用户名: 密码: 验证码:
基于多元复合活性吸收剂的烟气CFB同时脱硫脱硝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文查阅了大量烟气同时脱硫脱硝技术及其吸收剂研究的文献并进行了综述;以次氯酸钠和添加剂为基础原料制备了两种多元复合活性吸收剂SHC和SHF,通过逐级放大的方式,在固定床、小型流化床、烟气循环流化床以及工业化装置上分别进行了一系列半干法烟气同时脱硫脱硝实验研究,提出了一种利用烟气循环流化床(CFB)增湿活化过程向床体喷淋该吸收剂的半干法同时脱硫脱硝新工艺。通过脱除产物分析及同时脱除反应的热力学研究,探讨了多元复合活性吸收剂烟气CFB同时脱硫脱硝的机理。
     通过活性添加剂的筛选,以NaCIO和添加剂A及A’为基础原料,制备了两种多元复合活性吸收剂SHC和SHF。扫描电镜(SEM)、X-射线能谱(EDS)、离子色谱(1C)和X-射线衍射(XRD)表征结果显示,多元复合活性吸收剂比表面积大、活性高。脱除实验表明,SHC和SHF可将烟气中难溶于水的NO快速氧化为高价态,从而实现SO2和NOx的高效同时脱除。
     通过固定床正交实验,确定了影响多元复合活性吸收剂脱硫脱硝的主要影响因素。在自制的小型流化床上进行了动态条件下多元复合活性吸收剂的同时脱硫脱硝实验,研究了多元复合活性吸收剂浓度、增湿水pH、Ca/(S+N)、入口温度等因素对脱除效率的影响。
     根据小型流化床的实验结果,在烟气循环流化床装置上进行了同时脱硫脱硝实验,考察了吸收剂浓度、组分配比,增湿水pH值、Ca/(S+N)、反应温度、烟气湿度、烟气含氧量等多种因素对同时脱硫脱硝效率的影响,确定了最佳工艺条件,在此条件下,SHC的同时脱硫和脱硝效率可分别达到96.5%和73.5%,SHF的同时脱硫和脱硝效率可分别达到96.1%和67.2%,且脱除效率数据精密度高,表明本文提出的半干法烟气同时脱硫脱硝运行稳定,具有较高的工业化应用价值。
     利用多种测试技术和化学分析方法对同时脱硫脱硝的反应产物进行了分析。结果表明,SHC为吸收剂时,SO2和NO、的主要脱除产物为硫酸钙和硝酸钙,其次为亚硫酸钙和亚硝酸钙;SHF为吸收剂时,脱硫和脱硝产物分别为硫酸钙和硝酸钙,表明其氧化能力高于SHC。由上述产物分析结果可以推断,增湿水中的多元复合活性吸收剂可首先快速将NO氧化为NO2,其后与SO2一起被Ca(OH)21吸收,实现了同时脱除。脱除反应的热力学研究也证实了这一结论。
     利用实验室开发的多元复合活性吸收剂,在河北某电厂200MW锅炉烟气循环流化床装置上进行了现场工业化试验研究。通过考察多元复合活性吸收剂浓度、增湿水pH值、吸收剂组分配比、Ca/(S+N)、近绝热饱和温度、循环倍率等因素对脱除效率的影响,确定了最佳工况条件,获得了较高的同时脱除效率。工业化应用表明,本文开发的具有自主知识产权的新型烟气治理技术具有操作简便、低费用、低能耗及同时脱除烟气中多污染物的特点,经济、环境和社会效益显著,具有重要的应用前景。
     基于烟气CFB脱硫脱硝反应的各种工况条件,利用FLUENT计算软件对烟气CFB内流场和温度场进行了数值模拟,为工业化应用设计提供了依据。
The current status of the researches about flue gas simultanteous desulfurization and denitrification and the absorbents were reviewed by consulting a large number of literatures in this dissertation. Two multicomposite active absorbents, named SHC and SHF respectively, were prepared from sodium hypochlorite and different additives. Meanwhile, a new semi-dry process of simultaneous desulfurization and denitrification were proposed by spraying the multicomposite acitive absorbents into a flue gas circulating fluidized bed (CFB) using the humidifying activation, and a series of experimental studies of semi-dry flue gas desulfurization and denitrification simultaneously were carried out in a fixed bed, fluidized bed, CFB, and in the industrial pilot plant respectively, by amplifing the condition step by step. Through the analysis of removal products and the investigations of thermodynamic processes, the mechanism of simultaneous desulfurization and denitrification in a CFB by the multicomposite active absorbents were disclosured.
     By screening of additives on activity, NaCIO and additives A and A'were determined as the basic raw materials for prepared the two multicomposite active absorbents SHC and SHF. Scanning electron microscopy (SEM), X-ray spectroscopy (EDS), ion chromatography (IC) and X-ray diffraction (XRD) characterization results indicate that multicomposite active absorbents have large surface areas and high activities. The removal experiments show that SHC and SHF can rapidly oxidize NO, which is difficult to dissolve in the water, and then achieve high simultaneous removal efficiencies of SO2and NOx.
     Through the orthogonal experiment in fixed bed, the main impact factors of multicomposite active absorbents on simultaneous desulfurization and denitrification were determined.Then, the dynamic experiments of simultaneous desulfurization and denitrification by the multicomposite active absorbents were performed in a small-scale fluidized bed, and various effect of absorbent concentration, pH, Ca/(S+N), inlet temperature and et al. on the removal efficiencies were also studied.
     According to the experimental results of small-scale fluidized bed, and further amplification of experimental conditions, the experiments of simultaneous desulfurization and denitrification in the flue gas circulating fluidized bed were carried out, and various factors such as the absorbent concentration, molar ratio, pH of humidified water, Ca/(S+N), reaction temperature, gas humidity, oxygen content of flue gas and so on the efficiencies of simultaneous desulfurization and denitrification were investigated, therefore, the optimum conditions were confirmed. At the optimum condition, the efficiencies of desulfurization and denitrification by SFIC can achieve96.5%and73.5%, respecitively; meanwhile, the efficiencies of desulfurization and denitrification by SHF can reach96.1%and67.2%, respecitively. In addition, the high precise data of removal efficienies showed that the proposed semidry flue gas simultaneous desulfurization and denitrificaiton process runs stable, and has broad application prospects.
     The reaction products were analyzed by using a variety of modern testing techniques and chemical analysis. The results showed that, the removal products of SO2and NO by SHC are mainly calcium sulfate and calcium nitrate, respecitively, followed by calcium sulfate and calcium nitrite; while for SHF, its desulfurization and denitrification products are calcium sulfate and calcium nitrate, respecitively, which means the oxidizability of SHF is higher than that of SHC. Though the above results of products, it can be inferred that NO can be rapidly oxidized to NO2by multicomposite active absorbents, and then absorbed by Ca(OH)2with SO2, thus the simultaneous removal were achieved. These conclusions can also be confirmed by the thermodynamic analysis.
     A pilot-scale test were implemented in a flue gas circulating fluidized bed combined with200MW boiler unit of a power plant in Hebei by the multicomposite active absorbent. By examining various effect of the absorbent concentration, pH of humidified water, molar ratios of absorbent, Ca/(S+N), near-adiabatic saturation temperature, circulation rate and et al. on the removal efficiencies, the optimal operating conditions were determined, on which a higher removal efficiencies of SO2and NO were reached. The results of the pilot-scale tests showed that the new flue gas treatment technology with independent intellectual property rights developed in the dissertation has the merits of simple operation, low cost, low energy dissipation and simultaneous removal of multi-pollutants from flue gas, which can generate significant economic, environmental and social benefits and has a broad application.
     Based on FLUENT computing platforms, the flue gas flow field and temperature field in the CFB were simulatied under a variety of operating conditions on both SO2and NO removal process, which can provide a basis for the industrial application.
引文
[1]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002:1
    [2]李瑞忠,郗凤云,杨宁,邹劲松.2010年世界能源供需分析——《BP世界能源统计2011》解读[J].当代石油石化,2011,19(7):30-38
    [3]刘海龙,温卫嘉,吴向林.三河电厂脱硫系统GGH结垢与堵塞的再治理[A].全国电力行业脱硫脱硝技术协作网年会暨脱硫脱硝企业CEO论坛论文集[C].北京:全国电力行业脱硫脱硝技术协作网,2009:277-280
    [4]范小克.破解燃煤二氧化硫污染防治的世界难题,实现循环经济的战略突破[J].中国工程咨询,2004,(8):15-18
    [5]GB13223-2011,火电厂大气污染物排放标准[S].北京:中国环境科学出版社,2011
    [6]Lu Z., Streets D. G., Zhang Q., et al. Sulfur Dioxide Emissions in China and Sulfur Trends in East Asia since 2000[J]. Atmospheric Chemistry and Physics, 2010, V10(13):6311-6331
    [7]彭济峰.十一五期间中国GDP能耗下降19.1%[J].石油化工腐蚀与防护,2011,28(2):64-64
    [8]王志轩,潘荔,赵鹏高,等.现有燃煤电厂二氧化硫治理”十一五”规划研究[J].环境科学研究,2007,20(3):142-147
    [9]Lin J. T., McElroy M. B., Boersma K. F. Constraint of Anthropogenic NOx Emissions in China from Different Sectors:a New Methodology Using Multiple Satellite Retrievals[J]. Atmospheric Chemistry and Physics,2010, V10(1):63-78
    [10]郭斌,廖宏楷,徐程宏,廖永进.我国SCR脱硝成本分析及脱硝电价政策探讨[A].全国电力行业脱硫脱硝技术协作网年会暨脱硫脱硝企业CEO论坛论文集[C].北京:全国电力行业脱硫脱硝技术协作网,2009:277-280
    [11]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002:325
    [12]Hackam R., Aklyama H. Air Pollution Control by Electrical Discharges[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2000, V7(5): 654-683
    [13]Doi Y., Nakanishi I., Konno Y. Operational Experience of a Commercial Scale Plant of Electron Beam Purication of Flue Gas[J]. Radiation Physics and Chemistry,2000, V57(3-6):495-499
    [14]毛本将,丁伯南.电子束烟气脱硫技术及工业应用[J].环境保护,2004,(9):15-18
    [15]Chmielewski A. G., Iller E., Zimek Z., et al. Industrial Demonstration Plant for Electron Beam Flue Gas Ttreatment[J]. Radiation Physics Chemstry,1995, V46(4-6):1063-1066
    [16]Mizuno A., Clements J. S., Davis R. H. A Method for the Removal of Sulfur Dioxide from Exhaust Gas Utilizing Pulsed Streamer Corona for Electron Energization [J]. IEEE Transactions on Industry Applications,1986, V22(3): 516-522
    [17]Kikuchi R., Pelovski Y. Low-dose Irradiation by Electron Beam for the Treatment of High-SOx Flue Gas on a Semi-pilot Scale-consideration of By-product Ouaiity and Approach to Clean Technology[J]. Process Safety and Environmental Protection,2009, V87(2):135-143
    [18]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002:248-254
    [19]Dinelli G., Civitano L. Rea M., et al. Industrial Experiments on Pulse Corona Simultaneous Removal of NOx and SO2 from Flue Gas[J]. IEEE Transactions on Industry Applications,1990, V26(3):535-541
    [20]Chang J. S., Urashima K., Tong Y. X., et al. Simultaneous Removal of NOx and SO2 from Coal Boiler Flue Gases by DC Corona Discharge Ammonia Radical Shower Systems:Pilot Plant Tests[J]. Journal of Electrostatics,2003, V57(3):313-323
    [21]Masuda S., Nakao H. Control of NOx by Positive and Negative Pulsed Corona Discharges[J]. IEEE Transactions on Industry Applications,1990, V26(2): 1173-1182
    [22]Li J., Wu Y., Wang N. H., et al. Industrial-scale Experiments of Desulfuration of Coal Flue Gas Using a Pulsed Corona Discharge Plasma[J]. Plasma Science, IEEE Transactions on,2003, V31 (3):333-337
    [23]赵君科,王保健,任先文,等.脉脉冲电晕等离子体烟气脱硫脱硝中试装置[J].环境工程,2001,19(6):43-45
    [24]魏培平,董丽敏,杨嘉祥.脉冲电晕等离子体脱硫、脱氮研究[J].哈尔滨师范大学自然科学学报,2001,17(6):68-72
    [25]Yan K., Li R., Zhu T., et al. A Semi-wet Technological Process for Flue Gas Desulfurization by Corona Discharges at an Industrial Scale[J]. Chemical Engineering Journal,2006, V116(2):139-147
    [26]Li R., Yan K., Mao J., et al. Heterogeneous Reactions in Non-thermal Plasma Flue Gas Desulfurization[J]. Chemical Engineering Science,1998, V53(8): 1529-1540
    [27]黄辉,姜学东,邱瑞昌,等.新型流光放电等离子体烟气同时脱硫脱硝-体化技术[J].北京交通大学学报,2005,29(2):31-34
    [28]张巍,用电催化氧化(ECO)技术控制燃煤电厂多种污染物的排放『J].国际电力,2003,7(3):51-53
    [29]吴祖良,高翔,骆仲泱,等.自由基簇射电催化氧化同时脱硫脱硝过程反应特性及机理研究[J].高校化学工程学报,2006,20(6):925-931
    [30]张扬.介质阻挡放电脱硫脱硝反应动力学研究[D].北京:华北电力大学,2010
    [31]Li J., Sun W. M., Pashaie B., et al. Streamer Discharge Simulation in Flue Gas[J]. IEEE Transation on Plasma Science,1995, V23(4):672-678
    [32]Herron J. T. Modeling Studies of the Formation and Destruction of NO in Pulsed Barrier Discharges in Nitrogen and Air[J]. Plasma Chemistry and Plasma Processing,2001, V21(4):581-609
    [33]蒋渊华.烟气净化脱硫脱硝活性炭的研究[J].河南科技,2007,(8):54-55
    [34]Mochida I., Korai Y., Shirahama M., et al. Removal of SOx and NOx over Activated Carbon Fibres[J]. Carbon,2000, V38(2):227-239
    [35]许行勇,徐建昌,李雪辉,等.固体吸附/再生法同时脱硫脱硝技术的研究进展[J].广州化工,2003,31(1):4-6
    [36]马双忱,赵毅,马宵颖,等.微波诱导催化还原脱硫脱硝实验研究[J].中国电机工程学报,2006,26(18):121-125
    [37]Chen Z. Y., Yeh J. T. A Sorbent Regenerator Simulation Model in Copper Oxide Flue Gas Cleanup Processes[J]. Environmental Process,1998, V17(2): 61-69
    [38]刘清雅,刘振宇.蜂窝状堇青石基CuO/Al2O3催化剂用于烟气同时脱硫脱硝的研究[J].燃料化学学报,2004,32(3):257-261
    [39]Liu Y., Teresa M. B., Yang H. Q. et al. Recent Developments in Novel Sorbents for Flue Gas Clean Up[J]. Fuel Processing Technology,2010, V91(10): 1175-1197
    [40]Wilde J. D., Marin G. B. Investigation of Simultaneous Adsorption of SO2 and NOx on Na-γ-alumina with Transient Techniques[J]. Catalysis Today,2000, V62(4):319-328
    [41]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002:330-333
    [42]Kasaoka S., Sasaoka E., Iwasaki H. Vanadium Oxide (V2Ox) Catalysts for Dry-type and Simultaneous Removal of Sulfur Oxides and Nitrogen Oxides with Ammonia at Low Ttemperature[J]. Bulletin of the Chemical Society of Japan,1989, V62(4):1226-1232
    [43]Ma J., Liu Z., Liu Q., et al. SO2 and NO Removal from Flue Gas over V2O5/AC at Lower Temperatures-role of V2O5 on SO2 Removal[J]. Fuel Processing Technology,2008, V89(3):242-248
    [44]党民团.烟气脱硫脱硝研究进展[J].渭南师范学院学报,2006,5:50-51
    [45]Dibble L. A., Raupp G. B. Kinetics of the Gas-solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by Near UV Illuminated Titanium Dioxide[J]. Catalysis Letters,1990, V4(4):345-354
    [46]辉永庆.TiO2及其复合光催化剂的制备以及对SO2和NO的光催化降解研究[D].成都:四川大学,2004
    [47]赵莉.光催化氧化同时脱硫脱硝的实验研究[D].保定:华北电力大学,2007
    [48]韩静.基于可见光催化TiO2/ACF同时脱硫脱硝的实验研究[D].保定:华北电力大学,2009
    [49]王学海,方向晨.烟气同时脱硫脱硝的研究进展[J].当代化工,2008,37(2):197-200
    [50]乔慧萍,杨柳.湿法同时脱硫脱硝工艺中脱硝吸收剂的研究现状[J].电力环境保护,2009,25(1):1-3
    [51]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002:335-337
    [52]许佩瑶,张艳,赵毅,等.锅炉烟气联合脱硫脱氮技术[J].环境污染治理技术与设备,2004,5(4):50-54
    [53]刘洪涛,牛胜利,韩奎华,等.有机钙硫氮协同控制技术研究[JJ.电力科技与环保,2010,26(2):23-25
    [54]肖海平.有机钙同时脱硫脱硝的机理研究[D].杭州:浙江大学,2006
    [55]肖海平,周俊虎,刘建忠.醋酸钙镁高温脱硫脱硝实验研究[J].中国电机工程学报,2007,27(35):23-27
    [56]于文剑.燃煤锅炉的有机钙脱硫研究[J].节能,2006,(5):10-12
    [57]胡英华.玉米秸秆又有新用途制热解油和混合有机钙盐脱硫脱硝剂[J].再生资源研究,2000,(4):42-43
    [58]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002:27
    [59]HJ/T178-2005,火电厂烟气脱硫工程技术规范烟气循环流化床法[S].北京:中国环境科学出版社,2005
    [60]Gao S. Q., Nakagawa N., Kato K., et al.Simultaneous SO2/NOx Removal by a Powder-particle Fuidized Bed[J]. Catalysis Today,1996, V29(1-4):165-169
    [61]Xu G. W., Gao S., Suzuki H., et al. Innovative Combined Desulphurization /Denitration Process Using a Powder-particle Fluidized Bed[J]. Process Safety and Environmental Protection:Transactions of the Instituion of Chemical Engineers,1999, V77(2):77-87
    [62]Xu G. W., Wang B., Suzuki H., et al. Removal Efficiency of the Combined Desulfurization/Denitration process using power-particle fluidized bed[J]. Journal of Chemical Engineering of Japan,1999, V32(1):82-90
    [63]Xu G. W, Luo G. H., Akamatsu H., et al. An Adaptive Sorbent for the Combined Desulfurization/Denitration Process Using a Power-particle Fluidized bed[J]. Industrial and Engineering Chemistry Research,2000, V39(7):2190-2198
    [64]Tashimo T., Luo G, Mori T., et al. The Dry-type and Simultaneous Desulfurization Denitration Using the Disposable and Fine-granular Absorbent by the Powder-particle Fluidized Bed[J]. Proceedings of the SCEJ Symposium on Fluidization.2000, V6:387-394
    [65]Luo G., Yoneda A., Kato K. A Novel Dry Process for Simultaneous Removal of SO2 and NO from Flue Gas in a Powder-Particle Fluidized Bed[J]. Chemical engineering technology,2001, V24(4):361-366
    [66]罗国华,米田绫子,加藤邦夫,等.气-固-固流化床用于燃煤电厂尾气同时脱硫脱硝[J].过程工程学报,2001,1(4):416-421
    [67]Sang M. J., Sang D. K. NOx Removal by Selective Noncatalytic Reduction with Urea Solution in a Fluidized Bed Reactor[J]. Korean Journal Chemical Engineering,1999, V16(5):614-617
    [68]许配瑶.烟气循环流化床同时脱硫脱硝实验研究[D].保定:华北电力大学,2007
    [69]Rau J. Y., Chen J. C., Lin M. D.,et al. Removal the Coal Ash, NO, and SO2 Simultaneously by the Fluidized-Bed Catalyst Reactor[J]. Energy Fuels, 2010, V24 (3):1711-1719
    [70]Zhang L. Q., Cui L., Li B., et al. SO2 and NO Simultaneous Removal from Simulated Flue Gas over Cerium-Supported Palm Shell Activated at Lower Temperatures-Role of Cerium on NO Removal[A]. Power and Energy Engineering Conference (APPEEC) 2010 Asia-Pacific[C], Chengdu: Available to subscribers and IEEE members,2010:1-4
    [71]赵毅,许佩瑶,孙小军,等.烟气循环流化床同时脱硫脱硝实验及机理研究[J].中国科学:B辑,2006,36(5):439-448
    [72]陈赓良,缪明富,马卫.天然气中有机硫化合物脱除工艺评述[J].天然气工业,2007,27(10):1-3
    [73]Laborie G, Cadours R., Barreau A., et al. An Attractive Solution for RSH and COS Removal Natural Gas[R]. The 51th Annual Laurance Reid Gas Conditioning Conference,2001
    [74]Fedich R. B., Woerner A. C., Chitnis G. K. Selective H2S Removal[J]. Hydrocarbon Engineering,2004, V9(5):89-92
    [75]Chien I., Chu H. Removal of SO2 and NO from Flue Gas by Wet Scrubbing Using an Aqueous NaClO2 Solution[J]. Journal of Hazardous material, 2000, VB(80):43-57
    [76]Adewuyi Y., He X., Shaw H., et al. Simultaneous Absorption and Oxidation of NO and SO2 by Aqueous Solutions of Sodium Chlorite[J]. Chemical Engineering Communications,1999, V174:21-25
    [77]Sada E., Kumazawa H., Yamanaka H., et al. Kinetics of Absorption of Sulfur Dioxide and Nitric Oxide in Aqueous Mixed Solutions of Sodium Chlorite and Sodium Hydroxide[J]. Journal of Chemical engineering Japanese.1978, V11:276-282
    [78]Thomas D., Vanderschuren J. Removal of Tetravalent NOx from Flue Gases Using Solutions Containing Hydrogen Peroxide[J]. Chemical Engineering Technology,1998, V21(12):975-981
    [79]Gray D., Lissi E., Heicklen J. L. The Reaction of Hydrogen Peroxide with Nitrogen Dioxide and Nitricoxide[J]. Journal of Physical Chemistry,1972, V76:1919-1924
    [80]Haywood J. M. The Economic Feasibility of Using Hydrogen Peroxide for the Enhanced Oxidation and Removal of Nitrogen Oxides from Coal Fired Power Plant Flue Gases[J]. Journal of the Air & Waste Management Association,1998, V48:238-246
    [81]叶向高.NOx气体的氧化吸收工艺[J].电镀与环保,1987,33:24-27
    [82]白云峰,李永旺,吴树志,等. KMnO4/CaCO3协同脱硫脱硝实验研[J].煤炭学报,2008,33:575-578
    [83]赵毅,刘松涛,马霄颖,等.改性钙基吸收剂的汞吸附特性实验研究[J].中国电机工程学报,2009,29(8):50-54
    [84]黄治军,段钰锋,王运军,等.改性氢氧化钙吸附脱除模拟烟气中汞的试验研究[J].中国电机工程学报,2009,29(17):56-62
    [85]徐维正.用尿素净化烟道气的新工艺[J].化工科技动态,1993,3(4):43-47
    [86]陈理.国外烟气脱硫脱硝技术开发近况[J].化工环保,1997,17(3):145-150
    [87]Alain L., Christine R., Noel M., et al. Removal of NO from Flue Gases Using the Urea Acidic Process:Kinetics of the Chemical Reaction of Nitrous Acid with Urea[J]. Industrial and Engineering Chemistry Research, 1992, V31(3):777-780
    [88]贾瑛,王煊军,樊秉安.酸性尿素水溶液处理导弹氧化剂废水中氮氧化物[J].安全与环境学报,2002,2(3):48-50
    [89]许国根,贾瑛.液体推进剂中氧化剂废水处理方法研究[J].环境工程2001,19(3):7-9
    [90]王树江,杨骥,刘桂英,等.二氧化碳气体中氮氧化物去除的研究[J].吉林化工学院学报,2004,21(3):13-15
    [91]曹忠宇.含氮氧化物(NOx)工业废气治理[J].石油化工环境保护,1999,(1):47-51
    [92]王军,曾庆福,陈磊,等.间歇式高浓度氮氧化物废气的治理技术[J].武汉科技学院学报.2003,16(5):26-31
    [93]岑超平.尿素添加剂湿法烟气同时脱硫脱氮研究[D].广州:华南理工大学,2000
    [94]黄艺.尿素湿法联合脱硫脱硝技术研究[D].杭州:浙江大学,2006
    [95]Sada E., Kumazawa H., Machida H. Oxidation Kinetics of Fell-EDTA and Fell-NTA Chelates by Dissolved Oxygen[J]. Industrial and Engineering Chemistry Research,1987, V26(7):1648-1472
    [96]Chang S. G., Littlejohn D., Lynn S. Effects of Metal Chelates on Wet Flue Gas Scrubbing Chemistry [J]. Environmental Science & Technology,1983, V17:649-655
    [97]王慧,李先国,韩欣欣,等.金属络合剂在烟气同时脱硫脱硝中的应用[J],化工环保,2007,27(5):422-425
    [98]荆国华.Fe(II)EDTA络合吸收生物转化脱除NO研究[D].杭州:浙江大学,2004
    [99]Thomas L. T. Complexation of Iiron(II) by Organic Mater and its Effect on Ion(II) Oxygennation[J]. Environmental Science & Technology,1974, V8(6): 569-573
    [100]Tsai S. S., Bedell S. A. Field evaluation of nitric oxide abatement with ferrous chelates[J]. Environmental Progress,1989, V8(2):126-129
    [101]Chang S. G., Littlejohn D., Liu D. K. Use of Ferrous Chelates of SH-containing amino acids and peptides for the removal of NOx and SO2 from flue gas[J]. Industrial and Engineering Chemistry Research,1988, V27(11):2156-2161
    [102]龙湘犁,肖文德,袁渭康.钻氨溶液脱除NO研究[J].中国环境科学,2002,22(6):511-514
    [103]周春琼,邓先和,徐伟,等.乙二胺合钴/尿素湿法同时吸收SO2和NO[J].化工学报,2006,57(3):645-649
    [104]马双忱.烟气循环流化床脱硫技术实验研究[D].保定:华北电力大学,2003
    [105]Peterson J. R., Rochelle G. T. Aqueous Reaction of Fly Ash and Ca(OH)2 to Produce Calcium Silicate Absorbent for Flue Gas Desulfurization[J]. Environmental Science & Technology,1988, V22(11):1299-1304
    [106]Tsuchiai H., Ishizuka T., Ueno T., et al. Highly Active Absorbent for SO2 Removal Prepared from Coal Fly Ash[J]. Industrial and Engineering Chemistry Research,1995, V34(4):1404-1411
    [107]Zhang H., Tong H. L., Wang S. J., et al. Simultaneous Removal of SO2 and NO from Flue Gas with Calcium-Based Sorbent at Low Temperature[J]. Industrial and Engineering Chemistry Research,2006, V45(18):6099-6103
    [108]Zhao Y., Ma X., Chen Z. Y., et al. Experimental Study on Simultaneous Desulfurization and Denitrification by Highly Active Absorbent[J]. Challenges of Power Engineering and Environment,2007, V9:717-721
    [109]Zhao Y., Xu P. Y., Fu D., et al. Experimental Study on Simultaneous Desulfurization and Denitrification Based on Highly Active Absorbent[J]. Journal of Environmental Sciences,2006, V18(2):281-286
    [110]Li X. H., Zhu P., Wang F. R., et al. Simultaneous Catalytic Reductions of NO and SO2 by H2 over Nickel-Tungsten Catalysts[J]. the Journal of Physical Chemistry C,2008, V112(9):3376-3382
    [111]Chen G. Q., Gao J. H., Gao J. M., et al.Simultaneous Removal of SO2 and NOx by Calcium Hydroxide at Low Temperature:Effect of SO2 Absorption on NO2 Removal[J]. Industrial & Engineering Chemistry Research,2010, V49(23):12140-12147
    [112]Gao J. H., Chen G. Q., Liu J. X., et al. Simultaneous Removal of SO2 and NOx by Calcium Hydroxide at Low Temperature:Evolution of the Absorbent Surface Structure[J]. Energy & Fuels,2010, V24(10):5454-5463
    [113]陈城.基于新型吸收剂的RCFB-FGD同时脱硫脱硝实验研究复合添加剂同时脱硫脱硝实验研究[D].保定:华北电力大学,2010
    []14]王睿,鲍晓军.磷钼杂多酸钠盐脱硫制硫反应机理研究[J].石油学报,2000,16(6):70-73
    [115]王睿,鲍晓军.杂多化合物脱硫体系与螯合铁体系脱硫产物的对比研究[J].环境工程,2000,18(5):30-32
    [116]马双忱,赵毅,陈传敏,等.采用杂多酸化合物溶液同时脱硫脱氮的实验研究[J].环境污染治理技术与设备,2002,3:47-50
    [117]孙凡,朱涛,王磊,等.稀上氧化物上SO2和NO的催化还原—Ⅳ.掺杂Ce的钙钛矿型氧化物催化剂的脱硫和脱氮研究[J].化学世界,2005,7:389-396
    [118]黄建军.烟气循环流化床脱硫脱氮技术实验研究[D].保定:华北电力大学,2003
    [119]周月桂,彭军,朱贤,等.过氧化氢溶液增湿脱硫Ca(OH)2的实验研究 及微观机理分析[J].工程热物理学报,2009,30(3):513-516
    [120]柳瑶斌,周月桂,彭军,等.半干法烟气脱硫中过氧化氢溶液强化吸收二氧化硫的研究[J].燃料化学学报,2008,36(4):474-477
    [121]Zhou Y. G., Zhu X., Peng J., et al. The Effect of Hydrogen Peroxide Solution on SO2 Removal in the Semidry Flue Gas Gesulfurization process[J]. Journal of Hazardous Materials,2009, V170:436-442
    [122]马双忱,赵毅,苏敏.紫外/过氧化氢法同时脱硫脱硝的研究[J].热能动力工程,2009,24(6):792~795
    [123]Liu Y. X., Zhang J. Cheng C.D., et al. Simultaneous Removal of NO and SO2 from Coal-fired Fflue Gas by UV/H2O2 Advanced Oxidation Process[J]. Chemical Engineering Journal,2010, V162:1006-1011
    [124]韩钟国.烟气循环流化床同时脱硫脱硝工艺优化研究[D].保定:华北电力大学,2009
    [125]Zhao Y., Guo T. X., Chen Z. Y., et al. Simultaneous Removal of SO2 and NO Using M/NaC102 Complex Absorbent[J]. Chemical Engineering Journal,2010, V160:42-47
    [126]Kormanyos B., Nagypal I., Peintler G., et al. Effect of Chloride Ion on the Kinetics and Mechanism of the Reaction between Chlorite Ion and Hypochlorous Acid[J]. Inorganic Chemistry,2008, V47(17):7914-7920
    [127]Thompson G. W., Ockerman L. T., Schreyer J. M. Preparation and Purification of Potassium FerrateVI[J]. Journal of the American Chemical Society,1951, V73(3):1379-1381
    [128]陈志良.固体流态化与应用[M].北京:化学工业出版社,1997:11-15
    [129]孙小军.烟气循环流化床同时脱硫脱氮技术研究[D].保定:华北电力大学,2004
    [130]王学栋,辛洪昌,栾涛,等.330MW机组锅炉燃烧调整对NOx排放浓度影响的试验研究[J].电站系统工程,2007,23(3):7-10
    [131]张晓杰,韩志华,刘文弘.临界流化速度的计算及应用[J].东北电力技术,1999,1:16-20
    [132]赵毅,孙小军,许佩瑶,等.烟气同时脱硫脱氮的高活性吸收剂的表征及脱除机理研究『J].中国科学:E辑,2006,36(3):326-340
    [133]陈周燕.复合添加剂同时脱硫脱硝实验研究[D].保定:华北电力大学,2009
    [134]郭天翔.新型复合吸收剂液相同时脱硫脱硝的实验研究[D].北京:华北电力大学,2011
    [135]邵黎歌,陈卿.次氯酸钠的分解特性及提高其稳定性能的途径[J].氯碱工业,1997,4:21-24
    [136]曹锡章,张畹蕙,杜尧国,等.无机化学[M].第二版.北京:高等教育出版社,1991:33
    [137]周相武,汪晓军,刘姣,等.次氯酸钠溶液的氧化性研究[J].氯碱工业,2006,8:28-30
    [138]Matsushima N., Li Y., Nishioka M,. et al. Novel Dry-desulfurization Process Using Ca(OH)2/Fly Ash Sorbent in a Circulating Ffluidized Bed[J]. Environmental Science & Technology,2004, V38(24):6867-6874
    [139]Cook J. L., Khang S. J., Lee S. K., et al. Attrition and Changes in Particle Size of Lime Sorbents in a Circulating Fluidized Bed Absorber[J]. Powder Technology,1996, V89(1):1-8
    [140]Sakai M., Su C. L., Sasaoka, E. J. Simultaneous Removal of SOx and NOx Using Slaked Lime at Low Temperature[J]. Industrial and Engineering Chemistry Research,2002,41(20),5029-5033
    [141]Ishizuka T., Kabashima H., Yamaguchi, T., et al. Initial Step of Flue Gas Desulfurization-an IR Study of the Reaction of SO2 with NOx on CaO[J]. Environmental Science & Technology,2000,34(13):2799-2803
    [142]Li C., Li X. Z., Graham N. A Study of the Preparation and Reactivity of Potassium Ferrate[J]. Chemosphere,2005,61 (4):537-543
    [143]Eng Y. Y., Sharma V. K., Ray A. K. Ferrate(Ⅵ):Green Chemistry Oxidant for Degradation of Cationic Surfactant[J]. Chemosphere,2006,63(10):1785-1790
    [144]陈招英.若干新材料的B3LYP杂化密度泛函理论研究[D].合肥:中国科技大学,2006
    [145]DB 13/831-2006,河北省地方标准-氯化物排放标准[S].河北:河北环保局,2007
    [146]GB 3838-2002.地表水环境质量标准[S].北京:中国环境科学出版社,2002
    [147]GB/T 14848-93,地下水质量标准[S].北京:中国环境科学出版社,1993
    [148]刘玉,杜荣归,李彦,等.模拟混凝土孔隙液中钢筋腐蚀的氯离子临界浓度测试[J].分析化学研究简报,2006,34(6):825-828
    [149]昌国诚,许淳淳,陈海东.304不锈钢应力腐蚀的临界氯离子浓度[J].化工进展,2008,27(8):1284-1287
    [150]赵旭东,马春元,吴少华,等.双循环流化床烟气悬浮脱硫技术工业化试验研究[J].环境科学学报,2002,22(4):489-493
    [151]陈国庆,多级喷动脱硫塔内雾化与蒸发过程的数值模拟研究[D].哈尔滨:哈尔滨工业大学,2008
    [152]张学文.新型二冲程微型摆式内燃机流场的数值模拟计算与分析[D].呼和浩特:内蒙古工业大学,2007
    [153]张晓晶.气泡雾化细水雾灭火系统的实验研究及数值模拟析[D].天津:河北工业大学,2007
    [154]陈晓利.脱硫塔内雾化蒸发及反应特性数值模拟[D].哈尔滨:哈尔滨工业大学,2007
    [155]高建民,内循环多级喷动流态化烟气脱硫技术研究[D].哈尔滨:哈尔滨工业大学,2007
    [156]Tsuji Y., Tanka T., Yonemura S. et al. Cluster Paterns in Circulating Fluidized Beds Predicted by Numerical Simulation (Discrete Particle Model Versus Two-fluid Model[J]. Powder Technology,1998,95:254-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700