用户名: 密码: 验证码:
中国北方典型(特)低渗透砂岩油藏储层裂缝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国含油气盆地按照构造体系可以分为伸展型盆地、稳定型盆地、挤压型盆地等
    几种类型。裂缝的成因类型、分布形式以及地质特征与不同构造体系的盆地类型有关。
    本论文选择中国东部、中部和西部不同含油气盆地中的头台油田、朝阳沟油田、肇州油
    田、榆树林油田、哈南油田、川口油田、安塞油田及鄯善油田等典型的(特)低渗透砂
    岩油藏,系统研究了伸展型、稳定型、挤压型盆地裂缝的成因机制、发育特征及分布规
    律,初步建立了不同构造体系类型盆地的裂缝地质模型,并对不同低渗透砂岩油藏储集
    层进行了分类,最后探讨了不同类型盆地裂缝在注水开发中的作用。
     松辽盆地为伸展型盆地,但经历了明显的反转期,盆地具拉伸和挤压双重特征。伸
    展构造期主要形成一组近南北向的拉张破裂裂缝和两组斜交共轭剪裂缝。反转构造期主
    要形成北东、北西向两组共轭剪裂缝和一组近东西向的横张裂缝,随着背斜的弯曲,在
    核部可能会形成一些少量的张裂缝。三肇地区的构造裂缝主要是在反转构造期形成,其
    分布受褶皱控制,断层也有一定的控制作用。在现今地应力场作用下注水开发中以东西
    方向窜水为特征。二连盆地为伸展型盆地,主要发育与伸展断层有关的裂缝。裂缝方向
    与伸展断层走向基本一致,主要为NNE方向裂缝,其分布受伸展断层的控制。注水开
    发中显示出明显的断裂导水。
     中部稳定区块选择陕甘宁盆地中部川口油田和安塞油田作为研究对象,该区褶皱
    与断裂构造相对不发育,但在地应力作用下,坚硬脆性岩石仍然可以发生破裂形成裂缝。
    盆地范围内分布近EW向区域裂缝,其分布主要与沉积微相有关。
     吐哈盆地主要发育与褶皱作用有关的裂缝,这与西部挤压型的区域构造特征相符
    合。裂缝分布受褶皱构造的控制,裂缝发育部位为构造高部位及构造曲率较大的部位。
     为了研究不同盆地裂缝在注水开发中的作用,进行了微观砂岩模型水驱油实验,
    比较了东、中和西部含油气盆地中不同裂缝系统的水驱油特征。开启裂缝系统,一般水
    驱油方式为裂缝驱油及裂缝一部分基质孔隙驱油,对于微裂缝系统,主要水驱油方式
    为裂缝—基质孔隙驱油及孔隙驱油,充填裂缝系统则为孔隙驱油方式。
     按照裂缝发育特征、发育程度及其对储集层渗流的影响,将中国含油气盆地(特)
    低渗透砂岩油藏储集层分为裂缝型(包括孔隙—裂缝型储集层和裂缝—孔隙型储集层)
    和(含裂缝)孔隙型。不同介质类型在注水开发中具有不同的渗流特性。对于孔隙—
    裂缝型储层,实际上渗流过程主要为单一渗流通道体系—裂缝中的流动,即表现为似
    
    
     张莉:中国北方典型(特)低渗透砂岩油藏储层裂缝研究(西北大学博士论文)
    单一介质型储层的渗流特征。对于裂缝—孔隙型储层,属于双重介质型储层;注水开
    发可以分为两个过程,即裂缝多相渗流阶段和裂缝中水置换油阶段。对于孔隙型储层,
    开发过程中的油水流动在孔隙中进行。中国东部、西部含油气盆地储层的渗流类型主要
    为似单一裂缝介质型和双重介质型,中部含油气盆地储层的渗流类型可以表现为裂缝
    HL隙型和孔隙型。
     东部、西部大部分和中部部分裂缝发育的(特)低渗透区块,构成裂缝型油藏,
    。可以采用超前注水、周期性注水、控讳注水强度、不等距井网等措施改善开发效果。孔
    隙型油藏在注水开发中可以遵循一般(特)低渗透砂岩油藏开发的原则,但经过压裂的
    孔隙型油藏,仍应注意裂缝对注水开发的影响。
The development tendency of Chinese oil industiy indicates that the large-scale oilfields
     with good physical properties are fewer and fewer. Hence the exploration and development of
     low-permeability oilfields are increasingly exerting attention. Since 1990s in China, the ratios
     of reserves of low-permeability reservoirs to total proven reserves are higher and higher. At
     present, the reserves of low-permeability reservoirs reach more than 70%. As a result, low-
     permeability oilfields are thought to be the main bases in Chinese petroleum indusUy.
    
     With the development of low-permeability oilfields, it is found that fractures play
     important roles in waterflooding. On the one hand, natural fractures may increase the
     permeability of reservoirs, link up pores and improve the production of oil wells, which is
     profitable to reservoirs. On the other hand, fractures will increase the heterogeneity of
     reservoirs, result in the water channeling along fractures in the waterflooding and as a result
     play a negative role in the developmenL In a word, fractures not only decide waterflooding
     effects, but also control layer division and pattern arrangement. Hence, the study of fractures
     has been attached more and more attention and it is of significance to get a deeper
     understanding and study.
    
     Chinese petroliferous basins can be classified structurally as extensional, stable and
     compressional basins. The purpose of the thesis is to develop the different fracture geologic
     models for different basins. Many typical low-permeability sandstone reservoirs such as Toutai,
     Yushulin, Chaoyanggou, Hanan, Shanshan, Changqing and Chuankou oilfleld are selected to
     study the characteristics of fractures.
    
     In the Songliao basin, fractures are fanned through the two stages - the extensional and
     reversal stage. Two or three fracture orientation sets could develop during the early extensional
     stage. One set is the SN extension fracture and the others are shear fractures. Mineral cement is
     vety typical in these fracture sets. NE and NW shear fracture sets and EW extension fracture
     set are found to develop in the late reversal stage, which are controlled by folds. The Erlian
     Basin is an extensional basin and fractures are considered to be related to extension faults. The
     fractures extend along the direction of faults, that is NNE fracture set. The fracture nets play a
     very important role in the exploration and development of the Hanan oilfield.
    
    
    
     iii
    
    
     2
    
    
    
    
    
    
    
    
    
     In the middle stable basin, although folds and faults are few, fractures can be formed in
     the brittle rocks. The fracture types are the EW regional fractures, which were formed during
     Yanslian periods and the NE fractures formed during Xishan periods. The fracture distribution
     and density are related to lithology and rock thickness. Fractures related to folds are developed
     in the western compressional basin
    
     Sandstone micro-model experiment technique is used and the water-oil displacement
     experiment is done to simulate the conditions of reservoir flowing. Low-permeability
     sandstone reservoirs can be divided mainly into two types according to the characteristics,
     density and the effect of fractures on reservoirs. These two types are fractured sandstone
     reservoirs (including porous-fractured reservoirs and fractured-porous reservoirs) and porous
     reservoirs. Different types have different flowing characters duri
引文
[1] 李道品.低渗透砂岩油田开发.北京:石油工业出版社,1997
    [2] 王平.含油气盆地构造力学原理.北京:石油工业出版社,
    [3] 陈永生,油田非均质对策论.北京:石油工业出版社,1993
    [4] 李志明.地应力与油气田开发.北京:石油工业出版社
    [5] 王志章.裂缝性油藏描述及预测.北京:石油工业出版社,1999
    [6] 周文.裂缝性油气储集层评价方法.成都:四川科学技术出版社,1998
    [7] 张学汝,陈和平,张吉昌.变质岩储集层构造裂缝研究技术.北京:石油工业出版社,1999
    [8] 袁明生,潘懋,童亨茂,低渗透裂缝性油藏勘探.石油工业出版社,2000
    [9] E.M.斯麦霍夫著,陈定宝,曾志琼,吴丽云译.裂缝性油气储层勘探的基本理论与方法.北京:石油工业出版社,1985
    [10] R.A.纳尔逊著,柳广第译.天然裂缝储层地质分析.北京:石油工业出版社,1991
    [11] 刘建中.油田应力场测量.北京:石油工业出版社,1995
    [12] 刘瑞旬.显微构造地质学.北京:地质出版社,1988
    [13] 裘怿楠,
    [14] 柏松章,唐飞.裂缝性潜山基岩油藏开发模式.北京:石油工业出版社,1997
    [15] 赵重远,刘池阳.华北克拉通沉积盆地形成与演化及其油气赋存.西安:西北大学出版社,1990
    [16] 李伯虎.榆树林油田油层发育特点与低效井分布规律研究.大庆油田勘探开发研究论文集.北京:石油工业出版社,1995
    [17] 殷进垠.松辽盆地反转构造特征及其油气聚集的关系.大庆油田勘探开发研究论文集.北京:石油工业出版社,1995
    [18] 王平.有天然裂缝的砂岩油藏的开发.石油学报,1993,14(4)
    [19] 王仲茂.地壳应力在低渗透裂缝砂岩油田开发中的应用.石油勘探与开发,1992,19(4)
    [20] 岳乐平,邸世祥,王建其.油气田钻井岩心及岩心裂缝方位确定的古地磁原理及方法,地球物理进展.1997,12(3)
    [21] 刘站立,王俊魁.头台油田天然裂缝特征.大庆石油地质与开发.1996,15(1)
    [22] 王仲茂,胡江明,水力压裂形成裂缝形态的研究.石油勘探与开发.1994,21(6)
    [23] 曾联波,田崇鲁.构造应力场与低渗透油田开发.石油勘探与开发.1998,25(3)
    [24] 马新华,肖安成.内蒙古二连盆地的构造反转历史.西南石油学院学报.2000,22(2)
    
    
    [25] 任建业,李思田,焦贵浩.二连断陷盆地群伸展构造系统及其发育的深部背景.地球科学—中国地质大学学报.1998,23(6)
    [26] 王俊魁,站剑飞.裂缝性低渗透砂岩油藏注水开发动态特征.低渗透油气田.1997.12
    [27] 王秀娟,孙贻铃,庞彦明.三肇地区扶、杨油层裂缝和地应力分布特征及对注水开发的影响.大庆石油地质与开发.2000,19(5)
    [28] 王俊魁,孟宪军,鲁建中.裂缝性油藏水驱油机理与注水开发方法.大庆石油地质与开发.1997,16(1)
    [29] 余和中,韩守华.松辽盆地构造样式分析.大庆石油地质与开发.1997,16(1)
    [30] 胡望水.正反转构造类型及其研究方法.大庆石油地质与开发.1997,16(2)
    [31] 王秀娟,孙贻铃,迟博.松辽盆地三肇地区油田储层裂缝及地应力特征.高校地质学报.1999,5(3)
    [32] 崔永强,李建民,孙庆和.头台油田扶、杨油层裂缝系统分布规律及其成因机制.大庆石油地质与开发.1999,18(5)
    [33] 孙庆和,林海,崔宝文.裂缝型特低渗透油田注水开发特征多样性及成因探讨.低渗透油气田.2000.4
    [34] 施尚明,申家年,王永林.大庆长垣以东地区低孔低渗储层累犯对油田开发效果的影响.大庆石油学院学报.1999,23(2)
    [35] 刘子良,梁春秀.松辽盆地南部构造裂缝成因机制及分布方向.石油勘探与开发.1999,26(5)
    [36] 钟显彪,许为.吉林油田低渗透油田注采井网适应性技术研究.低渗透油气田.1999,4(2)
    [37] 马立文,关云东,韩沛荣.裂缝性低渗透砂岩油田井网调整实践与认识.大庆石油地质与开发.2000,19(3)
    [38] 白新华,王敬平.松辽盆地头台油田储层裂缝参数发育特征研究。大庆石油地质与开发.1999,18(1)
    [39] 蒋明.二连低渗透砂岩油藏井网适应性研究.特种油气藏.2000,7(1)
    [40] 岳乐平,张莉,杨亚娟等.断裂缝导水对哈南油田注采的影响和开发对策.石油与天然气地质.2001,22(1)
    [41] 曾联波,郑聪斌.陕甘宁盆地靖安地区区域裂缝及对开发的影响。西安石油学院学报.1999,14(1)
    [42] 王觉民,陕北安塞地区地应力的初步研究.西安石油学院学报.1994,9(3)
    [43] 林伟川,程瑾.鄂尔多斯盆地延长组地应力及裂缝研究.低渗透油气田.1998,3(4)
    [44] 张红梅,钱根宝.小拐裂缝性超低渗透油藏注水开发试验效果评价.低渗透油气田.1999,4(2)
    [45] 李道品.低渗透油藏注水开发的主要矛盾和改善途径.低渗透油气田.1999,4(1)
    
    
    [46] 艾芳.微裂缝性特低渗透砂岩油藏注水开发特征.低渗透油气田.1999,4(3)
    [47] 熊维亮,潘增耀,王斌.安塞特低渗透油田裂缝发育区剩余油分布及调整技术.低渗透油气田.1999,4(3)
    [48] 李元奎.南翼山裂缝性油气藏特征及分布规律探讨.天然气工业.2000,20(3)
    [49] 孙宗颀,张国报,张景和.在地质断层构造中地应力状态演变研究.石油勘探与开发.2000,27(1)
    [50] 张莉.低渗透油田地应力、裂缝系统与油田开发.石油与天然气地质.1999,20(4)
    [51] 张莉,岳乐平.鄯善油田储层裂缝特征及形成时期.西北大学学报.1999,29(2)
    [52] 张莉.鄯善油田天然裂缝对注水开发的影响.西北大学学报.1998年增刊
    [53] 张莉.新疆鄯善油田微裂缝研究.西北地质科学.1997,18(1)
    [54] 岳乐平,张莉.鄯善油田裂缝特征及构造应力场.地质力学学报.1999,5(2)
    [55] 张莉.陕甘宁盆地川口低渗透油藏长6油层裂缝特征,西北地质科学.2001
    [56] 张广杰,武若霞.改善新民裂缝性砂岩油藏注水波及体积研究.石油勘探与开发.1998,25(3)
    [57] 李松泉,唐曾熊.低渗透油田开发的合理井网.石油学报.1998,19(3)
    [58] 吴志宇.安塞油田裂缝特征及对开发效果的影响.低渗透油气田.1997,2(3)
    [59] 宋新民,朱怡翔,陈军.储层天然裂缝分布预测技术.低渗透油田开发配套技术会议座谈材料.1998
    [60] 高合明.油藏地应力和裂缝配套预测技术机器在低渗透油田整体高效开发中的综合应用.低渗透油田开发配套技术会议座谈材料.1998
    [61] 李庆昌,薛连达,裘怿楠.裂缝性低渗透率储层开发地质研究问题—以克拉玛依油田八区乌尔禾组油层为例.石油勘探与开发.1988,5
    [62] 赵志刚,李明,赵小军.吐哈盆地巴喀油田特低渗透砂岩储层裂缝研究,西南石油学院学报.1998,20(1)
    [63] 钟德康.低渗透油田压力控制的方法与效果.大庆石油地质与开发.1992,11(4)
    [64] 贺明静,庞子俊.特低渗透砂岩油藏注水开发中的裂缝问题.石油勘探与开发.1986,3
    [65] 刘瑞旬.关于构造微裂及其固结方式.地质论评.1986,32(6)
    [66] 二连盆地石油与天然气地质研究.中国石油天然气总公司.1992
    [67] 鄯善油田三间房油藏水驱油运动规律研究及控水增油措施.吐哈油田开发事业部,西北大学.1997
    [68] 大庆三肇凹陷扶杨油层三维应力场模拟及裂缝系统定量描述.大庆勘探开发研究院,西北大学.1998
    
    
    [69] 低渗透砂岩油藏裂缝网络分布规律及注采井网优化配置调整方案研究.华北石油管理局二连石油勘探开发公司.1999
    [70] 川口油田长6油层裂缝系统研究.延长油矿管理局,西北大学.1999
    [71] P.S. Vinod, M.L. Flindt. Dynamic fluid-loss studies in low-permeability formations with natural fractures. SPE37486. 1997
    [72] Thomas Finkbeiner et al. Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria basin, California. AAPG Bulletin. 1997,81(12)
    [73] Wayne Narr. Fracture density in the deep subsurface: techniques with application to Point Arguello oil field. AAPG Bulletin. 1991,75(8)
    [74] Wayne Narr, John B. Currie. Origin or fracture porosity-example from Altamont field, Utah. AAPG Bulletin. 1982,66(9)
    [75] William R. Jamison. Quantitative evaluation of fractures on Monkshood Anticline, a detachment fold in the foothills of western Canada. AAPG Bulletin. 1997,81(7)
    [76] A.D. Au et al. Simulation of a gas naturally fractured reservoir: a case history. SPE 22920. 1991
    [77] John Brumley et al. In-situ stress field determination and formation characterization - Offshore Qutar case. SPE 28143. 1994
    [78] H.B. Lynn et al. Natural fracture characterization using p-wave reflection seismic data, VSP, borehole imaging logs, and the in-situ stress field determination. SPE 29595. 1995
    [79] C.G. Dyke et al. Advances in characterizing natural fracture permeability from mud log data. SPE 25022. 1992
    [80] K. Dehghani et al. An experimental and Numerical Study of in-situ boiling in porous media during cyclic steaming in fractured reservoirs. SPE 30749. 1995
    [81] Hugo Harstad et al. Characterization and simulation of naturally fractured tight gas sandstone reservoirs. SPE 30573. 1995
    [82] C.W. Hopkins et al. Estimating fracture geometry in the naturally fractured Antrim shale. SPE 30483. 1995
    [83] C.J. (Hans) de Pater. Complication with stress tests-insights from a fracture experiment in the ultra-deep KTB borehole. SPE 36437. 1996
    [84] R. Dyer. Using joint interactions to estimate paleostress. Structural Geology. 1998,10(7)
    [85] W. Narr and I. Lerche. A method for estimating subsurface fracture density in core. AAPG Bulletin. 1984,68(5)
    
    
    [86] Stephen E. Laubach. A method to detect natural fracture strike in sandstones. AAPG Bulletin. 1997,81(4)
    [87] Roberto Aguilera. Determination of subsurface distance . between vertical parallel natural fractures based on core data. AAPG Bulletin. 1988, 72 (7)
    [88] J. H. Howard et al. Description of natural fracture systems for quantitative use in petroleum geology. AAPG Bulletin. 1990,74(2)
    [89] Michael F. Lough et al. A new method to calculate effective permeability of gridblocks used in the simulation of naturally fractured reservoirs. SPE. 1997
    [90] James T. Kirkland. How to recover, label, and evaluate fractured core.
    [91] R. A. Nelson. An approach to evaluating fractured reservoirs.
    [92] Chen Yanzheng. Development of Fuyu fractured sandstone reservoirs by water injection.
    [93] Paul Mcdonald et al. Fracture characterization based on oriented horizontal core from the Sprabery Trend reservoir: A case study. SPE 38664. 1997
    [94] J. E. V. Overn et al. Making sense of water injection fractures in the Dan field. SPE 38928. 1997
    [95] Y. Le Gallo et al. Mass transfer in fractured reservoirs during gas injection: experimental and numerical modeling. SPE 38924. 1997
    [96] William England et al. Effect of open fractures on oil recovery when superimposed upon synthetic models of heterogeneous fluvial sandstone reservoirs. SPE 38660. 1997
    [97] Daniel E. Ochs et al. Relating in situ stresses and transient pressure testing for a fractured well. SPE 38674. 1997
    [98] R.D.Kuhlman et al. Microfracture stress tests, anelastic strain recovery, and differential strain analysis assist in Bakken Shale horizontal. SPE 24379. 1992
    [99] Xinmin Song et al. Identification and distribution of natural fractures. SPE 50877. 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700