用户名: 密码: 验证码:
金属钒离子与栲胶配位作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栲胶脱硫工艺是我国特有的的二元湿式催化氧化脱硫法之一,广泛用于化肥、焦化、石油炼制等行业H2S气体的脱除。在脱硫过程中,五价钒离子被HS-还原成四价钒离子,四价钒离子又在栲胶等载氧体存在下被空气氧化再生为五价钒离子,从而达到钒离子的循环使用。栲胶在其中不仅起到载氧体的作用,同时还可作为四价钒离子的络合剂,保护四价钒离子不易生成沉淀,且维持钒离子在脱硫过程中稳定在一定的浓度。因此,本论文分别采用pH电位法和紫外-可见分光光度法,以邻苯二酚、连苯三酚、没食子酸作为栲胶的模型化合物,以单宁酸作为栲胶的替代物,全面系统地研究了栲胶脱硫工艺中催化氧化剂钒离子与栲胶的配位作用。
     通过研究pH值、温度、浓度等因素对五价钒V(V)与HS-之间的反应的影响,发现脱硫液的pH值是影响该反应的主要因素,说明脱硫过程的pH值应严格控制。
     栲胶是一类以单宁成分为主的多酚混合物,结构中既含有酚羟基,还有一定量的羧基,采用紫外-可见分光光度法研究了四价钒V(Ⅳ)离子与苯酚、对苯二酚、间苯二酚、邻苯二酚、间羟基苯甲酸、酒石酸钾钠及没食子酸等七种有机化合物的配位反应。结果表明,四价钒只与这些有机化合物中含有邻位羟基和羧基官能团的化合物发生了配位反应,而与含有一个羟基、含有间位羟基和羧基官能团的化合物均未发生配位反应。
     采用pH电位法测定了含有邻位酚羟基的邻苯二酚、连苯三酚及没食子酸模型化合物在25℃、30℃、35℃、40℃、45℃下的加质子常数,加质子常数随温度的升高而减小。由测定的一系列加质子常数绘制了这些模型化合物各型体随pH值变化的分布图。溶液pH值对模型化合物各型体在溶液中分布分数有很大的影响,模型化合物的存在型体极大地影响模型化合物与金属离子形成配合物的稳定性。测定了四价钒离子与这些模型化合物在上述温度下的的表观稳定常数,这些稳定常数数值均较大,从热力学的角度分析,生成的配合物较稳定。由稳定常数计算了各配合物的热力学函数,发现标准摩尔反应吉布斯函数均为负值,从热力学角度表明这些配位反应均能自发进行;各配位反应的标准摩尔反应焓均为负值,表明了这类反应均为放热反应,低温对反应有利,且反应的推动力主要来自于焓变。
     通过对单宁酸、还原态橡椀栲胶、氧化单宁、氧化态橡椀栲胶的红外光谱图的分析可知,单宁酸的红外谱图出现的特征峰比橡椀栲胶的要多,但经分析知,它们含有的主要官能团相似。氧化态橡椀栲胶和氧化单宁的红外谱图很相近,氧化之后,部分酚羟基转化为醌基。因此,可用单宁酸作为橡椀栲胶的替代物,定量研究橡椀栲胶与金属钒离子的配位作用。
     采用pH电位滴定法,测定了25℃、30℃、35℃、40℃、45℃时单宁酸的加质子常数,温度升高,加质子常数减小,但影响不是很大。绘制了单宁酸赋存型体随pH值变化的分布图。pH值对其不同型体的存在形式影响很大,在栲胶脱硫体系pH值在8.5-9.5之间时,单宁酸在溶液中主要以H2L-形式存在。测定了不同温度下单宁酸与V(Ⅳ)配合物的表观稳定常数,从表观稳定常数的数值来看,表明单宁酸与V(Ⅳ)易形成稳定的配合物。
     采用紫外-可见分光光度法研究了在栲胶脱硫的Na2CO3/NaHCO3缓冲体系中单宁酸与四价钒的配位反应,表明在此缓冲体系中,四价钒和单宁形成配合物。测定了所形成配合物的配位比为1:1,配位稳定常数K=5.34×104。
The tannin extract desulfurization technology belongs to the binary wet catalytic oxidation desulfurization method. At present, it is widely applied to remove H2S in the field of fertilizer, coking and oil refining in our country. In the process of removing H2S, vanadium(Ⅴ) ion is reduced to vanadium(Ⅳ) ion by HS", and then the vanadium(Ⅳ) ion is oxidized to vanadium(Ⅴ) ion by air in the presence of oxygen-carrying tannin extract. So the vanadium ion can be circled. In this process, the tannin extract also acts as a ligand agent, which can avoid vanadium(Ⅳ) to form deposition and keep its concentration stable. In this paper, pyrocatechol, pyrogallol and gallic acid have been used as model compounds for tannin extract, tannic acid as a substitute for tannin extract. By using the pH potential method and UV-vis spectrophotometry, the complexation of the tannin extract with vanadium ion has been investigated comprehensively and systematicly.
     The reaction between pentavalent vanadium V (Ⅴ) and disulfide HS-and its influencing factors were investigated. The results show that the pH value of de-sulfurization liquid is the main influencing factor for the pH value of desulfuri-zation liquid, temperature, concentration of reactants.
     The tannin extract is a tannic acid-containing polyphone mixture which contains phonehydroxyl and carboxyl groups. In order to define which groups form complexation, the coordination reaction of tetravalent vanadium (Ⅳ) ion with such organic compounds as phenol, hydroquinone, resorcinol, pyrocatechol, m-hydroxybenzoic acid, potassium sodium tartrate and gallic acid were investigated by using UV-visible spectrophotometry. The results show that tetravalent vanadium ion only reacts with these organic compounds containing ortho hydroxyl and carboxyl functional groups, and not with those containing a hydroxyl, or meta-hydroxyl and carboxyl functions.
     The protonation constants of such model compounds as pyrocatechol, pyrogallol and gallic acid were determined at25℃,30℃,35℃,40℃,45℃by using pH potential method. The protonation constants decrease with the increase of temperatures. The distribution of various species of these model compounds with the pH value change can be mapped by using these protonation constants. The figure shows that the pH value of the solution markedly impacts the distribution fraction of various species. The species greatly affects the stability of the metal ions complexes with the model compounds. The apparent stability constants of tetravalent vanadium ion with these model compounds were determined. All the values are larger. These complexes are stable from the point of view of thermodynamics. The thermodynamic functions of the complexes were calculated by the stability constants. The standard molar Gibbs functions of these reactions are negative, which figure that these coordination reactions are spontaneous. The standard molar reaction enthalpies of these coordination reactions are negative, which figure these reactions are exothermic reactions and low temperature is favorable to the reactions. Moreover the enthalpy changes are the main driving force of the reactions.
     Through the analysis of the infrared spectra of tannic acid, valonia tannin extract, oxidant of tannic acid and the one of valonia tannin extract, tannic acid appears more characteristic peaks than valonia tannin extract. But they contain the similar main functional groups. The infrared spectra of the oxidant of valonia tannin extract and the oxidant of tannic acid are very similar. After oxicidization, partial phenolic hydroxyl group turned into the quinone. Therefore, the tannic acid can be used as a substitute of valonia tannin extract. Then we can quantitatively research the complexation between valonia tannin extract and vanadium ions.
     The protonation constants of tannic acid at defferent temperatures were determined by using the pH potential method. The protonation constants decrease with the temperature increasing, which is not markedly. The distribution of of various species of tannic acid with the pH value change can be mapped by using these protonation constants. The pH values have a great influence on the existence form of different body. At the pH value8.5~9.5of the tannin extract desulfurization system, the main form of tannic acid in solution is H2L". The apparent stability constants of V (Ⅳ) complex with tannic acid at different temperatures were determined. These values show that the tannic acid and V (Ⅳ) can form stable complex.
     Using UV-vis spectrophotometry, the coordination reaction of tannic acid with vanadium ions was studied in Na2CO3/NaHCO3buffer solution. The results show that the tetravalent vanadium ion and tannin can form complex in this buffer system. The ligand ratio of the complex is1:1, the stability constant is K=5.34×104.
引文
[1]李羡宇,张立冬,杨滨等.煤气脱硫方案的探讨[J].环境保护科学,1997,234:47-48.
    [2]鲍国杭.中高温煤气脱硫实验研究[D].上海:上海大学,2007.
    [3]王学谦,宁平.硫化氢废气治理研究进展[J].环境污染治理技术与设备,2001,2(4):77-85.
    [4]广西大学分离工程研究室.硫化氢的脱除[M].1990,2:10-26.
    [5]Novochinskii,I.I., Chunshan S. Low-Temperature H2S Removal from Steam-Containing Gas Mixtures with ZnO for Fuel Cell Application.1. ZnO Particles and Extrudates[J]. Energy&Fuels,2004,18:576-583.
    [6]吴占松.煤炭清洁有效利用技术[M].北京:化学工业出版社,2007,7:292-293.
    [7]Abbasin Javed.In-Situ Desulfurization of Coal Gas CaO-Based Sorbents.Nato Asi Ser Ser G.1998.42:269-282P.
    [8]秦悦.用于脱除低浓度硫化氢气体的吸附剂研究[D].大连理工大学,2009.
    [9]西德专利[P],No.1185762,1968.
    [10]美国专利[P],No.3416293,1968.
    [11]J.PRZEPIORSKI,A.OYA, K2CO3-Loaded Deodorizing Activated Carbon Fiber against H2S Gas:factors Influencing the Efficiency and the Regeneration Method[J], J.Mater.Sci. Lette,1998,17:679-682.
    [12]吴浪,张永春,费小猛等。脱硫化氢活性炭的再生法研究[J],广州化学,2005,30(4):34-37
    [13]徐如人,庞文琴,屠昆岗,等.沸石分子筛的结构与合成[M].长春:吉林大学出版社,1987.
    [14]蒲延芳,闻学兵,赵文涛.干法脱除H2S的研究进展[A]。气体净化信息站,2009年技术交流会论文集41-44.
    [15]Cummings,W.P.,and C.W.Chi,"Natural gas purification with molecular sieves"[C], Proceedings of the 27 th Canadian Chemical Engineering Conference,Calgary, Alberta,Canada,1977:150-173.
    [16]Gustafson K J,Healey M M.Removal hydrogen sulfide from nature gas/carbon dioxide mixtures with molecular sieves[C].Proc of the Gas Conditioning Conference,University of Oklahoma,1968.
    [17]陈天虎,李晓星,黄晓鸣等.锰氧化物脱除硫化氢的容量产物和机理[J].矿物岩石地球化学通报2007,26(z1):163-165.
    [18].Lacey R.E,Loeb S Industrial Processing With Membrane.NewYork:Robert E.Krieger Publishing Co,1979:279-339.
    [19]Schell WJ,Houston C D. Spiral-wound permeators for purification and recovery[J]. Chem. Eng. Prog,1982;78(10):33-37.
    [20]龙晓达,龙玲.膜分离技术在天然气净化中的应用现状[J].天然气工业,1993;13(1):100-102.
    [21]Schell W J,Houston C D.Spiral-wound permeators for purification and recovery[J]. Chem.Eng.Prog,1982,78(1):33-37.
    [22]Vaidyanathan A S,Youngquist G R. Sorption of sulfur dioxide,hydrogen sulfide and nitrogen dioxide by ion-exchange resins, IEC[J], Product Research & Development, 1973,12(4):288-292.
    [23]吴政,崔成民等.强碱性离子交换纤维对H2S-CO2混合气体吸附分离及分离的研究[J].石油化工,1999,28(12):810-812.
    [24]Patricio Oyarzun,Fernando Arancibia,etc,Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus[J].Process Biochemistry,2003,39:165-170.
    [25]Cork D J. Acid wate gas bioconversion-an alternate to the claus desulfurization Process[J]. Dev Ind Microbiol,1982,23:379-382.
    [26]Leson G, Winer A M. Biofiltrationran innovative air pollution control technology For VOC emissions[J].J Air Waste Manage Assoc.1991,41:1045-1054.
    [27]Stephany Romanow-Garcia,A "live" Catalyst for Refiners[J].Hydrocarbon Process,1995, 74(5):19-20.
    [28]Kawamura S Aoki,Kawakami W,Hashimoto S,Machi S. Treatment of exhausted gases by irradiation,Proc. Symp,on the Use of High Level Rad[J]. in Waste Treatment,1975: 621-707.
    [29]Schell W J, Houston C D. Spiral-wound Permeators for Purification and recovery. Chem[J]. Eng. Prog,1982,78(10):33-39.
    [30]Y.Bessekhouad, M.Mohammedi, M.Trari. Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst[J].Solar Energy Materials&Sola Cells,2002,73:339-350.
    [31]周宇松,聂通元等.纳米光催化净化分解炼化厂恶臭有毒气体研究[J].材料导报,2002,16(7):66-67.
    [32]Kohl A L, Riesenfeld F C. Gas Purification (Fourth Edition)[M]. Gulf Publishing Company, Houston,Texas,1985.
    [33]Benson H E, Field J H. A modification to hot potassium carbonate process. Petroleum Refineer,1960; 39(4):127)
    [34]Swaim C D.Gas sweetening processes of the 1960's[J]. Hydrocproc,1970,3994):127.
    [34]Oil & gas J,1968,66,NO.21:85-86.
    [35]Franckowiak S, Nitschke E. Estasolvan:New gas treating process[J]. Hydroc Proc,1970,49(5):145-150.
    [36]Klein J P, Mij N V. Developments in sulfinol and adip processes increase uses[J]. Oil & Gas Int,1970,10(9):109-112.
    [37]Ki-krOtunler, The study of mechanism of G-V, Encylopedia of chemieal Technology, 1979,19,742-755.
    [38]林民鸿.NHD气体净化技术理论与实践(上)[J].化肥工业,2000,27(4):17~21.
    [39]化肥司中氮处净化调查组.中型氮肥厂净化调查报告.中氮肥,1989,(2):1
    [40]Hasebe N. Chemical Economy Engineering Review,1970,3:27.
    [41]肖瑞华,白金锋.煤化学产品工艺学[M].冶金工业出版社,2008,9:235-238
    [42]肖瑞华,白金锋.煤化学产品工艺学[M].冶金工业出版社,2008,9:246-256
    [43]朱世勇,环境与工业气体净化技术,北京,化学工业出版社与环境科学与工程出版中心,2001,198;145~150;156~157;19;36;45;46;47
    [44]庞锡涛.MSQ-3型脱硫催化剂及其应用[J].小氮肥设计技术,2003,24(3):29-31.
    [45]毛晓青,刘继红,杨树卿.PDS脱硫技术-液相催化氧化法脱硫的最新发展[J].石油与天然气化工,1993;2
    [46]杨树卿,陈彬,邵允等.双核酞菁钴磺酸盐催化脱硫机理研究:Ⅰ.抗CN-中毒性能及其机理[J].催化学报.1991,12(6):459-465.
    [47]曾友宝,张雪,岳红.焦炉煤气HPF法脱硫的应用与实践,化学工程与装备,2009,5:97.
    [48]朱世勇.环境与工业气体净化技术[M].北京,化学工业出版社,2001,15~61.
    [49]黄子衍.栲胶法脱硫在化肥厂应用的概述[J].化学工业,1998,29(4):22-25.
    [50]李彦旭,田青平,郭汉贤等.氧化铁脱硫剂高温煤气脱硫行为的研究.燃料化学学报,1998,26(2):130~134.
    [51]单宁用于硫化物的氧化触媒[P].日1366,1953.4.2;日速报,1953,27,795.
    [52]田冈荣一,单宁用于工业气体脱硫液的再生[P].日10135,1960.7.28;PKX,1962,6K52.
    [53]单宁用于含乙硫醇氢氧化钾的氧化再生[J].CA,1974,80(13):700-712.
    [54]宋世新.栲胶脱硫溶液分析方法的改进[J].中氮肥,1996(5):58-60.
    [55]黄子衍.栲胶法在焦炉气脱硫中的应用[J].煤化工,2004(2):52-55.
    [56]化肥司栲胶脱硫调查组.部分中型氮肥厂栲胶脱硫情况调查[J].1989,2:16-22.
    [57]杨瑞华,李海洪.半水煤气栲胶法脱硫问题及解决办法[J].中氮肥,2005(1):22-23.
    [58]梁兴禄,汪晓媚.888-脱硫催化剂及其应用技术[J].煤化工,1998(4):41-43.
    [59]张全文.关于栲胶脱硫的几个问题[J].小氮肥,2005(2):13-15.
    [60]安鑫南.林产化学工艺学[M].北京:中国林业出版社,2002,8:256-277.
    [61]孙达旺.植物单宁化学[M].北京:中国林业出版社,1992,1-6.
    [62]狄莹,石碧.植物单宁化学研究进展[J].1999,3:1-5.
    [63]马秀璟,王慧深,刘延泽.对中药材中鞣质的新认识[J].中国中医信息杂 志,1999,6(11):35-36.
    [64]中国科学技术情报研究所重庆分所.国外气体净化技术[M].1981:5-10.
    [65]张海岩,宋晓军,高树峰,武挺,三价钒、四价钒、五价钒的测定,北方钒钛,2012,1:19-21.
    [66]N.D.Chasteen,in:L.J.Berliner,J.Reuben(Eds.),Biological MagneticResonance,vol.3, Plenum Press,New York,1981,p.53.
    [67]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995,231-242.
    [68]J.Baes,F.Charles,R.E.Mesmer,In The Hydrolysis of Cations,John Wiley & Sons:New York,1976.
    [69]Geoffrey, S.; Wilkinson,F.R.S.; "Comprehensive Coordination Chemistry",454-569. 1987(3):
    [70]Pearson, J. of Chem. Edu.,1968
    [71]Nriagu, J. O. Ed. Vanadium in the Environment. in Adv. Environ. ScienceTechnol. John Wiley & Sons, Inc:New York,1998; Vols.30 and 31.
    [72]A. Sigel, H.Sigel, A. Eds. Vanadium and Its Role for Life; Metal Ions In Biological Systems, Marcel Dekker, Inc.:New York.1995; Vol.31. b.
    [73]Srivastava, A. K.; Chiasson, J.-L. (Eds.) Vanadium Compounds:Biochemical and Therapeutic Applications:Focused issue in Mol. Cell. Biochemistry,1995; Vol.153.
    [74]Chasteen, N. D. Ed. Vanadium in Biological Systems; Kluwer Academic Publishers: Dordrecht, The Nederlands,1990.
    [75]宋世新.橡椀栲胶单宁与四价钒形成络合物的论证[J].中氮肥,1990(1):22-26.
    [76]胡世华,栲胶脱硫液电位及其应用讨论[J],化肥工业,1982,1:48-54.
    [77]宋春玲.复合栲胶脱硫工艺的优化[D].太原,太原理工大学,2004.
    [78]王晓红.PDS脱硫与栲胶脱硫工艺比较及栲胶工艺的优化[D].太原,太原理工大学,2004.
    [79]黄澎.栲胶脱硫机理的研究及分析方法的改进[D].太原,太原理工大学,2005.
    [80]王少卿.栲胶脱硫反应机理研究[D].太原,太原理工大学,2006.
    [81]程雪松.氧化栲胶溶液和栲胶脱硫液溶液性质的研究[D].太原,太原理工大学,2007.
    [82]牟学春.栲胶与四价钒离子络合性质的研究[D].太原,太原理工大学,2009.
    [83]牛艳霞.栲胶脱硫工艺副产物生成机理及影响因素的研究[D].太原,太原理工大学,2011.
    [1]黄子衍.栲胶法在焦炉气脱硫中的应用[J].煤化工,2004,2:52-55.
    [2]G.H.Kelsall,I.Thompson.Redox chemistry of H2S oxidation in the British Gas Stretford Process Part Ⅳ:V-S-H2O thermodynamics and aqueous vanadium(V) reduction in alkaline solutions [J]. Journal of Applied Electrochemistry.1993,23:417-426.
    [3]胡明松.色谱分离和原子发射光谱检测工业废水中的四价和五价钒[J].化学通报,2004,2:147-153.
    [4]徐洪恩.改良ADA脱硫技术[M].太原煤炭气化公司焦化厂资料.
    [5]李逢玲,碳酸盐缓冲溶液性质及其对栲胶脱硫工艺影响的研究[M],太原理工大学,2011.
    [6]罗永杰,邓玉惠,关秀娟.钠化钒渣水浸液中四、五价钒及硫离子的分离与测定[J].冶金分析,1983(4):228-229.
    [7]宣伟敏,邵明铭.用硫离子选择电极测定栲胶脱硫液中HS-[J].化肥工业,1981,(2):11-13.
    [8]俞念恩,张洪勋.银硫离子选择电极测定工业废水中的硫化物[J].重庆环境科学,1993,15(3):46-49.
    [1]王文善.国内外脱硫技术的发展状况及需要研究的问题[J].小氮肥设计技术,2006(27)2:1-6.
    [2]朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社与环境科学与工程出版中心,2001:29.
    [3]赵明,张奇兵,仲伟华.栲胶法脱硫在实际生产中的应用[J].化学工程师,2004(1)41-43.
    [4]梁锋,徐丙根,施小红,等. 湿式氧化法脱硫的技术进展[J].现代化工,2003,23(5):21-24.
    [5]权世矿,贾冉阳.栲胶法脱硫塔堵原因分析及预防措施[J.化工设计通讯,2005,31(2): 9-11.
    [6]北京师范大学,华中师范大学,南京师范大学.无机化学(下册,第四版)[M].北京,高等教育出版社,2005:748.
    [7]黄子衍.栲胶法脱硫在化肥厂应用的概述[J].化学工业,2002,29(4):22-25.
    [8]王少卿,栲胶脱硫机理及动力学研究[D],太原理工大学,2005.
    [9]黄鹏,拷胶脱硫机理研究与分析手段的改进[D],太原理工大学,2005。
    [10]胡士华,杨美娟.ADA脱硫液中酒石酸钾钠与络合物的探讨[J].化肥工业,1982(4):9-13.
    [1]陈素文,殷宁,橡椀栲胶醇不溶物质组分的分析及其利用研究[J],北京林业大学学报,1988,10(4):31-39.
    [2]广西化工研究所,广西林科所,上林氮肥厂,白色栲胶厂,橡椀栲胶新用途——栲胶法脱硫工业生产试验报告(摘要)。
    [3]石碧,狄莹,植物多酚[M],科学出版社,北京,2000,103.
    [4]罗永杰,邓玉惠,关秀娟.钠化钒渣水浸液中四、五价钒及硫离子的分离与测定[J].冶金分析,1983(4):228-229.
    [5]苏小宝,戴丽君,陈少平,等.黑荆树单宁与金属离子络合性质的研究[J].林产 化学与工业,2007,27(4):37-41
    [6]叶周.水质稳定处理中pHs值计算公式的讨论[J].工业用水与废水,2004,35(2):19-22.
    [7]Bjerrum J.Metal Ammine Formation in Aqueous Solution[M].Haase:Copenhagen,1957, 26:296.
    [8]华中师范大学等,分析化学(上册,第三版),高等教育出版社,北京,2003,136.
    [9]黄剑朎,孙达旺,马信亮,伍东,单宁加质子常数及其配合物稳定常数的研究[J],南京林业大学学报,1992,16(1):13-18.
    [10]杨帆,林纪筠,单永奎,配位化学[M],华东师范大学出版社,上海,2009,67。
    [11]分析化学(第五版,上册),武汉大学主编[M],高等教育出版社,北京,2006,178.
    [12]分析化学(第五版,上册),武汉大学主编[M],高等教育出版社,北京,2006,393.
    [1]谢志芳,石新明,用于气体脱硫净化的碱性氧化栲胶的制备方法[P],中国专利,1341690A,2002-03-27.
    [2]苏小宝,戴丽君,陈少平,等.黑荆树单宁与金属离子络合性质的研究[J].林产化学与工业,2007,27(4):37-41
    [3]苏小宝,黑荆数单宁络合性质研究[D],福建师范大学,2007.
    [4]狄莹,宋立江,石碧,橡椀栲胶氧化降解产物作制革的中和复揉剂[J],精细化工1999,16:22-26.
    [5]孙燕琼,杨融生,张汉辉,杨齐愉,酚醌类化合物振动频率的计算、归属和讨论[J],光谱学与光谱分析,2000,20(6):790-792.
    [6]Bjerrum J.Metal Ammine Formation in Aqueous Solution[M].Haase:Copenhagen,1957, 26:296.
    [7]黄剑朎,孙达旺,马信亮,伍东.单宁加质子常数及其配合物稳定常数的研究[J].南京林业大学学报,1992,16(1):13-18.
    [8]杨帆,林纪筠,单永奎,配位化学[M],华东师范大学出版社,上海,2009,67。
    [9]分析化学(第五版,上册),武汉大学主编[M],高等教育出版社,北京,2006,178.
    [10]分析化学(第五版,上册),武汉大学主编[M],高等教育出版社,北京,2006,393.
    [1]F. Bosch Serrat, G. Bosch Morell, Colorimetric method for the determination of vanadium with tannic acid in water and oils, Fresenius J Anal Chem,1994,349:717-721。
    [2]霍权恭,蔡凤英,刘来亭,高粱单宁钒显色测定方法,食品科学,1996,17(12):56-58.
    [3]石碧,狄莹,植物多酚[M],科学出版社,2000:106.
    [4]史慧明,何锡文,用分光光度法研究混合配位络合物的组成和形成常数,分析化学,1979,3:228-235.
    [5]徐其亨.光度法测定络合物的组成和稳定常数[J].云南冶金,1981,(4):56-59.
    [6]宋世新.栲胶脱硫溶液中总钒测定新方法[J].广西化工,1988,(2):29-33.
    [7]王勇,杨瑞丽,杨合情,王小玲,张光,新型吡啶偶氮试剂质子化行为的分光光度法研究,陕西师范大学学报(自然科学版),1996,24:68-72.
    [8]宋世新,橡椀栲胶单宁与四价钒形成络合物的论证,22-27.
    [9]牟学春,紫外可见分光光度法对单宁酸与钒络合性质的研究,应用化工 2009,38(1):23-27.
    [10]张卫东,孔佳超,王茹,李娟琴,李象远,植物多酚模型体系与V(V)的配位机理,高等学校化学学报,2009,30(9):1779-1783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700