008,16(2):185-224
    [80]Mostaghim S, Teich J. Strategies for Finding Good Local Guides in Multi-objective Particle Swarm Optimization (MOPSO) [C]. Proceedings of 2003 IEEE Swarm Intelligence Symposium. Indianapolis,2003,26-33
    [81]Alvarez-Benitez J E, Everson R M, Fieldsend J E..A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts[C]. Lecture Notes in Computer Science 3410,2005,459-473
    [82]Reyes-Sierra M, Coello C C A. Improving PSO-based Multiobjective Optimization Using Crowding, Mutation and Epsilon-dominance[C]. Lecture Notes in Computer Science 3410,2005,505-519
    [83]Akyildig I F, Su W, Sankarasubramaniam Y, et al. A Survey on Sensor Networks[J]. IEEE Communications Magazine,2002,8:721-734.
    [84]陆星家,丁永生,李龙飞.多目标进化策略在无线传感器网络中的优化设计[J].计算机工程与应用200945(11):30-33
    [85]谢洁锐,刘才兴,胡月明等.无线传感器网络的部署[J].传感器与微系统,2007,26(1):4-7.
    [86]Howard A, Mataric M J, Sukhatme G S. An Incremental Self-Deployment Algorithm for Mobile Sensor Networks[J], Autonomous Robots, Special Issue on Intelligent Systems,2002,13:113-126.
    [87]Howard A, Mataric M J, Sukhatme G S. Mobile Sensor Network Deployment Using Potential Fields:A Distributed, Scalable Solution to the Area Coverage Problem [C] Proceedings of the 6th International Conference on Distributed Autonomous Robotic Systems, Fukuoka,2002,299-308.
    [88]Zou Y, Chakrabarty K. Sensor Deployment and Target Localization Based on Virtual Forces[C] Proceedings of the IEEE INFOCOM. New York, USA:IEEE, 2003.1293-1303.
    [89]Poduri S, Sukhatme G S. Constrained Coverage in Mobile Sensor Networks[C]. Proceedings of the IEEE International Conference on Robotics and Automation. New Orleans:L A,2004:40-50.
    [90]Dhillon S S, Chakrabarty K, Iyengar S. Sensor Placement for Grid Coverage Under Imprecise Detections[C]. Proceedings of the International Conference on Information Fusion,2002,1581-1587.
    [91]Chakrabarty K, Iyengar S S, Qi H et al. Grid Coverage for Surveillance and Target Location In Distributed Sensor Networks[J].IEEE Transactions on Computers, December 2002,51:1448-1453.
    [92]汪学清,杨永田,种基于虚拟菱形网格的传感器节点布置算法[J].计算机应用,2006,26(7):1554-1556
    [93]刘华峰,金士尧.基于体心立方格的三维传感器网络部署与组织[J].计算机工程与科学,2008,30(4),109-112
    [94]张波,黄刘生,徐宏力,基于概率探测模型的传感器结点配置研究[J].计算机仿真2007,24(6):120-123
    [95]Zou Y, Chakrabarty K. Uncertainty-aware and Coverage-oriented Deployment for Sensor Networks [J]. Journal of Parallel and Distributed Computing,2004,64(7): 788-798.
    [96]Zhang J, Yan T, Son S H. Deployment Strategies for Differentiated Detection in Wireless Sensor Networks[C]. Proceedings of the 3rd Annual IEEE International Conference on Sensor Mesh and Ad Hoc Communications and Networks, 2006,315-326.
    [97]Wu J, Yang S. Optimal Movement-assisted Sensor Deployment and Its Extensions in Wireless Sensor Networks[C]. The Twelfth International Conference on Parallel and Distributed Systems.Minneapolis:IEEE Press,2006,261-270
    [98]公维宾,常义林,沈中等.传感器网络中基于最小覆盖重叠的移动部署[J].系统仿真学报,2008,20(13):3604-3609.
    [99]温俊,蹇强,蒋杰等.保证覆盖的无线传感器网络梯度部署方法[J].计算机工程与科学,2008,30(6):86-90.
    [100]Bai X, Kumar S, Yun Z, et al. Deploying Wireless Sensors to Achieve Both Coverage and Connectivity[C]. Proceedings of the 7th International Symposium on Mobile Ad Hoc Networking and Computing,2006,131-142.
    [101]Suen Y. A Genetic-algorithm Based Mobile Sensor Network Deployment Algorithm[EB/OL],http://users.ece.utexas.edu/-bevans/courses/ee382c/projects/sprin g04/YuklaiSuen/FinalReport.pdf
    [102]胡江华,常新龙,李进军等.遗传算法在传感器优化配置中的应用[J].传感器与微系统,2008,27(3):109-113
    [103]王达山,黄刘生,徐宏力等.基于矢量的无线传感网络能量有效配置算法[J].计算机研究与发展,2008,45(4):626-635
    [104]陈小民,蒋兴舟.确定无线传感器网络节点配置数目的一种方法[J].武汉科技大学学报(自然科学版),2005,28(1):78-81
    [105]陆克中,黄刘生,万颍渝等.无线传感器网络中传感器节点的布置[J].小型微型计算机系统,2006,27(11):2003-2006
    [106]O'Rourke J.Art C,allery Theorems and Algorithms[M].Oxford:Oxford Univ.Press,1987.
    [107]霍宏伟,郜帅,牛延超等.基于室内传播模型的无线传感器网络节点部署策略研究[J].中国工程科学,2008,10(9):64-69
    [108]Wang X Q, Yang Y T, Zhang Z L. A virtual rhomb-based movement-assisted sensor deployment algorithm in wireless sensor Networks[A].Proceedings of the International Multi-Symposiums on Computer and Computational Sciences[C]. China: Hangzhou,2006:491-495.
    [109]Clouqueur T, Phipatanasuphom V, Ramanathan P, et al. Sensor deployment strategy for target detection[C]. Proceedings of ACM Workshop on Wireless Sensor Networks and Applications(WSNA02), Atlanta,2002,42-48.
    [110]Corke P, Hrabar S, Peterson R, et al. Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle[C]. Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans:LA,2004, 3602-3609.
    [111]俞黎,阳王,能张卫.异构无线传感器网络中异构节点的部署与优化[J].计算机科学,2008,35(9):48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700