用户名: 密码: 验证码:
基因调控网络的建模及其结构分解方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物信息学是在从信息处理与分析的角度研究生命现象的一门新兴学科,基因调控网络的建模研究是近年来研究系统生物学的有效信息化手段之一。基因调控网络是在高度联通的细胞环境中,将基因组作为一个整体的组织结构从系统学角度来研究基因的功能与行为。随着信息技术和计算科学的进步,在过去几十年的时间里,基因调控网络得到了广泛的研究和迅猛的发展,在详细解读细胞代谢的功能基础上,对探索生命活动的机理,疾病的起因和治疗发挥了巨大的作用。
     本文主要针对基因调控网络的模型的参数构建和结构分析的问题进行了研究,包括布尔基因网络的在随机状态下的拓扑性质的证明,基于概率布尔网络参数构建基础上的结构分解,模糊布尔基因网络的智能计算方法构建,从解构和建构两个角度对基因调控网络进行研究。此外,提出一种适合时序基因表达数据的混合聚类算法。具体来说,本论文的创造性工作主要分述如下:
     1结合小世界网络理论,采取一种布尔网络随机化的方法,结合复杂网络的理论,对经典随机布尔网络进行随机采样和仿真,证明作为基因调控网络模型的布尔网络在随机化选择下具有小世界拓扑结构的有序性,生物学意义可解释为细胞生命周期对细胞核中基因在干扰状态下的稳定性,并介绍一种构建布尔网络的简单方法。
     2以概率布尔型基因调控网络为例,提出一种大型基因调控网络结构分解的方法。其基本思想是结合对布尔基因网络的拓扑性质的证明,结合概率布尔网络的结构和构建方法,将基因调控网络抽象化,结合先验的和数学的方法制定规则,寻找网络中的关键节点,通过关键节点的中心作用,提出一种最短路径最大信息流的方法计算节点之间最短路径上的信息传递,以确定节点之间的相互调节作用,从而达到将基因调控网络分割成小规模的功能性集中的子网络。
     3构建一种模糊化的基因调控网络模型。在布尔型基因调控网络与概率布尔型基因调控网络的结构以及性质的研究基础上,引入对基因相互之间调控作用的模糊层次的划分,结合先验知识建立模糊隶属度函数构建模糊概率布尔网络。并对此网络进行模拟和仿真,讨论其稳定状态和在干扰下的鲁棒性。
     4提出了一种对时序基因表达数据动态模糊聚类的新算法。针对于时序基因表达数据的动态关联性特点,在模糊聚类算法的基础上引入了自回归模型,提出了一种动态模糊聚类新算法,将时序基因表达数据作为一组时间序列进行动态的聚类分析。该算法克服了传统硬聚类算法的绝对性,迭代的过程进行了模糊调整和动态预测,并且充分利用了时序基因表达数据在个时间点上的自相关性,使得对基因数据的聚类效果更为理想。
Bioinformatics is a new subject on processing and analysis life information. In recent years, modeling gene regulatory networks become one of the effective means of systems biology research. In the highly connected cells environment, in order to get the gene regulatory networks, we make the genome as a whole organization structure, study function and behavior of gene from the systematic point of view. As the advances in information technology and computational science, gene regulatory network has been extensively studied in the last decade. On the basis of understanding the functions of cell metabolism in detail, it plays a significant role in exploring the mechanism of life activities and causes of disease.
     This paper is mainly aimed at several issues based on structure building and analysis of gene regultory networks. Including: proving the ordering of Boolean network in random states, sutructure analysis of probability Boolean gene regulatory network basing on the parameters, building fuzzy Boolean gene regulatory network in intelligent methods. Besides the study on construction and deconstruction on gene regulatory networks, a new hybrid clustering algorithm for analyzing time-course gene expression. To be concrete, the contributions of this dissertation are as follows:
     1. Combined with the small-world network theory,take a method for randomized Boolean networks, Based on the theory of complex networks,the classical random sampling random Boolean networks and simulation Prove the model as a Boolean gene regulatory network topology of the network, and presents a simple way to build a Boolean network.
     2. In the second part, a new method is presented for decomposing the structure of gene regulatory networks, by taking the probability Boolean network (PBN) as a typical model. Basic steps as follows: first, according to the strcuture of probability Booloean networks, search for key genes in the abstract network with nodes and connections; second, starting from these key nodes(genes), calculating mutual information between geneon the shortest path with maximum average mutual information passing can be found. Each ordinary node can be distinguished which sub-network it belongs to. Ultimately, the choice of function parameters and scale of sub-network depends on the biological consideration.
     3. A new gene regulatory network model via the fuzzy logic is proposed. Conmbined with the research on the structure of gene regulatory networks and obtained experience, judging genes expression level on the fuzzy rule, to contribute a new model of gene regulatory network.
     4. A novel fuzzy clustering algorithm is proposed for analysing time-course gene expression data. Compared with conventional hard partition clustering algorithms, fuzzy clustering algorithms are robust to the scaling transformation of a dataset. However, they cannot make full use of the important dynamic information in time-course gene expression data. Accordingly, autoregressive (AR) model can be introduced into fuzzy clustering algorithm; we explore the proposed clustering algorithm DFC, which can analyze a time-course gene expression data as a set of time series dynamically. In this way, the important dynamic information in time-course gene expression data is used adequately. And the forecast processes in AR model is adjusted using the corresponding membership functions, such that better clustering results for time-course gene expression data is obtained.
引文
1. Teresa KA, The babel of bioinformatics [J]. Science, 2000,290(5491):471.
    2.边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2000:273-283
    3. Kitano.h. Computional Systems Biology [J]. Nature, 2002, 420(6912):206-210.
    4.李某勋.复杂系统布尔网络模型及应用[J].系统科学学报,2006,14(4):33-36.
    5. Kauffman. S A. The origins of older self-organization and selection in evdution [J]. 1993.
    6. McGraw-Hill, Introduction to Algorithms [M], Second Edition. MIT Press 2001. Section 24.3: Dijkstra's algorithm: 595–601.
    7.王川.系统生物学---后基因组时代的生物学[J].生物学通报,2006,41(1):19-21.
    8. T. Akutsu, S. Miyano, and S. Kuhara, Algorithms for inferring qualitative models of biological networks [J]. Biocomput. 2000.
    9. Siegal ML, Promislow DE, and Bergman A. Functional and evolutionary inference in gene networks: does topology matter? [J]. Genetica, 2006, 129(1): 83-103.
    10. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological changes [J]. Nature, 2004:308-312.
    11.崔光照,张勋才,牛云云.重建基因调控网络[J].生物信息学,2006,5(3):125-128.
    12.易东,李辉智,杨梦苏.基因调控网络研究与数学模型的建立[J].中国现代医学杂志,2003,13(24):74-78.
    13. Kitano H. System biology: a brief overview [J]. Science, 2002, 295(5560):1662-1664.
    14. Yeung K Y.Model-based clustering and data trans-formations for gene expression data. Bioinformatics, 2001, 17:977-987.
    15. Liang S. Fuhrman S, Somogyi R. Reval,A general reverse engineering algorithm for inference of genetic network architectures [J]. Biocomputing, 1998, (3):18-29.
    16. Ranadip Pal, Ivan Ivanov, etc. Generating Boolean networks with a prescribed attractor structure. Bioinformatics [J], 2005, 21(21):4021-4025.
    17. Lee TI, Rinaldi NJ, Robert F, et al. Transcripitional regulatory networks in secoharomy cescerevisiae [J]. Science, 2002, 298:799-804.
    18. Friedman.N, Linial M, Nachman, et.al. Using bayesian netorks to analyze expression data [J]. Compute Biol, 2000, (7):601-620.
    19. Elowitz M B, Lerbers S. A synthetic oscillatory network of transcriptional regulators [J]. Nature, 2000, 403:335-338.
    20. Mestl.T, Plahte E, Omhott S W. A mathematical framework for describing and analyzing gene regulatory networks[J]. Theor Biol, 1995, 176:291-300.
    21. Akutsu T, Miyano S, Kuheuas S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinfomatics.
    22.常畅.系统生物学的研究进展[J].生物学通报,2007,42(6):18-21.
    23. L IANG S, FUHRMAN S, SOMOGYIR. Reveal, a general reverse engineering algorithm for inference of genetic network architectures[C]. Proc of Pacific Symp Biocomp. Singapore: World Scientifie Publishing, 1998: 18-29.
    24. Huang S. Gene expression profiling, genetic networks, and cellular states: an intrating concept for tumorigenesis and drag discovery [J], J Mol Med, 1999, 77 (6):469-480.
    25. Jason Ernst, Oded Vainas, et al. Reconstructing dynamic regulatory maps [J]. Molecular Systems Biology, 2007, 3(74).
    26.齐金鹏,面向肿瘤治疗的基因调控网络与其动力学模型[M].2007.
    27.易东,杨梦苏,李辉智,黄明辉,王文昌.相关分析在建立基因调控网络中的应用[J].中国卫生统计,2003,20(3):144-146.
    28. Murphy K, Mian S. Modelling gene expression data using dynamic Bayesian networks. Technical Report, Berkely: Computer Science Division, University of California, 1999.
    29. Perrin B, Ralaivola L, Mazurie A, et al. Gene networks inferernce using dynamic Bayesian networks [J]. Bioinformatics, 2003, 19(2):138-148.
    30. Paul T. Spellman, Gavin Sherlock. Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast Saccharomy cescerevisiae by Microarray Hybridization. Molecular Biology of the Cell [J], 1998, 9:3273–3297.
    31. Weaver D C, Workman C T, Stormo G D. Modeling regulatory networks with weight matics[J]. Pacific Symposium on Biocomputing, 1999, 4:112-123.
    32. YID, Yang M, LIH, et al. The construction of gene network by correlation analysis [J]. Chinese Journal of Health Statistics, 2003, 20(3):144-146.
    33. Li C X, Li X, Guo Z, Gong B S, Tu K. Analysis of the mRNA expression similarity of genes in the same gene expression regulatory pathway [J]. Hereditas (Beijing), 2004, 26 (6): 929-933.
    34. Friedman N, Inferring celluar networks using probabilistic graphical models [J]. Science, 2004, 303(5659):799-807.
    35. Friefman N, Linial M, Nachman J, er al. Using Bayesian networks to analyse expression data [J]. Journal Computational Biology, 2000.7(4):601-620.
    36. Simon I, Barnelt J, Hannelt N, et al. Serial regulation of transcriptional regulators in the yeast cell cycle [J]. Science, 1995, 269:650-656.
    37.罗强,易东云,杨文强.基于概率模糊逻辑的蛋白质信号网络推断方法[J].上海理工大学学报,2008,30(3):276-282.
    38.张国伟,邵世煌,张颖,齐金鹏.布尔基因网络及其研究[J].东华大学学报(自然科学版),2006,32(2):127-129.
    39. Kyoda K, Morohashi M, Onamni S, et al. A gene network inference method from continuous-valus gene expression data of wild-type and mutants [J], 2000, 11:196-204.
    40. Bhan A, Galas D J, Dewey T G. A duplication growth model of gene expression networks [J]. Bioinformatics, 2002, 18(11): 1486-1493.
    41. Li C X, Li X, Guo Z, Gong B S, Tu K. Analysis of the mRNA expression similarity of genes in the same gene expression regulatory pHereditas [J], Hereditas, 2004, 26(6): 929-933.
    42. Tommi A. Simulation tool for genetic regulatory networks [J], Bioinformatics. 2003.
    43.王丽琴,张玲,李建更.布尔网络小世界动态性[J].现代电子技术,2008,7:151-153.
    44.刘天飞,唐国庆,唐强,李学伟.运用布尔网络模型和贝叶斯网络模型推测基因调控网络的比较研究[J].四川农业大学学报,2008,26(2):176-179.
    45. Maraud S, et al. Gene expression data analysis with a dynamically extended self-organized map that exploits class information [J], Bioinformatics, 2002, 18:1446-1453.
    46. Akutsu T, et al. Identification of gene regulatory networks by strategic gene disruptions and gene overexpressions [C]. Proceedings of the ninth annual ACM-SIAM symposium on discrete algorithms, 1998: 695-702.
    47. Quackenbush J. Computational analysis of microarray data [J]. Nat Reviews Genetics, 2001, 2:418-427.
    48. Rice J J,Tu Y, Stslsvitzky G. Reconstructing biological networks using conditional correlation analysis [J]. Bioinformatics, 2005, 21: 765-773.
    49. Imoto S, Goto T, Miyano S. Estimation of genetic networks and functional structuresbetween genes by using Bayesian networks and nonparametric regression [J]. Pac Syrnp Biocornput, 2002, 7:175-186.
    50. Hartemink A J, Gifford D K, Jaakkola T S, Young R A. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks [J]. Pac Syrnp Biocomput, 2001, 6: 422-433.
    51.杨胜利.系统生物学研究进展[J].中国科学院(院刊),2004,19(1):31-34.
    52.蒋雄飞,杨洁,王炜.Alzheimer's疾病相关蛋白质相互作用网络构建及其相互作用预测[J].南京大学学报(自然科学),2006,42(5):479-489.
    53.齐金鹏,邵世煌,谢锦丽,朱莹.DNA损伤下的P53基因调控网络建模与仿真[J].系统仿真学报,2007,19(14):3321-3323.
    54.王浩,何海燕,姚宏亮,胡大伟.IE_K2:一种基于贝叶斯网络的高效基因调控网络构建方法[J].大连海事大学学报,2008,34(3):111-114.
    55.徐肖江,王连水,丁达夫.从酵母表达时间序列估计基因调控网络[J].生物化学与生物物理学报,2003,35(8):707-716.
    56.李宏,杨体强,达赖,罗辽复.大肠杆菌SD序列与基因表达水平的关系[J].内蒙古大学学报(自然科学版),1998,29(2):172-176.
    57.关薇,王建,贺福初.大规模蛋白质相互作用研究方法进展[J].生命科学,2006,18(5):507-512.
    58. Chen, et al. Modeling gene expression with differential equations [C], Proc. Of Pacific Symposium on Biocomputing, 1999, 4:29-40.
    59.张宏怡,张军英.基于因果关系挖掘的概率基因调控网络的构建[J].计算机工程,2007,33(15):26-28.
    60.王士同,修宇.基于模型的基因表达聚类分析技术研究进展[J].江南大学学报,2006,5(3):374-378.
    61. Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks [J]. Bioinformtaics, 2003, 19:2271-2282.
    62. Tominaga, et al. Efficient numerical optimization algorithm based on genetic algorithm for inverse problem [C], Proc. of Genetic and Evolutionary Computation Computation Conference, 2000:251-258.
    63.吴昕,罗静初,李伍举.基因调控元件的计算机识别和基因调控网络构建[J].生物信息学,2004,12(7):203-324.
    64.卢欣,李衍达.基因调控过程中的典型控制环节[J].自动化学报,2000,26(5):637-644.
    65.雷耀山,史定华,王翼飞.基因调控网络的生物信息学研究[J].自然杂志,2003,26(1):7-12.
    66.许症暟,尹京苑.基因调控网络的系统生物学建模[J].上海大学学报(自然科学版),2004,10:22-24.
    67.虞慧婷,吴骋,柳伟伟,付旭平,贺佳.基因调控网络模型构建方法[J].第二军医大学学报,2006,27(7):737-740.
    68.李衍达.基因信息学综述[J].电子学报,2001,29(12A):1731-1734.
    69.朱小燕,王昱,徐伟.基于循环神经网络的语音识别模型[J].计算机学报,2001,24(2):213-218.
    70.谭左平,王士同,邓赵红,堵国成.基于熵准则的鲁棒的RBF谷胱甘肽发酵建模[J].生物工程学报,2008,24(5):829-836.
    71.郭俊恩,王士同,徐红林.基于蚁群遗传算法的DNA序列比对方法[J].生物信息学,2007,5(4):167-170.
    72.焦传珍.系统生物学及其研究进展[J].生物学通报,2005,40(12):3-4.
    73.张妤,邓志东,孙欣,贾培发.基于动态Bayesian网络的基因调控网络建模[J].清华大学学报(自然科学版),2008,48(7):1173-1177.
    74.倪春生,孙保存,冯玉梅,张丹芳,李晓青,董骝焕,张亮.乳腺癌转移相关基因表达调控网络的线性微分方程模型的初步研究[J].生物化学与生物物理进展,2005,32(12):1165-1172.
    75. Somogyi R, Sniegoski CA. Modeling the complexity of genetic networks: understanding muitigenic and pleiotropic regulation [J]. Complexity, 1996, 1:45-63.
    76. Ilya Shmulevich, Stuart A. Kauffman. Activities and Sensitivities in Boolean Network Models [J]. Physical Revview Letters, 2004, 93(4).
    77. Harri Lahdesmaki,Ilya Shmulevich. On Learning Gene Regulatory Networks under the Boolean Network Model [J]. Machine Learning, 2003, 52:147–167.
    78. Ilya Shmulevich, Harri Lahdesmaki, Edward R. Dougherty. The role of certain Post classes in Boolean network models of genetic networks [J]. PNAS, 2003, 100(19):10734–10739.
    79. XUN Peng-cheng, ZHAO Yang, YI Hong-gang, et al. The application of permutation test in the hypothesis test [J]. Application of Statistics and Management, 2006, 25(5):616-621.
    80.汪晓帆,李翔.复杂网络理论[M].应用科学学报,2007,25(1):85-90.
    81.应文豪,王士同.使用稳态系统和粒群优化算法进行基因调控网络推断[J].计算机应用于软件,2009,26(3):210-213.
    82. Liang S, Furhman S, Somogyi R. Reveal a general reverse engineering algorithm for inference of genetic network architectures [J]. Pacific Symp Biocomp, 1998, 3:18-29.
    83. Ranadip Pal1, Ivan Ivanov, et al. Generating Boolean networks with a prescribed attractor structure [J]. Bioinformatics, 2005, 21(21):4021-4025.
    84.李谋勋.复杂系统布尔网络模型及应用[J].复杂系统学报,2006, 14(4):33-36.
    85.张欣,赵千川.小世界拓扑下的动态布尔网络有序性[J]. PRO. Chinese Control conference, Guangzhou: 2005.
    86. Wenbin Liu, Harri Lahdesmaki, Edward R. Dougherty and Ilya Shmulevich. Inference of Boolean Networks Using Sensitivity Regularization [J]. EURASIP Journal on Bioinformatics and Systems Biology, 2008.
    87. ROCKE D M, GOLDBER G Z, SCHWEITER T C, et al. A method for detection of differential gene expression in the presence of inter-individual variability in response [J]. Bioinformatics, 2005, 21(21):3990-3992.
    88. Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the boolean network model [J]. Pacific Syrup J. Biocom, 1999, 4: 17-28.
    89.王锐,陈洪,张彦琦,郭波涛,易东.信息熵在基因调控网络构建中的应用[J].激光杂志,2008,29(1):94-95.
    90. Ilya Shmulevich, Edward R. Dougherty and Wei Zhang. Probabilistic Bolean networks: a rule-based uncertainty model for gene regulatory networks [J]. Bioinformatics, 2002, 18(2):261-274.
    91. Shmulevich I, Zhang W, From Boolean to probabilistic Boolean Networks as model of genetic regulatory network [J], Proceedings of the IEEE, 2002, 90(11):1778-1791.
    92. Shmulevich I, Zhang W, Binary analysis and optimization-based normalization of genes expression data [J], Bioinofmatics, 2004, 20(8):555–565.
    93. Ronaldo F, Hashimoto, Senung Kim, etc. Growing genetic regulatory network from seedgenes [J]. Bioinformatics, 2004, 20(8):1241-1247.
    94. Xiaobo Zhou, Xiaodong Wang, Edward R. Dougherty. Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design. Signal Processing [J], 2003, 83:745-761.
    95. Ilya Shmulevich, Edward R. Dougherty and Wei Zhang. Control of stationary behavior in probabilistic Boolean networks by means of structural intervention [J]. Journal of Biological Systems, 2002, 10(4):431-445.
    96. Ranadip Pal, Aniruddha Datta, et al. Intervention in context-sensitive probabilistic Boolean networks [J]. Bioinformatics, 2005, 21(7):1211-1218.
    97. Ilya Shmulevich, Edward R. Dougherty and Wei Zhang. Gene pertubation and intervention in probabilistic Boolean networks [J]. Bioinformatics, 2002, 18(10):1319-1331.
    98.白洪涛,孙吉贵,焦洋,徐长青.网络优化算法的实现与比较[J].吉林大学学报(信息科学版),2006,20(2):59-69.
    99.张宪超,万颖瑜,陈国良.一类实际网络中的最小截算法[J].软件学报,2003,14(5):885-890.
    100.岳博,焦李发.对弧进行删除的Bayes近似方法[J].计算机学报,2003,23(11):1161-1165.
    101.李志.运输线路优化问题的最小路集算法[J].数学的实践与认识,2005,35(6):56-60.
    102. Ronaldo F, Hashimoto, Senung Kim, etc. Growing genetic regulatory network from seed genes[J]. Bioinformatics, 2004, 20(8):1241-1247.
    103. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, and Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data [J]. Nature Genetic, 2003, 34(2):166-176.
    104. Seungchan Kim, Edward R. Dougherty. General nonlinear framework for the analysis of gene interaction via multivariate expression arrays [J]. Journal of Biomedical Optics, 2000, 5(4):411–424.
    105. Nicholas M. Luscombe, M. Madan Babu et.al. Genomic analysis of regulatory network dynamics reveals large topological changes [J]. Nature, 2006, 431(16):308-312.
    106. SHI K C, CHEN R M, HU R M, et al. Prediction of gene regulatory networks using differential expression of cDNA microarray data[C]. Proc of the 6-th International Symposium on Multimedia Software Engineering. Washington DC: IEEE ComputerSociety, 2004:378-385.
    107. Wagner A. Estimating Coarse Gene Network Structure from Large-Scale Gene Perturbation Data [J], Genome Res, 2002; 12(2): 309 - 315.
    108. Friedman N. Inferring cellular networks using probabilistic graphical models [J]. Science, 2004, 303: 799-805.
    109. Bernardo D D, Gardner T S, and Collins J J. Robust identification of large genetic networks [J]. Pacific Symposium on Biocomputing, 2004, 9:486-497.
    110. Peter D, Regev A, Elidan G, Friedman N. Inferring subnetworks from perturbed expression profiles [J]. Bioinformatics, 2001, 17: 215-224.
    111. Smith V A, Jarvis E D, Hartemink A J. Evaluating functional network inference using simulations of complex biological systems [J]. Bioinformatics, 2002, 18:216-224.
    112. Bader G D and Hogue C W. An automated method for finding molecular complexes in large protein interaction networks [J]. Bioinformatics, 2003, 4:2.
    113. Bu D, Zhao Y, Cai L et al. Topological structure analysis of the protein-protein interaction network in budding yeast [J]. Nucleic Acids Res, 2003, 31(9):2443-2450.
    114. Wilhelm T, Nasheuer H P, and Huang S. Physical and functional modularity of the protein network in yeast [J]. Cell Proteomics, 2003, 2(5):292-298.
    115.王正华,刘齐军,朱云平.基因调控网络的模块化组织研究[J].遗传,2008,30(1):20-27.
    116. Snel B, Bork P, and Huynen M A. The identification of functional modules from the genomic association of genes [J]. Proc.Natl.Acad.Sci.U.S.A, 2002, 99(9):589-5895.
    117. Newman M E. Fast algorithms for detecting community structure in networks [J]. Phys.Rev.E.Stat.Nonlin.Soft.Matter Phys, 2004, 69(6):99-113.
    118. Spirin V and Mirny L A. Protein complexes and functional modules in molecular networks [J]. Proc.Natl.Acad.Sci.U.S.A, 2003, 100(21):12123-12128.
    119. Clauset A, Newman M E, and Moore C. Finding community structure in very large networks [J]. Phys.Rev.E.Stat.Nonlin.Soft.Matter Phys. 2004, 70(6):98-111.
    120. Brun C, Herrmann C, and Guenoche A. Clustering proteins from interaction networks for the prediction of cellular functions [J]. Bioinformatics, 2004, 5:95-103.
    121.何清.模糊聚类分析理论与应用研究进展.模糊系统与数学,1998,12(2):89-94.
    122. Pan Du, Jian Gong, Eve Syrkin, etc. Modeling Gene Expression Networks Using FuzzyLogic [J], Bioinformatics, 2005, 35(6):1351-1359.
    123. Paul Wang. A study of 3-genes regulation networks using NK-Boolean network model and fuzzy logic network [J]. Studies in Fuzziness and Soft Computing, 2006:1434-9922.
    124. Woolf P J, Wang Y. A fuzzy logic approach to analyzing gene expression data [J]. Physiological Genomics, 2000, 3(1):9-15.
    125.高新波,谢维信.模糊聚类理论发展及应用的研究进展,科学通报,1999,44(21): 2241-2248.
    126. Amir H M, Akbariadeh T M R. Probabilistic fuzzy logic and probabilistic fuzzy systems [A]. IEEE International Fuzzy Systrms Comference (FUS'01) [C]. Melbourne, Vic, Australia: IEEE Computer Society, 2001.
    127.刘叙华,邓安生.Boole算子Fuzzy逻辑.中国科学(A辑)[J],1994,24(6):637-644.
    128.邓安生.Boole算子Fuzzy逻辑中的广义归结原理.科学通报[J],1996,41(3):274-276.
    129.刘叙华.Fuzzy布尔代数.科学通报[J],1984,14:843-845.
    130.邓安生,刘叙华.布尔算子Fuzzy逻辑中归结的广义完备性[J].中国机学报,1997,20(2):185-189.
    131.邓安生,刘叙华.Boole算子Fuzzy逻辑中推理的形式结构[J].中国科学(A辑),1995,25(7):758-764.
    132.刘文斌.与非门_NAND_的DNA计算模型[J].生物数学学报,2008,23(2):357-363.
    133.杜智华,王宜伟.一种新颖的基因调控网络结构学习方法[J].计算机应用,2009,29(6):1539-1543.
    134.吕恩琳,钟佑明.模糊概率随机变量[J].应用数学和力学,2003,24(4):434-440.
    135.孙亮,李庆硕,李建更,段艳华.模糊基因网络的构建[J].计算机应用研究,2008,25(9):2617-2619.
    136.鲁瑞华,张为群.模糊加权中值滤波器[J].计算机科学,2006,33(6):186-187.
    137.杜福银,徐扬.基于递归神经网络的预测模糊控制[J].西南交通大学学报,2006,41(6):733-736.
    138. Kim S, Imoto S, Miyano S, Inferring gene networks from time series microarry data using dynamical Bayesian networks. Bioinformatics, 2003, 4(3):228-235
    139. Kim S, Imoto S, Miyano S, Dyanmic Bayesian networks and non-parametric regression for nonlinear modeling of gene networks from time series gene expression data. Journal of Bioinformatics and Computational Biology, 2004, 2(1): 77-98
    140.张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868.
    141. Carla S M?ller-Levet.Clustering of gene expression time-series [D]. Manchester, UK:UMIST, 2003.
    142. Wu Fang-Xiang,Zhang WJ,Anthony J Kusalik.Dynamic modelbased clustering for time-course gene expression data [J].Journal of Bioinformatics and Computational Biology, 2005,3 (4): 821-836.
    143. Udoit S, Fridlyland J.A prediction-based re-sampling method for estimating the number of clustering in a dataset [J]. Genome Biology, 2002, 3:1-21.
    144. Alter O, Brown P O, Botstein D. Processing and modeling genome-wide expression data using singular value decomposition [C].Optical Technologies and Informatics.Bellingham:International Society for Optical Engineering,2001:171-186.
    145.张树京,齐立心.时间序列分析简明教程[M].北京:清华大学出版社,2003:24-58.
    146. Eisen, M.B. et al., Cluster analysis and display of geneome-wide expression patterns proc. Natl. Acad.1998 (95):14863-14868
    147. Fraley, C. and A.E.Raftery, Model-based clustering discriminant analysis and density estimation. Assoc. 2002(97):611-631
    148. Panuccio,A. M.Bicego, V.Murino, 2002. A hidden Markov model-based apporach to sequential data clustering. Lecture notes in computer Science, Springer, 2002, 24-58.
    149. Bickel D R. Probabilities of spurious connections in gene networks: application to expression time series [J] . Bioinformatics, 2005, 21:1121-1128.
    150. Ong I M, Glasner J D, Page D. Modelling regulatory pathways in E. coli from time series expression profiles [J]. Bioinformatics, 2002, 18:241-248.
    151. Wahde M, Hertz J. Coarso-grained reverse engineering of genetic regulatory networks [J]. Biosystems, 2000, 55:129-136.
    152. Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring [J]. Science, 1999, 286:531-537.
    153. Xu Hong-Lin, Liu Yu-Hong and Wang Shi-Tong, Autoregressive-model based dynamic fuzzy clustering for time-course Gene expression data [J]. Biotechnology, 2008, 7(1):59-65.
    154. Miao Z, et al. Strategies for optimizing feed rate of fed-batch yeast fermentation by fuzzy neural network [J], Chinese Journal of Chemical Engineering, 1998, 6(4):340-347.
    155. Jong H, Modeling and simulation of genetic regulatory systems: A literature review [J], Journal of Computional Biology, 2002, 9(1):91-103.
    156. Tan Zuo-Ping, Wang Shi-Tong, Du Guo-Cheng, GSH Fermentation Process Modeling Based on CCTSK Fuzzy Neural Network [J], Biotechnology, 2008, 7(1):73-79.
    157. Li C X, Li X, Guo Z, Gong B S, Tu K. Analysis of the mRNA expression similarity of genes in the same gene expression regulatory pathway [J]. Hereditas (Beijing), 2004, 26(6):929-933.
    158.刘宇红,刘桥,任强.基于模糊聚类神经网络的语音识别方法[J].计算机学报,2006,29(10):1894-1900.
    159. Zadeh LA. Fuzzy sets [J]. Information and Control, 1965, 8(2):338-353.
    160. Kaufman L and Rousseeuw P J. Finding Groups in data: An introduction to cluster analysis [M]. York, John: Wiley and Sons, 1990, 145-193.
    161. Pan Du Jian Gong, et al.Modeling gene regulatory networks using fuzzy logic [J].
    162. J.A.Dickerson Z.Cox,Creating Metabolic and Regulatory Network Models using Fuzzy Cognitive Maps[J].
    163. PETER J.WOOLF, YIXIN WANG, A fuzzy logic approach to analyzing gene expression data [J]. Physiol Genomics, 2000, 3:9-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700