用户名: 密码: 验证码:
毛细管电泳法在手性药物分离分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全文共分六个部分,主要内容如下:
     第一章前言
     毛细管电泳对手性药物分离分析具有独特的优点。本章介绍了毛细管电泳法的拆分机理、毛细管电泳检测方式、分离模式和分离条件的选择。综述了近5年毛细管电泳在手性药物分离分析中的应用,并提出了本论文的研究背景及意义。
     第二章毛细管电泳电导法分离与测定盐酸布比卡因注射液中对映体的含量
     建立毛细管电泳-电导检测法分离测定盐酸布比卡因注射液中对映体含量的方法。采用熔融石英毛细管柱(60 cm×25μm i.d),以4 mmol/L NH4Ac-4 mmol/L NaAc (以HAc调至pH 4.00)-0.48 mmol/L磺丁基醚-β-环糊精(SBE-β-CD)为运行缓冲液,分离电压12 kV,电动进样3 s。盐酸布比卡因对映体在15 min内得到基线分离,左旋布比卡因在0.1~10.4μg/ml范围内线性关系良好(r=0.9994),检测限为0.052μg/ml。对影响对映体分离的因素,如手性选择剂的类型及浓度、运行缓冲体系的组成及浓度、pH值、分离电压和毛细管内径及长度进行了探讨,并通过计算机辅助分子模拟软件计算药物与不同环糊精的结合能,对盐酸布比卡因与环糊精手性拆分的立体选择性进行了初步的探讨。本法与HPLC法相比,具有高效、快速和经济等优点。
     第三章毛细管电泳电导法分离与测定兔血清中盐酸布比卡因对映体的浓度
     建立兔血清中盐酸布比卡因对映体的毛细管电泳-电导检测的手性分离方法。兔血清样品碱化后,用三氯甲烷-乙醚(10∶1)提取,以4 mmol/L NH4Ac-4 mmol/L NaAc (以HAc调至pH 4.00)- 0.48mmol/L SBE-β-CD为运行缓冲液,分离电压12 kV,电动进样3 s。盐酸布比卡因对映体在16 min内实现基线分离且不受内源性物质干扰。本试验高效、快速、低耗,适用于盐酸布比卡因对映体体内血药浓度的测定。
     第四章毛细管电泳法分离与测定尼群地平和尼莫地平片中对映体的含量
     建立毛细管电泳拆分并测定尼群地平片和尼莫地平片中对映体含量的方法。采用熔融石英毛细管柱(62 cm×75μm i.d,有效长度55 cm),以40 mmol/L磷酸二氢钠溶液(以磷酸调至pH 2.96)-10 mmol/L SBE-β-CD为运行缓冲液,分离电压-15 kV,检测波长237 nm。尼群地平和尼莫地平对映体得到基线分离,分离度分别为3.43和2.08。尼群地平和尼莫地平分别在5.016~50.16μg/ml和5.024~50.24μg/ml浓度范围内线性关系良好,检测限分别为2.006μg/ml和2.010μg/ml。尼群地平R和S型对映体的平均回收率分别为95.86%和97.04%,RSD为1.15%和2.06%,尼莫地平R和S型对映体的平均回收率分别为92.76%和97.54%,RSD为2.33%和1.49%。考察了环糊精浓度、缓冲液浓度和pH、分离电压等对分离分析的影响,并运用计算机辅助分子模拟技术对环糊精与对映体间的拆分机理进行初步探讨。
     第五章毛细管电泳法分离与测定大鼠血浆中尼群地平和尼莫地平对映体的浓度
     建立血浆中尼群地平和尼莫地平对映体的毛细管电泳手性分离分析方法。以对硝基苯甲酸为内标,血浆样品碱化后以乙醚提取2次,运行缓冲液为40 mmol/L磷酸二氢钠溶液(以磷酸调至pH 2.96)-10 mmol/L SBE-β-CD,检测波长为237 nm,尼群地平分离电压为-18 kV,尼莫地平分离电压为-15 kV,电动进样10 s。尼群地平和尼莫地平两对映体均达到基线分离,且不受杂质干扰,尼群地平和尼莫地平分别在28.4~568 ng/ml和27.4~548 ng/ml范围内线性关系良好,检测限分别为11.4 ng/ml和11.0 ng/ml。本方法快速、简单、低耗,适用于尼群地平和尼莫地平在体内立体选择性的研究。
     第六章毛细管电泳法分离与测定瑞格列奈片中对映体的含量
     建立毛细管电泳分离与测定瑞格列奈片中对映体含量的方法。采用熔融石英毛细管柱(67 cm×75μm i.d,有效长度60 cm),以20 mmol/L Tris(以磷酸调至pH 3.90)-20 mmol/L羟丙基-β-环糊精(HP-β-CD)为运行缓冲液,分离电压20 kV,检测波长243 nm,瑞格列奈对映体实现了基线分离。瑞格列奈在5.00~50.0μg/ml浓度范围内线性关系良好,检测限为0.25μg/ml,S-(+)-瑞格列奈平均回收率为97.15% ,RSD为1.21%。考察了环糊精的类型和浓度、缓冲液的组成和浓度、pH值、分离电压等的影响,并对环糊精与对映体间的拆分机理进行探讨。
This thesis includes the following six chapters:
     Chaper 1
     Capillary electrophoresis has unique advantages in separation and analysis of chiral drugs. The fundamental principle, chiral recognition mechanism, the choice of separation conditions and separation models of high performance capillary electrophoresis were introduced in this chaper. Applications of CE in chiral drug separation of recent 5 years were reviewed. This part also provided the background and significance of this research.
     Chapter 2
     Conductivity detection was employed for the detection of the enantiomers of bupivacaine hydrochloride (Bup), which were separated by high performance capillary electrophoresis. Computer-aided technique was used to calculate the binding energies and the interaction between Bup enantiomers and CDs was preliminarily discussed. Factors affecting the separation efficiency such as the types and concentration of chiral selectors, running buffer, pH value, separation voltage and capillary inside diameter and length were studied. Under the optimized condition, a baseline separation of Bup enantiomers was achieved in less than 15 minutes in 4 mmol/L NH4Ac-4 mmol/L NaAc (adjusted to pH 4.00 with acetic acid) -0.48 mmol/L sulfobutyl ether-β-cyclodextrin(SBE-β-CD) running buffer at separation voltage of 12 kV. The lowest detective concentration was 0.052μg/ml. The proposed method was suitable for the chiral separation and quantitative analysis of Bup enantiomers in pharmaceutical injection.
     Chapter 3
     To establish a HPCE-ECD method for determining the content of enantiomers of bupivacaine hydrochloride in rabbit serum. The running buffer was composed of 4 mmol/L NH4Ac-4 mmol/L NaAc ( adjusted to pH 4.00 with acetic acid) containing 0.48 mmol/L SBE-β-CD, the working voltage was 12 kV. Samples were injected into capillary with a positive voltage of 10 kV for 3 s. The biological samples were alkalized and extracted with chloroform-ethyl ether (10∶1). The enantiomers of bupivacaine hydrochloride were separated at a base line under the above condition in 16 min, and the determination was not interfered by endogenous components from rabbit. This method was high efficient, rapid and low reagent consumption for determining bupivacaine hydrochloride in rabbit serum.
     Chapter 4
     A high performance capillary electrophoresis method was established for the chiral separation and determination of nitrendipine and nimodipine enantiomers. An uncoated fused sillica capillary column was used with running buffer of 40 mmol/L sodium dihydrogen phosphate (adjusted to pH 2.96 with phosphoric acid)-10 mmol/L SBE-β-CD, at the applied voltage of -15 kV and the detection wavelength of 237 nm. The resolution of enantiomers of nitrendipine and nimodipine were 3.43 and 2.08. The calibration curves of nitrendipine and nimodipine were linear in the concentration ranges of 5.016~50.16μg/ml and 5.024~50.24μg/ml, with the detection limit of 2.006μg/ml and 2.010μg/ml. (R)- nitrendipine and (S)- nitrendipine average recoveries were 95.86% and 97.04%, with RSDs of 1.15% and 2.06%. (R)- nimodipine and (S)- nimodipine average recoveries were 92.76% and 97.54%, with RSDs of 2.33% and 1.49%. Computer-aided technique was used to calculate the binding energies and the factors affecting the separation efficiency such as the concentration of chiral selectors, running buffer, pH value, separation voltage were studied.
     Chapter 5
     To establish a capillary electrophoresis method for the chiral separation and determination of nitrendipine and nimodipine enantiomers in rats plasma. The biological samples were alkalized and extracted with ethyl ether by twice. The running buffer was composed of 40 mmol/L sodium dihydrogen phosphate(adjusted to pH 2.96 with phosphoric acid)-10 mmol/L SBE-β-CD. The detection wavelength was 237 nm. The applied voltage of nitrendipine and nimodipine enantiomers were -18 kV and -15 kV,respectively. Samples were injected into capillary with electric power for 10 s. p-Nitrobenzoic acid was used as internal standard. Enantiomers of nitrendipine and nimodipine were separated at a base line under the above condition, and the determination was not interfered by endogenous components from rats. The linear concentration range of nitrendipine and nimodipine were 28.4~568 ng/ml and 27.4~548 ng/ml,with the detection limit of 11.4 ng/ml and 11.0 ng/ml.
     Chapter 6
     A capillary electrophoresis (CE) method with UV detection for the chiral separation and determination of repaglinide enantiomers has been developed. Several parameters such as the composition of the running buffer, the types and concentration of CDs, the pH value, separation voltage, injection time and capillary’s inside diameter and length and sample medium which affect the separation, were investigated to acquire the optimum conditions. Under the optimized condition , a baseline separation of repaglinide enantiomers was achieved in less than 15 minutes in 20 mmol/L Tris(Hydroxymethyl)aminomethane ( adjusted to pH 3.90 with phosphoric acid ) -20 mmol/L Hydroxypropyl-β-cyclodextrin (HP-β-CD)running buffer, at the separation voltage of 20 kV and the detection wavelength of 243 nm. The calibration curve for repaglinide was linear in the concentration range of 5.00~50.00μg/ml with the detection limit of 0.25μg/ml. The average recovery was 97.15%, with RSD of 1.21%. The proposed method was suitable for the separation and quantitative analysis of repaglinide enantiomers in pharmaceutical preparation.
引文
[1]尤启冬,林国强.手性药物-研究与应用[M].北京:化学工业出版社,2004:3
    [2]陈义.毛细管电泳技术及应用(第二版)[M].北京:化学工业出版社,2006:1
    [3] C.E.Dalgliesh. J. Am. Soc., 1975,137: 3940-3942
    [4]吴东兵,高原,吴振刚,等.毛细管电泳-激光诱导荧光分离检测手性5- (2-氨基丙基)- 2-甲氧基苯磺酰胺对映体[J].中国药物与临床,2008,8(8):597-599
    [5]汪俊,孙光明,王利,等. 16通道毛细管阵列电泳对手性氨基酸分离条件的快速筛选[J].分析化学研究简报,2006,34(2):267-269
    [6] Servais A C, Fillet M, Mol R,etal. Online coupling of cyclodextrin mediated nonaqueous capillary electrophoresis to mass spectrometry for the determination of salbutamol enantiomers in urine[J]. J Pharm Biomed Anal, 2006,40(3):752-727
    [7]石欲容,谢天尧,刘绮文.托吡卡胺对映体的毛细管电泳-方波安培分离检测[J].色谱,2004,22(6):627-629.
    [8]刘秋英,陈丽,陈素娟,等.二元手性选择体系毛细管电泳/电化学分离检测手性药物酚苄明对映体[J].分析化学研究简报,2007,35(8):1191-1194
    [9]黄宝美,张爱华,姚程炜,等.高效毛细管电泳电导分离-检测亮氨酸对映体[J].分析试验室,2006,25(12):51-53
    [10]黄宝美,张爱华,姚程炜,等.高效毛细管电泳分离及检测蛋氨酸对映体[J].化学研究与应用,2007,19(3):342-344
    [11]陈瓒光,莫金垣.毛细管电泳电导检测器的研制[J].高等学校化学学报,2002,23(5):801.
    [12]刘丹,魏瑞霞,谢天尧.毛细管电泳/非接触式电导法分离检测氧氟沙星对映体[J].分析化学研究简报,2009,37(11):1687-1690
    [13]黄宝美,姚程炜,李松,等.甲霜灵对映体的高效毛细管电泳拆分[J].应用化学,2007,24(11):1343-1345
    [14]黄宝美,张爱华,姚程炜,等.高效毛细管电泳电导法拆分苯丙氨酸对映体[J].分析测试学报,2007,26(2):258-260
    [15]黄宝美,姚程炜,莫金垣.尼索朗对映体的高效毛细管电泳电导拆分[J].应用化学,2007,24(2):229-231
    [16] Daniel W.Armstrong,Kumber Rundlett,and George L.Reid . Use of a Macrocyclic Antibiotic, Rifamycin B, and Indirect Detection for the Resolution of Racemic Amino Alcohois by CE[J]. Anal. Chem.,1994,66:1690-1695
    [17] WREN S A C, ROWE R C.[J]. J Chromatogr.A,1992,603(1/2):235-238.
    [18]徐佳.环糊精——毛细管区带电泳法分离手性药物对映体[J].国外医学药学分册,1996,23(5):275-279
    [19]金瑛芝,王园朝,成美容,等.毛细管电泳氨类手性药物对映体拆分机理研究[J].化学研究与应用,2009,21(5):711-714
    [20]郑志侠,汪家权,程红,等.基于环糊精手性选择剂的几种手性药物对映体的毛细管电泳拆分[J].化学研究,2010,21(1):76-79
    [21]夏陈,陈志涛,夏之宁.基于非手性离子液体的毛细管电泳法拆分3种手性药物[J].色谱,2008,26(6):677-681
    [22]黄芳.扑尔敏对映体的毛细管电泳分离研究[J].化工时刊,2006,20(2):25-27
    [23]剧崙,黄碧云,袁牧,等.β-环糊精用于毛细管电泳拆分佐匹克隆对映体的研究[J].分析测试学报,2009,28(8):978-980
    [24]陈仲益,姚彤炜,曾苏.卡维地洛对映体的毛细管电泳分离[J].分析化学,2008,36(6):865
    [25]林向成,赵书林,卢昕,等.毛细管电泳法测定左旋多巴药片的光学纯度[J].分析化学研究简报,2006,34(6):859-862
    [26]王维庭,贾庆文,庄严,等.毛细管电泳法拆分肾上腺素手性对映体[J].中国当代医药,2010,17(17):125-127
    [27]蔡梅,李忠红,杨丹.枸橼酸莫沙必利的手性分离[J].海峡药学,2008,20(3):56-58
    [28]刘力宏,杜国华,张淑珍,等.环糊精手性添加剂毛细管区带电泳手性分离佐米曲坦[J].药物分析杂志, 2006,26(l):40-43
    [29]杨美成,刘浩,秦峰,等.佐米曲普坦的羟丙基-β-环糊精毛细管电泳手性分析[J].中国医药工业杂志, 2007,38(5):361-363
    [30]周晔,冯芳,张正行.盐酸恩丹西酮的高效毛细管电泳手性分离及其大鼠体内立体选择性药动学研究[J].中国药学杂志,2006,41(7):541-544
    [31]黄碧云,赵鑫,袁牧,等.苯磺酸氨氯地平对映体的高效毛细管电泳手性分离[J].药学进展,2009,33(5):222-226
    [32]侯经国,杜红英,高锦章.羟乙基-β-环糊精作为手性选择剂对手性药物的毛细管电泳拆分[J].分析测试学报,2006,25(2):84-86
    [33]李士敏,季红,黄碧云,等.二甲基-β-环糊精作为手性选择剂对尼索地平对映体的毛细管电泳拆分研究[J].分析测试学报,2010,29(4):376-378
    [34]王立云,黄碧云,袁牧,等.西布曲明对映体的毛细管电泳分离及结合常数的测定[J].华西药学杂志,2010,25(1)∶98-100
    [35]朱颐申,屠春燕,顾薇,等.高效毛细管电泳法手性分离D-氨基酸取代胸腺五肽类似物的研究[J].分析化学研究简报,2007,35(1):127-130
    [36]赵燕,杨兴斌,李晓晔,等.中性环糊精毛细管电泳法手性拆分氧氟沙星对映体的对比[J].第四军医大学学报,2006,27(3):196-198
    [37]黄双英.氧氟沙星对映体的高效毛细管电泳法手性拆分[J].今日药学,2009,19(5):45-47
    [38]殷玮,牛长群.佐米曲普坦与其右旋对映体的毛细管电泳手性分离[J].河北医科大学学报,2007,28(6):426-427
    [39]刘玲,严子军,李湘.高效毛细管电泳法手性分离伪麻黄碱[J].理化检验-化学分册,2007,43(7):525-527
    [40]刘玲,严子军.维拉帕米的高效毛细管电泳手性分离[J].中国医药工业杂志, 2006,37(10):702-704
    [41]肖溶,杜培刚,罗月影,等.羧甲基-β-环糊精取代度对毛细管电泳手性拆分普罗帕酮和普萘洛尔对映体的影响[J].贵阳医学院学报,2010,35(2):144-150
    [42]王伟,张永利,董英茹,等.毛细管电泳法手性分离5种碱性药物[J].药物分析杂志,2007,27(12):1984-1987
    [43]卞兰芳,黄志东.羧甲基-β-环糊精作为手性选择剂对毛细管电泳手性拆分西酞普兰的影响[J].华西药学杂志,2008, 23(5):594-59
    [44]薛娜,牛长群.苯磺酸左旋氨氯地平的毛细管电泳手性分离与纯度检查[J].中国医院药学杂志,2007,27(1):51-53
    [45]刘英华,赵星洁,杨晓华,等.毛细管电泳法手性拆分苯磺酸氨氯地平及其光学纯度分析[J].河北工业科技,2007,24(4):195-197
    [46]陈治春,陈世界,李英杰.羧甲基聚合-β-环糊精在毛细管电泳中分离酪氨酸对映体[J].化学工程师,2006(11):4-5
    [47]王华,周建设,吴筱丹,等. 2种康唑类药物的HS-β-环糊精HPCE手性拆分研究[J].中国医院药学杂志,2009,29(16):1424
    [48]刘鹏,何炜,秦向阳,等.高磺化-β-环糊精毛细管电泳分离分析手性芳香仲醇[J].分析化学研究报告,2009,37(8):1167-1172
    [49]金瑛芝,王园朝,成美容,等.毛细管电泳氨类手性药物对映体拆分机理研究[J].化学研究与应用,2009,21(5):711-714
    [50]王园朝,金英芝,罗经文. 10种手性药物对映体毛细管电泳拆分方法及机理探讨[J].分析科学学报,2009,25(1):21-25
    [51]成美容,王园朝,吴琼,等.山莨菪碱和阿托品毛细管电泳手性拆分研究[J].杭州师范大学学报,2009,8(4):286-289
    [52]吴筱丹,朱亚尔.坦洛新对映体的HS-β-环糊精的HPCE手性拆分研究[J].药物分析杂志, 2008,28(5):715-717
    [53]祝仕清,牛长群,王娅莉,等.盐酸坦洛新的手性分离与纯度检查[J].药物分析杂志,2007,27(11):1701-1703
    [54]蔡梅,李忠红,杨丹.盐酸西布曲明对映体的手性分离[J].海峡药学,2007,19(11):37-39
    [55]蔡梅,李忠红,杨丹.硫酸沙丁胺醇的手性分离[J].药物分析杂志,2006,26(2):159-161
    [56]杨清清,刘文英,狄斌,等.盐酸雷莫司琼的高效毛细管电泳手性分离[J].中国药科大学学报,2007,38(2):136-139
    [57]祝仕清,牛长群.左舒必利的毛细管电泳手性分离与纯度检查[J].中国新药杂志,2006,15(12):995-996
    [58]陆益红,张玫,孟群,等.毛细管电泳法分离测定血浆样品中盐酸多奈哌齐对映体[J].药学学报,2006,41(5):471-475
    [59]何敏,赵书林,陈洁.青霉胺对映体的毛细管电泳手性分离及应用研究[J].分析化学研究简报,2006,34(5):655-658
    [60]吴春勇,狄斌,姚晓敏,等.手性药物佐米曲普坦的磺化β-环糊精毛细管电泳分析[J].中国药科大学学报,2006,37(2):137-141
    [61]刘长海,孙青 ,盛春泉,等.毛细管电泳法检测左旋普拉克索中右旋普拉克索杂质的研究[J].第二军医大学学报,2009,30(9):1058-1061
    [62]林梅,张正行,陈怡,等.山莨菪碱合成品的毛细管电泳手性拆分及其组成分析[J].中国医药工业杂志, 2007,38(8):580-583
    [63]尹燕杰,张启明,李慧义,等.盐酸舍曲林对映体的毛细管电泳手性分离[J].药物分析杂志, 2006,26(l):76-78
    [64]何敏,赵书林,白文玲,等.磷酸苯丙哌林对映体的毛细管电泳手性分离及应用[J].分析化学研究报告,206,34:S59-S62
    [65]黄碧云,赵鑫,袁牧.葡萄糖基-β-环糊精作为手性选择剂对苯磺酸氨氯地平的毛细管电泳手性拆分[J].分析测试学报,2009,28(5):605-607
    [66]陈振泉,李英杰.天冬氨酸-β-环糊精在毛细管电泳中拆分手性药物罗格列酮[J].化学工程师,2007,(10):55-59
    [67]雷双双,杨曦,沈静茹,等.新型β-环糊精衍生物在高效毛细管电泳分离扁桃酸中的应用[J].中南民族大学学报,2008,27(1):30-33
    [68]韦寿莲,刘玲,严子军,等.鼠血中烯丙洛尔对映体的毛细管电泳分离与测定[J].分析测试学报,2010,29(5):488-492
    [69]陆益红,张玫,孟群,等.毛细管电泳法分离测定血浆样品中盐酸多奈哌齐对映体[J].药学学报,2006,41(5):471-475
    [70]周晔,冯芳,张正行.盐酸恩丹西酮的高效毛细管电泳手性分离及其大鼠体内立体选择性药动学研究[J].中国药学杂志,2006,41(7):541-544
    [71]韦寿莲,麦文敏,严子军.固相萃取-毛细管电泳法测定兔血清中的山莨菪碱对映体[J].化学学报,2009,67(8):801-807
    [72]贾绍栋,金东日.手性冠醚为手性分离选择剂的胶束毛细管电泳在线富集分离吉米沙星对映体[J].分析化学研究简报,2009,37(2):271-274
    [73]栗瑞芬,万谦宏.基于手性18-冠-6-四羧酸络合作用的毛细管电泳分离β-氨基酸对映体[J].分析测试学报,2007,26(3):305-309
    [74]胡昌勤,洪建文.毛细管电泳中万古霉素拆分氧氟沙星对映体手性识别位点的探讨[J].药学学报,2009,44(8):905-910
    [75]陶巧凤,朱秀萍,赵昱.以盐酸去甲万古霉素为手性选择剂毛细管电泳法分离西替利嗪对映体[J].药物分析杂志,2007,27(5):686-688
    [76]刘世旺,徐艳霞,杨谷良.氧氟沙星手性拆分的研究[J].黄冈师范学院学报,2007,27(3):46-48.
    [77]黄萍,陈利丁,姚传义.壳聚糖用于毛细管电泳拆分色氨酸对映体的研究[J].厦门大学学报,2008,47(4):611-613
    [78]彭迪,肖尚友,石开云,等.糊精介质中西替利嗪对映体的毛细管电泳拆分与定量测定[J].分析化学,2006,34(11):1667
    [79]张蓉,肖尚友,徐红梅,等.麦芽糖作选择剂西酞普兰手性毛细管电泳分析及拆分机理研究[J].分析化学研究报告,2006,34(10):1384-1388
    [80]姜军坡,徐红梅,陈志涛,等.细管电泳手性分离分析西酞普兰中间体[J].色谱,2006,24(6):657
    [81]朱粉霞,杜迎翔,陈家全,等.肝糖选择剂-毛细管电泳手性拆分盐酸度洛西汀对映体及分离机制[J].分析化学研究简报,2009,37(6):915-918
    [82]韦寿莲,严子军,戚利华.毛细管电泳手性拆分喹诺酮类药物对映体[J].理化检验-化学分册,2009,45(6):714-716
    [83]赵艳芳,赵亮,张红丽,等.以铜(Ⅱ)-L-羟基脯氨酸配合物为手性选择剂的配体交换毛细管区带电泳拆分α-羟基酸[J].分析测试学报,2007,26(1):97-99
    [84]刘玲. L-白氨酸拆分手性药物的毛细管电泳实验[J].肇庆学院学报,2006,27(5):33-35
    [85]赵艳芳,赵亮,明永飞,等.配体交换毛细管区带电泳拆分未衍生化氨基酸[J].分析化学研究报告,2006,34:S87-S90
    [86]陈志斌,陈柳生.可溶性淀粉在毛细管电泳手性分离中的应用[J].广州化工,2010,38(6):90-91
    [87]利健文.毛细管电泳手性拆分美托洛尔、阿普洛尔和卡替洛尔对映体[J].理化检验-化学分册,2010,46(2):175-177
    [88]司红岩,王丽娜,胡超鹏,等.β-环糊精和麦芽糖二元手性识别剂对山莨菪碱的毛细管电泳拆分研究[J].广东化工,2009,36(8):24
    [89]刘长海,赵亮,张海,等.毛细管电泳法检查左旋麻黄碱中对映异构体杂质的研究[J].药学实践杂志,2009,27(1):33-37
    [90]韦寿莲,邓光辉.手性药物的毛细管电泳拆分[J].分析测试学报,2007,26(6): 907-910
    [91]袁佩,林蕾,范琦,等.西他沙星差向异构体的毛细管电泳分离[J].色谱,2006,24(5):513-515
    [92]程燕,白敏,石运伟,等.手性氨基酸的毛细管电泳拆分研究[J].分析测试学报,2006,25(2):52-55
    [93]白敏,程燕,石运伟,等.高效毛细管电泳用于二肽衍生物的手性拆分[J].分析化学研究简报,2006,34(1):119-122
    [94]陈仲益,夏宗玲,胡纯琦,等.手性毛细管电色谱拆分比索洛尔、阿替洛尔、克仑特罗和特布他林[J].分析化学,2007,35(2):181-186
    [95]胡林峰,张裕平,王雪静,等.高效毛细管电泳法分离4-羟基-苯异丙胺对映体[J].理化检验化学分册,2010,46(9):1058-1062
    [96]杜国华,路书彦,刘力宏,等.水/非水介质毛细管电泳法拆分抗胆碱能药物的研究[J].药物分析杂志,2007,27(9):1395-1398
    [97]徐文超,初永杰,林栋,等.改性超支化聚硅碳烷物理吸附涂层毛细管柱的分离性能研究[J].分析化学研究报告,2010,38(8):1167-1171
    [98]沈静茹,陈丽娟,余学红,等.制备双-[6-氧-(2-间羧基苯磺酰基-丁二酸-1,4-单酯-4)-]-β-环糊精手性HPCE柱分离药物[J].中南民族大学学报,2009,28(4):28-32
    [99]陈卓铃,丁国生.聚乙烯亚胺键合涂层毛细管用于改善碱性药物的对映体拆分[J].色谱,2006,24(6):658
    [100] Kazuhiko Tsukagoshi, Kaori Sawanoi and Riichiro Nakajima. Capillary electrophoretic system incorporating an UV/CL dual detector[J]. Talanta,2006,68(4):1071-1075
    [101] TsukagoshiK, SawanoiK, KamekawaM, Nakajima R. Chem. Lett.,2003,32: 894-895
    [102] Chang P L, Lee K H, Hu C C, Chang H T. Electrophoresis,2007,28: 1092-1099
    [103]李慧,闫新焕,丁国生,等.纳米粒子毛细管电色谱技术及其应用[J].分析测试学报,2010,29(6):638-644
    [1]董真秀,汪芸,徐燕,等. HPLC测定盐酸布比卡因右旋异构体含量[J].安徽中医学院学报,2006,25(1):37-38
    [2] IVANILDO JOSéDA SILVA JUNIOR, VINíCIUS DE VEREDAS, MARCOS JOSéSOUZA CARPES, CESAR COSTAPINTO SANTANA. Chromatographic Separation of Bupivacaine Enantiomers by HPLC: Parameters Estimation of Equilibrium and Mass Transfer Under Linear Conditions [J]. Adsorption,2005,11:123–129
    [3]范瑞芳,史雪岩,顾峻岭,等.维拉帕米和布比卡因的毛细管电泳手性拆分[J].分析化学研究简报,2003,31(6):706-708
    [4]谢天尧,郑一宁,莫金垣,等.一种简易型毛细管电泳电导检测装置及其应用[J].分析测试学报,2000,19(3):5-7
    [1] Rifai N,Hsin O,Hope T,et al. Simultaneous measurement of plasma ropivacaine and bupivacaine concentrations by HPLC with UV detection[J]. The Drug Monit,2001,23(2):182-186
    [2]谭建强,郑宝森.左布比卡因的药代动力学及临床应用[J].河北医药,2006,28(7):636-637
    [3]傅强,俞媛,王新华,等.布比卡因聚乳酸微球在家兔体内的药代学和药效学[J].中华麻醉学杂志,2004,24(3):206-208
    [4] Gu X Q,Bronwyn Fryirs,Laurence E,et al. High-performance liquid chromatographic separation and nanogram quantitation of bupivacaine enantiomers in blood[J]. Journal of Chromatography B,1998,719:135-140
    [5] IVANILDO JOSéDA SILVA JUNIOR,VINíCIUS DE VEREDAS,MARCOS JOSéSOUZA CARPES,et al. Chromatographic Separation of Bupivacaine Enantiomers by HPLC: Parameters Estimation of Equilibrium and Mass Transfer Under Linear Conditions[J]. Adsorption,2005,11:123-129
    [6] Wei S L,Guo H F,Lin J M. Chiral separation of salbutamol and bupivacaine by capillary electrophoresis using dual neutral cyclodextrins as selectors and its application to pharmaceutical preparations and rat blood samples assay[J]. Journal of Chromatography B,2006,832(1):90-96
    [7] Helena Soini,Marja-Liisa Riekkola,Milos V,et al. Chiral separations of basic drugs and quantitation of bupivacaine enantiomers in serum by capillary electrophoresis with modified cyclodextrin buffers[J]. Journal of Chromatography A,1992,608(1-2):265-274
    [8] J.J.Martinez-Pla,Y.Martin-Biosca,S.Sagrado,etal. Chiral separation of bupivacaine enantiomers by capillary electrophoresis partial-filling technique with human serum albumin as chiral selector[J]. Journal of Chromatography A,2004,1048(1):111-118
    [9]谢天尧,郑一宁,莫金垣,等.一种简易型毛细管电泳电导检测装置及其应用[J].分析测试学报,2000,19(3):5-7
    [10]高申,刘皋林,周自永,等.布比卡因和利多卡因的临床血浓度监测[J].中国医院药学杂志,1989,9(7):290-294
    [11]俞媛,高申,钟延强,等.布比卡因聚乳酸缓释微球在家兔体内药动学研究[J].中国药学杂志,2002,37(11):849-852
    [12]孙伟,纪松岗,王菊荣,等.高效毛细管电泳法测定血浆中布比卡因的浓度[J].中国药学杂志,2000,35(6):409-411
    [13]陈伟力,魏朝晖,许剑安,等.高效液相色谱法测定布比卡因在家兔体内的血药浓度[J].中国临床药学杂志,2002,11(4):230-231
    [1]陈惠民.二氢吡啶类钙拮抗剂治疗高血压的研究进展[J].国外医药·合成药生化药分册,1994,15(2):72-75
    [2] Yoji Tokuma,Hideyo Noguchi. Stereoselective pharmacokinetics of dihydropyridine calcium antagonists[J]. Journal of Chromatography A,1995,694:181-193
    [3]贺浪冲,王嗣岑.非手性与手性色谱法研究尼莫地平及其对映体在大鼠体内的药代动力学及组织分布[J].药学学报,2003,38(8):603-608
    [4]宫丽,贺浪冲,任文艳,等.尼群地平对映体在Chiralcel OJ柱上的拆分特性研究[J].中国药业,2006,15(3):23-24
    [5] GIANPIERO BOATTO,MARIA NIEDDU,MARIA VIRGINIA FAEDDA,et al. Enantiomeric Separation by HPLC of 1,4-Dihydropyridines With Vancomycin as Chiral Selector[J]. CHIRALITY, 2003,15 :494-497
    [6] Martin Gilar,Marie Uhrová,Eva Tesarová. Enantiomer separation of dihydropyridine calcium antagonists with cyclodextrins as chiral selectors: structural correlation[J]. Journal of Chromatography B,1996,681:133-141
    [7] Thorsten Christians,Ulrike Holzgrabe. Enantioseparation of dihydropyridine derivatives by means of neutral and negatively chargedβ-cyclodextrin derivatives using capillary electrophoresis[J]. Electrophoresis,2000,21:3609-3617
    [8] Ann Van Eeckhaut,Marc Robert Detaevernier,Yvette Michotte. Separation of neutral dihydropyridines and their enantiomers using electrokinetic chromatography[J]. Journal of Pharmaceutical and Biomedical Analysis,2004,36:799-805
    [9]周晔,冯芳,张正行.盐酸恩丹西酮的高效毛细管电泳手性分离及其大鼠体内立体选择性药动学研究[J].中国药学杂志,2006,41(7):541-544
    [10] Armstrong D. W.,Ward T. J.,Armstrong R. D,et al. Separation of Drug stereoisomers by the Formation of beta-Cyclodextrin Inclusion Complexes[J]. Science,1986,232(30):1132-1135
    [1]中国药品实用手册[M].北京:中国医药科技出版社[M]. 1999:104
    [2]罗明生.现代临床药物大典[M].成都:四川科学技术出版社,2004:543
    [3]尤启冬,林国强.手性药物-研究与应用[M].北京.化学工业出版社,2004:36
    [4] Yoji Tokuma,Hideyo Noguchi. Stereoselective pharmacokinetics of dihydropyridine calcium antagonists[J]. Journal of Chromatography A,1995,694:181-193
    [5]贺浪冲,王嗣岑.非手性与手性色谱法研究尼莫地平及其对映体在大鼠体内的药代动力学及组织分布[J].药学学报,2003,38(8):603-608
    [6]朱海彦,崔福德.尼群地平可生物降解微球和原位凝胶的药物动力学[J].沈阳药科大学学报,2007,24(3):133-138
    [7]吴华,袁志芳,张小丽,等.尼群地平纳米片在犬体内的药动学与相对生物利用度[J].中国医院药学杂志,2005,25(10):933-935
    [8]杨明世,崔福德,岳鹏,等.尼群地平缓释胶囊在家犬体内的药动学与相对生物利用度[J].沈阳药科大学学报,2003,20(2):79-82
    [9]崔毅博,姚静,周建平,等. LC-MS法研究尼莫地平自组装前体脂质体在小鼠体内的组织分布[J].药学与临床研究,2008,16(3):170-174
    [10]张莉,李昕. RP-HPLC法测定血浆中尼莫地平浓度[J].中国药师,2004,7(11):865-867
    [11]缪海均,范国荣,刘皋林.高效液相色谱法测定人血浆中尼莫地平的浓度[J].中国现代应用药学杂志,2004,21(2):136-138
    [12]程晓慧.国产尼莫地平片的人体相对生物利用度研究[J].中国实用医药,2008,3(16): 51-52
    [13]王正容,张奇志,蒋新国,等. HPLC法测定大鼠血、脑组织和脑脊液中尼莫地平的浓度[J].中国临床药学杂志,2004,13(4):214-217
    [14]王晓莉,谢林,刘晓东.大鼠口服尼莫地平吸收动力学性别差异研究[J].中国临床药理学与治疗学,2004,9(5):532-535
    [1] Wolfgang G, Rudolf H, Gehart CT, et al. Repaglinide and related hypoglycemic benzoic acid derivatives [J ]. J M ed Chem,1998,5219-5246
    [2]尹燕杰,张启明,张秋生,等.高效液相色谱法直接拆分瑞格列奈对映体[J].中国药品标准,2007,8(1):34-36
    [3]顾萍,李语如,蒋素梅,等. HPLC法测定瑞格列奈及片剂中的R-异构体[J].中国药师,2004,7(10):773-774
    [4]郑一宁,谢天尧,莫金垣,等.高效毛细管电泳-电导检测拆分联萘酚对映体[J].应用化学,2001,18(2):113-116
    [5] C. E. Dalgliesh. The optical resolution of aromatic amino-acids on paper chromatograms[J]. J. Chem. Soc.,1952,3940-3942
    [6] Armstrong D. W., Ward T. J., Armstrong R. D, et al. Separation of Drug stereoisomers by the Formation ofβ-Cyclodextrin Inclusion Complexes[J]. Science,1986,232(30):1132-1135
    [7] Y. Yamashoji,T. Ariga,S. Asano,et al. Chiral recognition and enantiomeric separation of alanineβ-naphthylamide by cyclodextrins[J]. Anal.Chim.Acta,1992,268(1):39-47
    [8]黄志东,张家明.用毛细管电泳拆分手性药物美索巴莫的方法研究[J].中国药学杂志,2003,38(9):700-702
    [9]初永宝,蒋文强,崔凤霞,等.非水毛细管电泳对9种手性药物的拆分[J].色谱,2003,21(2):138-142
    [10] Nishi H., Nakamura K., Nakai H., et al. Enantiomer separation of drugs by mucopolysacchride-mediated electrokinetic chromatography [J]. Anal. Chem,1995,67:2334-2341
    [11] Armstrong, DW, Rundlett, K., Reid, GL, III. Use of a macrocyclic antibiotic, rifamycin B, and indirect detection for the resolution of racemic amino alcohols by CE[J]. Anal. Chem.,1994,66:1690-1695
    [12]张锴,张智超,王琴孙,等.环糊精毛细管区带电泳法分离6种药物对映体的研究[J].中国药学杂志,2002,37(1):52-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700