用户名: 密码: 验证码:
微氧发酵制备1,3-丙二醇及其代谢流量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3-丙二醇(1,3-Propanediol,1,3-PD)是一种重要的化工原料,其最主要的用途是作为单体合成新型聚酯材料—聚对苯二甲酸丙二酯(PTT),市场前景广阔。目前,1,3-PD的生产方法以化学法为主,但是随着石化资源日益枯竭及其价格的不断上升,以可再生资源为原料、低污染、可持续发展的生物法生产1,3-PD越来越引起人们的高度重视。其中研究最多的是利用克雷伯氏菌(Klebsiella pneumonia)以甘油为底物发酵生产1,3-PD。目前多采用厌氧发酵模式,存在产物浓度低、发酵周期长、生产强度低的缺点。而微氧发酵可以促进菌体生长,缩短生长周期,提高生产强度。本论文考察了微氧发酵模式下,不同通气条件对批式、批式流加及连续发酵过程生产1,3-PD的浓度和转化率的影响;通过代谢流量分析,考察了微氧条件下K. pneumoniae的甘油代谢机制,在此基础上,探索了微氧-厌氧连续流加甘油多罐串联发酵生产1,3-PD工艺的可行性。主要结果如下:
     首先,建立了快速检测分析1,3-PD发酵液中多种有机酸的高效液相色谱分析方法。采用Shodex RSpak KC-811色谱柱,15 min内就能把发酵过程中产生的9种有机酸完全分离并定量,有机酸的线性相关系数R≥0.9992,RSD为0.004~2.756%,发酵液样品中8种有机酸回收率在96.8~102.5%之间。多次重复实验证明:本方法具有灵敏度高、分析速度快、准确度高和重现性好等优点,对于及时有效地测定1,3-PD发酵液中有机酸积累情况,分析不同培养条件下K. pneumoniae菌发酵的代谢流量,指导1,3-PD发酵具有重要意义。
     其次,考察了批式和批式流加两种操作模式下,通气条件对微氧发酵生产1,3-PD的影响,并对K. pneumoniae对数生长期的代谢流量分布进行分析。实验结果表明,两种操作模式下的最佳通空气量均为0.04 vvm,可获得最高的1,3-PD的浓度和生产强度,转化率也与厌氧条件下接近。1,3-PD的浓度分别为17.30及57.49 g/L,生产强度分别比厌氧条件提高了13%和40%,转化率分别为0.52和0.55 mol/mol。微氧条件下批式发酵对数期代谢流量分析表明,通气量为0.04 vvm空气时,VEtOH/VHAc的比例与厌氧条件下的比例相同,均为1:3,并且在这两种条件下1,3-PD浓度相近。表明在乙酰辅酶A节点处,还原当量(NADH)与能量(ATP)的合理分配影响着1,3-PD合成。批式流加发酵对数期代谢流分析表明,四种通气条件中,厌氧条件下流入1,3-PD的代谢流量最高;而在微氧条件下,通气量为0.04 vvm空气时,进入1,3-PD的代谢流量最高,为通气量为0.08 vvm氮气条件下,进入1,3-PD的代谢流量的93%。
     再次,考察了连续发酵稳态操作模式下,甘油浓度和通气条件对K. pneumonia代谢的影响。重点考察了稀释速率为0.2h-1三种不同甘油浓度和四种通气条件对细胞生长、1,3-PD和副产品的生成及三个关键酶的比活力的影响。结果表明,最佳工艺条件为:初始甘油浓度70 g/L,通空气量0.04 vvm。此时,1,3-PD的浓度和转化率最高,分别为19.7g/L和0.41 mol/mol。在初始甘油浓度为20和40 g/L时,厌氧条件下1,3-PD的浓度最高。代谢流量分析表明,微氧条件下随着通气量的增加,进入生物量、乳酸和2,3-丁二醇的代谢流量增加,同时通气量的改变导致VEtOH/VHAc比例变化,从而调整NAD+和NADH平衡。因此,提高1,3-PD浓度的瓶颈不是提高NADH的总量,而是调整甘油代谢节点处代谢流量的分配。甘油脱水酶、1,3-丙二醇氧化还原酶、甘油脱水酶的比活力检测结果表明,dha操纵子在微氧条件并未受到抑制,1,3-PD的代谢调节机制的差异不仅存在于代谢水平上,还存在于基因水平上。
     最后,探索了微氧-厌氧联合连续流加甘油的三罐串联发酵生产1,3-PD的工艺路线。根据菌体生长及产1,3-PD特点,在第一个发酵罐中通入0.04 vvm空气,在微氧条件下发酵以促进菌体的生长,同时为了防止底物限制和过量,控制初始甘油浓度(40-110 g/L)和稀释速率(0.1~0.2h-1);在第二个发酵罐中通入0.04vvm氮气,同进流加入甘油使残余甘油浓度处于合理范围内,在厌氧条件下,提高1,3-PD浓度和转化率;在第三个发酵罐进行厌氧培养,消耗掉残余甘油并且进一步提高1,3-PD的浓度。在这些条件下,考察了串联连续稳态发酵模式下,不同稀释速率、初始甘油浓度与残余甘油浓度对发酵不同阶段的K. pneumonia代谢生成1,3-PD的影响。实验结果表明,通过三罐串联发酵,1,3-PD浓度和生产强度均可以得到提高。初始甘油浓度为110 g/L,稀释速率为0.1h-1时,1,3-PD浓度可达最高值(46.2 g/L),但此时终产物中残余甘油浓度较高(17.2 g/L),生产强度较低(4.2 g/(L·h)),不利于工业生产。综合考虑各方面因素,选择初始甘油浓度为40 g/L,稀释速率为0.2 h-1,第二个发酵罐中甘油浓度为30.9 g/L为最佳工艺条件。该条件下,发酵液中1,3-PD浓度和生产强度分别为36.7 g/L和7.3 g/(L·h),残余甘油浓度仅为1.7 g/L。该工艺可以获得高浓度的目标产物和生产强度,最大限度地降低最终发酵液中的残余甘油浓度,既节约了资源,又降低了下游分离的能耗,为工业化生产奠定了基础。
1,3-Propanediol (1,3-PD) is a bulk chemical, which is used in the fields of food industry, medicines and cosmetics, in particular as a monomer to produce a new type of polysester, polytrimethylene terephthalate (PTT). However, it is expensive to synthesize 1,3-PD chemically for the predicted shortage of fossil fuel and pollution of environment. Considerable attention is being paid to the production of 1,3-PD for its advantages, such as use of renewable resources and sustainable development. The bioconversion of glycerol to 1,3-PD is usually carried out by Klebsiellia pneumonia under anaerobic conditions. But low biomass, concentration and productivity of 1,3-PD are unsatisfactory. In this work, the effects of aeration in microaerobic conditions on metabolism of 1,3-PD were investigated, and these experiments were compared with anaerobic conditions in batch, fed-batch and continuous fermentations. Based on the distribution of carbon flux under different conditions, the mechanism of glycerol metabolism was analyzed. Additionally, considering the advantage of microaerobic and anaerobic fermentation of K.pneumoniae, a novel multi-stage fed continuous culture for 1,3-PD production was investigated by combining microaerobic with anaerobic aeration.
     To begin with, a high performance liquid chromatographic method was set up by means of a column of Shodex RSpak KC-811 for rapid measuring the concentrations of a-ketoglutaric acid, pyruvic acid, citric acid, malic acid, fumaric acid, succinic acid, lactic acid, formic acid and acetic acid. The mobile phase was water and perchloric acid solution (4 mmol/L, pH 2.4) at a flow rate of 1 mL/min. The ratio of perchloric acid to water was controlled by a gradient elution program. The assay was carried out at a column temperature of 60℃and detection wavelength of 210 nm. Eight organic acids in 1,3-PD fermentation broths could be effectively separated and detected by this method in 15 min. The recovery and RSD were 96.8~102.5% and 0.97-2.72%, respectively. All the correlation coefficients (R) were not less than 0.9992. This precise and accurate method could be used to analyze the organic acids in 1,3-PD fermentation broths.
     In addition,1,3-PD production by K. pneumoniea and the distribution of carbon flow in exponential phase were studied in batch and fed-batch cultures under microaerobic and anaerobic conditions. The experimental results showed that the microaerobic condition with 0.04 vvm air sparged was preferable, which resulted in high concentration of 17.30 g/L and 57.49 g/L, high molar yield of 0.52 and 0.55 mol/mol, and high productivity of 2.47 and 3.03 g/(L-h) in batch and fed-batch fermentation. Although the analysis of carbon flow distribution confirmed that the flux into the reductive pathway decreased with the increasing of air flow, the flux of 1,3-PD (46.15%) with 0.04 vvm air sparged was still higher than that in anaerobic condition, mainly because of the lower releasing ratio of 3-hydroxypropionaldehyde in the reductive pathway. The same ratio (1:3) of 0.04 vvm air and with nitrogen demonstrated that qEtOH/qHAc could indicate the balance between generation of NADH and ATP. Analysis of carbon flow distribution of organic acids in tricarboxylic acid (TCA) cycle showed that TCA cycle is not completed under microaerobic condition. Otherwise, the analysis of distribution of fed-batch fermentation showed the flux of 1,3-PD was highest with 0.04 vvm air sparged under microaerobic conditions which was 93% of the value under anaerobic condition.
     What's more, the effects of glycerol concentration and oxygen supply on glycerol dissimilation in K. pneumonia were investigated in chemostat cultures at steady states. Cell growth, formation of 1,3-PD and by-products, and specific activities of three key enzymes were investigated at three glycerol concentrations under four aeration conditions at a dilution rate of 0.2 h-1. According to these results, the airflow rate of 0.04 vvm was preferable, with the highest 1,3-PD concentration of 19.7 g/L and a yield of 0.41 mol/mol under high initial glycerol condition. However, the highest concentration and yield of 1,3-PD were achieved for low initial glycerol and medium initial glycerol concentrations under anaerobic conditions. Under microaerobic conditions, the availability of NADH could be used for producing 1,3-PD theoretically. But experimental results showed that more carbon flux was shifted to the oxidative pathway instead of the reductive pathway, and used to produce lactic acid and 2,3-BD under microaerobic conditions. Changing the vEtOH/vHAc ratio is one of the ways to regulate the balance between NAD+ and NADH. In this case, the bottleneck to enhance the concentration of 1,3-PD is not the pool of NADH, but the regulation of the distribution of carbon flow at glycerol dissimilation point. Enzyme activity assays showed that the dha operon was not repressed but promoted under microaerobic conditions. Furthermore, on the basis of the specific activities of GDH, PDOR and GDHt measured in the cell extracts, the differences in the regulation mechanism for 1,3-PD production exist not only at the level of metabolism, but may also be at the level of gene expression.
     Finally, a new process for the fermentation of 1,3-PD by K. pneumoniae combining microaerobic with anaerobic aeration in a multi-stage fed-continuous culture was performed at different initial glycerol concentration in the first stage and residual glycerol concentration in the second stage. In the first stage, high cell biomass (OD650=5.1-7.0) was obtained under microaerobic condition (0.04 vvm air). Furthermore, in order to prevent limit or inhibit effect of substrate on cell growth, glycerol feed concentration was chosen to be low (40 g/L) at a high dilution rate (D=0.2 h-1) or high (70~110 g/L) at a low dilution rate (0.1 h-1). In the second stage, glycerol was fed continuously into the culture to maintain the residual concentrations of glycerol about 15~45 g/L, so that the concentration and yield of 1,3-PD was expected to be improved by anaerobic aeration (0.04 vvm N2). In the last stage, the residual glycerol was consumed to low level (1~13 g/L) and further enhance of the concentration and yield of the 1,3-PD was achieved under anaerobic condition (0.04 vvm N2). Under these conditions, a final 1,3-PD concentration of 36.7~46.2 g/L, a volumetric productivity of 4.0~8.1 g/(L·h) can be obtained. The highest concentration of 1,3-PD (46.2 g/L) was achieved at initial glycerol concentration of 110 g/L and dilute rate of 0.1 h-1, however, the low productivity and high residual glycerol in final broth was not benefit for the industrial production. The initial glycerol concentration of 40 g/L at dilute rate of 0.2 h-1 when residual glycerol was controlled at 30.9 g/L was preferable, corresponding to the high 1,3-PD concentration of 36.7 g/L, productivity of 7.3 g/(L·h) and low residual glycerol concentration of 1.7 g/L. This can be concluded that this novel fermentation process could increase the biomass, concentration and productivity of 1,3-PD, meanwhile, decrease the final concentration of residual glycerol, which is benefit for the separation of 1,3-PD.
引文
[1]Sullivan C J. Propanediols [J]. Ullmann's Encyclopedia of Industrial Chemistry. Vol.A,1993, (22): 163-171.
    [2]Deckwer W D. Microbial conversion of glycerol to 1,3-propanediol [J]. FEMS Microbiology Reviews, 1995,16(2-3):143-149.
    [3]Colin T, Bories A, Moulin G. Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation [J]. Applied Microbiology Biotechnology,2000,54 (2):201-205.
    [4]Kaesler B, Miischen H, Streicher H et al. Propanic acid, ammonia, propanediol and water solutions and the use thereof [P]. WO/9842205 A 1.1998.
    [5]Witt U, Mueller R J, Augusta J et al. Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol [J].Macromolecular Chemistry and Physics,1994,195(2):793-802.
    [6]陈克权,马嘉萍,杨菲,PTT长丝瞬时拉伸回弹性能研究[J].合成纤维工业,2003,26(1):6-10.
    [7]李吉春,赵旭涛.1,3-丙二醇的合成方法及技术进展[J].石化技术与应用,2004,22(1):4-10.
    [8]徐兆瑜.1,3-丙二醇技术进展及市场[J精细化工原料及中间体,2004,(2):25-29.
    [9]杨菊群,王幸宜,戚蕴石.1,3-丙二醇生产方法及用途[J].煤化工,2000,4(93):943-947.
    [10]Powell J, Mullin S, Weider P et al. Process for preparing 1,3-propanediol [P]. US Patent 00577006A.1998.
    [11]王熙庭,陈曼华.1,3丙二醇的合成新进展[J].石油化工,2002,31(11):38-40.
    [12]中国科学院兰州化学物理研究所.环氧乙烷羰基合成3-羟基丙醛和1,3-PDO方法[P].CN1299803,2001.06-20.
    [13]Freund A. Uber die Bildung und Darstellung von Trimethylenalkohol aus Glycerin [J]. Monatshefte fur Chemie/Chemical Monthly,1881,2(1):636-641.
    [14]Biebl H, Menzel K, Zeng A P et al. Microbial production of 1,3-propanediol [J]. Applied Microbiology and Biotechnology,1999,52(3):289-297.
    [15]Gottschalk G, Averhoff B. Process for the microbiological preparation of 1,3-propanediol from glycerol [P]. European Patent 0373230B1.1988.
    [16]Nagaraja V, Nakamura C E. Production of 1,3-propanediol from glycerol by recombinant bacteria expressing recombinantdiol dehydratase [P].US patent 5821092.1998.
    [17]Kretschmann J, Carduck F Z, Deckwer W D et al.Fermentive production of 1,3-propanediol[P]. US Patent 5254467.1993.
    [18]Balthuis B A. Method for the production of glycerol by recombinant organisms [P]. WO/9821340.1998.
    [19]刘银乾,段启伟,1,3-丙二醇的制备方法[J].合成纤维工业,2002,25(2):42-45.
    [20]Mu Y, Teng H, Zhang D J et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations [J]. Biotechnology Letters,2006,28(21):1755-1759.
    [21]刘德华,刘宏娟,林日辉等.利用生物柴油副产物甘油生产1,3-丙二醇的方法[P].CN1696297A.2005
    [22]Emptage M, Haynie S L, Laffend L A et al. Process for the biological production of 1.3-propanediol with high titer [P]. US patent 0157674 A1.2003.
    [23]Nakamura C E, Whited G M. Metabolic engineering for the microbial production of 1,3-propanediol [J]. Current Opinion in Biotechnology,2003,14(5):454-459.
    [24]Hartlep M, Hussmann W, Prayitno N et al. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose [J]. Applied Microbiology Biotechnology,2002,60 (1-2):60-66.
    [25]Mu Y, Teng H, Zhang D J et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations [J]. Biotechnology Letters,2006,28 (21):1755-1759.
    [26]Liu H J, Zhang D J, Xu Y H et al. Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale [J]. Biotechnology Letters,2007,29 (8): 1281-1285.
    [27]Cheng K K, Zhang J A, Liu D H et al. Pilot-scale production of 1,3-propanediol using Klebsiella pneumonia [J]. Process Biochemistry,2007,42 (4):740-744.
    [28]Zheng Z M, Cheng K K, Hu Q L et al. Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1,3-propanediol fermentation by Klebsiella pneumonia [J]. Biochemical Engineering, 2007,39(2):305-10.
    [29]Tag C. Mikrobielle Herstellung von 1,3-Propandiol [D]. Germany:Universitat Oldenburg 1990.
    [30]Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumonia [J]. Enzyme and Microbial Technology, 1997,20 (2):82-86.
    [31]Zhao Y N, Chen G, Yao S J. Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumonia [J]. Biochemical Engineering Journal,2006,32 (2):93-99.
    [32]Zhang G L,Ma B B, Xu X L et al. Fast conversion of glycerol to 1,3-propanediol by a new strain of Klebsiella pneumonia [J]. Biochemical Engineering Journal,2007,37 (3):256-260.
    [33]Yang G, Tian J S, Li J L, et al. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions [J]. Applied Microbiology and Biotechnology,2007, 73:1017-1024.
    [34]Giinzel B, Yonsel S, Deckwer W D. Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2m3 [J]. Applied Microbiology and Biotechnology,1991,36 (3):289-294.
    [35]Saint-Amans S, Perlot P, Goma G et al. High production of 1,3-propanediol from glycerol by Clostridium butyricum Vpi-3266 in a simply controlled fed-batch system [J]. Biotechnology Letter, 1994,16 (8):831-836.
    [36]Abbad-Andaloussi S, Manginotdurr C, Amine J et al. Isolation and characterization of Clostridium butyricum DSM-5431 mutants with increased resistance to 1,3-propanediol and altered production of acids [J]. Applied Environment Microbiology,1995,61 (12):4413-4417.
    [37]Petitdemange E, Durr C, Andaloussi S A et al. Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum [J]. Journal of Industrial Microbiology,1995,15(6):498-502.
    [38]Reimann A, Biebl H. Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture:Feeding strategy for glycerol and ammonium [J]. Biotechnol Letters,1996,18(7):827-832.
    [39]Hartlep M, Zeng A P. Fedbatch Verfahren fur die mikrobielle herstellung von 1,3-propandiol in Klebsielle pneumonia and Clostridium butyricum [J]. Chemie Ingenieur Technik,2002, (75):663-664.
    [40]Gonzalez-Pajuelo M, Andrade J C, Vasconcelos I. Production of 1,3-propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity [J]. Journal of Industrial Microbiology and Biotechnology,2005,32(9):391-396.
    [41]Biebl H, Marten S, Hippe H et al. Glycerol conversion to 1,3-propanediol by newly isolated Clostridia [J]. Applied Microbiology and Biotechnology,1992,36(5):592-597.
    [42]Himmi E H, Bories A, Barbirato F. Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum [J]. Bioresource Technology,1999,67(2):123-128.
    [43]Papanikolaou S, Ruiz-Sanchez P, Pariset B et al. High production from industrial glycerol by a newly isolated Clostridium butyricum [J]. Journal of Biotechnology,2000,77(2-3):191-208.
    [44]Maria G P, Isabelle M S, Filipa M et al. Microbial conversion of glycerol to l,3-propanediol:Physiological comparison of a natural producer, Clostridium butyricum VPI 3266,and an engineered strain,Clostridium acetobutylicum DG1 (pSPD5) [J]. Applied and Environmental Microbiology,2006,72(1):96-101.
    [45]Forsberg C W. Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species [J]. Applied and environmental microbiology,1987,53(4):639-643.
    [46]Gungormusler M, Gonen C, Ozdemir G et al.1,3-propanediol production potential of Clostridium saccharobutylicum NRRL B-643 [J]. New biotechnology. Doi:10.1016/j.nbt.2010.07.010.
    [47]Bibel H. Fermentation of glycerol by Clostridium pasteurianum:Batch and continue culture studies [J]. Journal of Industrial Microbiology and Biotechnology,2001,27(1):18-26.
    [48]Boenigk R, Bowien S, Gottschal K G. Fermentation of glycerol to 1,3-propanediol in continuous culture of Citrobacter freundii [J]. Applied Microbiology Biotechnology,1993,38(4):453-457.
    [49]Barbirato F, Bories A, Camarsa-Claret C et al. Glycerol fermentation by a new 1,3-propanediol producing microorganism:Enterobacer agglomerans [J]. Applied Microbiology Biotechnology, 1995,43(5):786-793.
    [50]苑广志,田晶,徐龙权等.曲霉发酵甘油生产1,3-丙二醇的研究[J].食品与发酵工业,2006,32(1):49-52.
    [51]Barbirato F, Himmi E H,Conte T et al.1,3-Propanediol production by fermentation:an interesting way to valorize glycerin from the ester and ethanol industries [J]. Industrial Crops and Products,1998, 7(2-3):281-289.
    [52]朱春杰,方柏山.微生物转化法生产1,3-丙二醇的研究进展[J].华侨大学学报,2009,30(5):481-486.
    [53]Biebl H. Glycerol fermentation of 1,3-propanediol by Clostridium Butyricum measurement of product inhibition by use of a pH-auxostat [J]. Applied Microbiology and Biotechnology,1991.35(6): 701-705.
    [54]Zeng A P, Biebl H, Schlieker H et al. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae:regulation of reducing equivalent balance and product formation [J]. Enzyme and Microbial Technology,1993,15(9):770-779.
    [55]Abbad-Andaloussi S, Amine J, Gerard P et al. Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431 [J]. Journal of Applied Microbiology,1998,84(4):515-522.
    [56]王剑锋,修志龙,刘海军等K.pneumoniae微氧发酵生产1,3-丙二醇的研究[J].现代化工,2001,21(5):28-31.
    [57]Johnson E A, Burke S K, Forage R G et al. Purification and properties of dihydroxyacetone kinase from Klebsiella pneumonia [J]. Journal of Bacteriology,1984,160(1):55-60.
    [58]Zhu M Y. Improved production of 1,3-propanediol in engineered E.coli by reducing accumulation of toxic intermediates [D]. USA:University of Wisconsin madision,1999.
    [59]Ruch F E, Lin E C C. Independent constitutive expression of the aerobic and anaerobic pathway of glycerol catabolism in Klebsiella aerogenes [J]. Journal of Bacteriol,1975,124 (1):348-352.
    [60]Forager G, LIN E C C. Dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418 [J]. Journal of Bacteriology,1982,151(2):591-599.
    [61]Sprenger G A, Hammer B A, Johnson E A et al. Anaerobic growth of E.coli on glycerol by importing genes of the dha regulon from Klebsiella pneumonia [J]. Journal of General Microbiology,1989,135 (5):1255-1269.
    [62]Zeng A P, Biebl H. Bulk Chemicals from Biotechnology:The case of 1,3-Propanediol production and the new trends [J]. Advanced Biochemical Engineering Biotechnology,2002, (74):239-259.
    [63]Zeng A P, Menzel K, Deckwer W D. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:II.Analysis of metabolic rates and pathways under oscillation and steady-state conditions [J]. Biotechnology and Bioengineering,1996, 52 (5):561-571.
    [64]Ahrens K, Menzel K, Zeng A P et al. Kinetic, dynamic and pathway studies of glycerol metabolism by klebsiella pneumoniae in anaerobic continuous culture:Ⅲ. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation [J]. Biotechnology and Bioengineering,1998,59 (5): 544-552.
    [65]Lin E C C, Levin A P, Magasnik B. The effect of aerobic metabolism on the inducible glycerol dehydrogenase of Aerobacter aerogenes [J]. Journal of biological and chemical,1960, (235): 1842-1829.
    [66]Tang J C T, Martin E J S, Lin E C C. Derepression of an NAD-linked dehydrogenase that serves an Escherichia coli mutant for growth on glycerol [J]. Journal of Bacteriol,1982,152 (3):1001-1007.
    [67]Johnson E A, Levine R L, Lin E C C. Inactivation of glycerol dehydrogenase of Klebsiella pneumoniae and the role of divalent cations [J]. Journal of Bacteriol,1985:479-483.
    [68]Abbad-Andaloussi S, Guedon E, Spiesser E et al. Glycerol dehydratase activity:the limiting step for 1,3-propanediol production by Clostridium butyricum DSM 5431 [J]. Letters in Applied and Microbiology,1996,22 (4):311-314.
    [69]Toraya T. Radical catalysis of B12 enzymes:structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases [J]. Cellular and Molecular Life Sciences,2000,57 (1):106-127.
    [70]Toraya T, Shirakashi T, Kosuga T et al. Coenzyme B12-dependent diol dehydrase:glycerol as both a good substrate and a potent inactivator [J]. Biochemical Biophysical Research Communications,1976, 69 (2):475-480.
    [71]Toraya T, Mori K. A reactivating factor for coenzyme B12-dependent diol dehydratase [J]. Biological Chemistry,1999,274(6):3372-3377.
    [72]Skraly F A, Lytle B L, Cameron D C. Construction and characterization of a 1,3-propanediol operon [J]. Applied and Environmental Microbiology,1998,64(1):98-105.
    [73]张延平.1,3-丙二醇生物合成过程中的辅因子代谢调控[D].北京:清华大学.2006.
    [74]Johnson E A. Lin E C C. Klebsiella pneumonia 1,3-propanediol:NAD+ oxidoreductase [J]. Journal of Bacteriology,1987,169 (5):2050-2054.
    [75]Veiga-Da-Cunha M, Foster M A.1,3-propanediol:NAD+ oxidoreductase of Lactobacillus brevis and Lactobacillus buchneri [J]. Applied and Environmental Microbiology,1992,58 (6):2005-2010.
    [76]Talarico T L, Axelsson L T, Novotny J et al. Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri:puri(?)cation of 1,3-propanediol:NAD+ oxidoreductase [J]. Applied and Environmental Microbiology,1990,56(4):943-948.
    [77]Daniel R, Boenigk R, Gottschalk G. Purication of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in E. coli [J]. Journal of Bacteriology,1995,177 (8):2151-2156.
    [78]Daniel R, Gottschalk G. Growth temperature dependent activity of glycerol dehydratase in E. coli expressing the C. freundii dha regulon [J]. FEMS Microbiology Letters,1992,100 (1-3):281-286.
    [79]Thorner J W, Paulus H. Catalytic and allosteric properties of glycerol kinase from Eshcherichia coli [J]. Journal of biological and chemical,1973, (248):3922-3932.
    [80]Ruch F E, Lengeler J, Lin E C C. Regulation of glycerol catabolism in Klebsiella aerogenes [J]. Journal of Bacteriology,1974,119(1):50-56.
    [81]Ray K W, Zeng G, Potters B M et al. Characterization of a 12-Kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin [J]. Journal of Bacteriology,2000,182(8): 2277-2284.
    [82]Clemmer K M, Sturgill G M, Veenstra A et al. Functional Characterization of Escherichia coli GlpG and Additional Rhomboid Proteins Using an aarA Mutant of Providencia stuartii [J]. Journal of Bacteriology,2006,188(9):3415-3419.
    [83]Lin E C C. Glycerol dissimilation and its regulation [J]. Annual Review Microbiology,1976, (30): 535-578.
    [84]Freeber W B, Lin E C C. Three kinds of controls affecting the expression of the glp regulon in Escherichia coli [J]. Journal of Bacterial,1973,115 (3):816-823.
    [85]Huang H, Gong C S, Tsao G T. Production of 1,3-propanediol by Klebsiella pneumonia [J]. Applied Biochemistry and Biotechnology,2002,90-100(1-9):687-698.
    [86]Chen X, Zhang D J, Qi W T et al. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions [J]. Applied Microbiology and Biotechnology,2003, 63(2):143-146.
    [87]Cheng K K, Liu D H, Sun Y et al.1,3-propanediol production by Klebsiella pneumoniae under different aeration strategies [J]. Biotechnology Letters,2004,26(11):911-915.
    [88]刘海军.发酵法生产1,3-丙二醇过程及中试研究[D].大连:大连理工大学.2007.
    [89]Zheng Z M, Guo N N, Hao J et al. Scale-up of micro-aerobic 1,3-propanediol production with Klebsiella pneumonia CGMCC 1.6366 [J]. Process Biochemistry,2009,44(8):944-948.
    [90]Chen X, Xiu Z L, Wang J F. Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions [J]. Enzyme and Microbial Technology,2003,33(4):386-394.
    [91]Chen Z, Liu H. Zhang J A et al. Cell physiology and metabolic flux response of Klebsiella pneumoniae to aerobic conditions [J]. Process Biochemistry,2009,44(8):862-868.
    [92]张青瑞,修志龙,曾安平.克雷伯氏杆菌发酵生产1,3-丙二醇的代谢流量优化分析[J].化工学报,2006,57(6):1403-1409.
    [93]张青瑞.甘油生物转化为1,3-丙二醇过程的代谢流量分析与动态模拟[D].大连:大连理工大学.2008.
    [94]兰琳,林锡煌,彭益强等.耐高浓度甘油的1,3-丙二醇生产菌的诱变选育[J].华侨大学学报,2007,28(4):399-402.
    [95]王宝光,刘铭,杜晨宇等.产1,3-丙二醇菌株的诱变和筛选[J].中国生物工程杂志,2006,26(6):59-65.
    [96]唐广明,徐佳杰,徐卫涛等.高产1,3-丙二醇菌株的诱变与筛选[J].化学与生物工程,2010,27(3):46-50.
    [97]董晓宇,李爽,侯英敏等.大气压冷等离子体诱变产1,3-丙二醇菌株Klebsiella pneumonia [J].过程工程学报,2008,8(3):555-560.
    [98]Dong X Y, Xiu Z L, Hou Y M et al. Enhanced production of 1,3-propanediol in Klebsiella pneumoniae induced by dielectric barrier discharge plasma in atmospheric Air [J]. Ieee Transactions on Plasma Science,2009,37(6):920-926.
    [99]Dong X Y, Xiu Z L, Li S et al. Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol production in Klebsiella pneumonia [J]. Biotechnology Letter,2010,32 (9): 1245-1250.
    [100]张延平,杜晨宇,黄志华等.醛脱氢酶基因敲除对克氏敲除对克氏肺炎杆菌合成1,3-丙二醇的影响[J].化工学报,2006,57(11):2686-2692.
    [101]杨光.1,3-丙二醇产生菌肺炎克氏杆菌的分子育种[D].北京:中国农业大学,2003.
    [102]陶春平,刘朋波,夏敏等.控制氮源浓度提高1,3-丙二醇的发酵水平[J].化学与生物工程,2007,24(5):38-41.
    [103]迟乃玉,张庆芳,邢福有等E.aero高产1,3-丙二醇菌株选育及发酵培养基研究Ⅰ[J].微生物学通报,2003,30(5):20-24.
    [104]迟乃玉,张庆芳,邢福有等E.aero高产1,3-丙二醇菌株选育及发酵培养基研究Ⅱ[J].微生物学通报,2003,30(6):44-46.
    [105]迟乃玉,张庆芳,王圆等C.pasteurianum高产1,3-丙二醇菌株的选育及发酵培养基的研究Ⅰ[J],食品与发酵工业,2003,29(6):10-13.
    [106]迟乃玉,张庆芳,王圆等C. pasteurianum高产1,3-丙二醇菌株的选育及发酵培养基的研究(Ⅱ).食品与发酵工业,2003,29(7):14-16.
    [107]邵敬伟,刘长江,迟乃玉等.1,3-丙二醇发酵条件的正交设计试验[J].襄樊学院学报,2002,23(5):45-49.
    [108]Zeng A P, Biebl H, Deckwer W D. Microbial conversion of glycerol to 1,3-propanediol [J]. Recent Progress in Fuels and Chemicals,1997,16(2-3):265-279.
    [109]Lin E C C, Magasanik B. The activation of glycerol dehydrogenase from aerobacter aerogenes by monovalent cations [J]. Journal of Biological Chemistry,1960,235 (6):1820-1823.
    [110]王剑锋,刘海军,修志龙等.1,3-丙二醇间歇发酵培养基的优化[J].食品与发酵工业,2001,27(8):528.
    [111]张延平,饶治,杜晨宇等.能量驱动对Klebsiella pneumoniae发酵甘油合成1,3-丙二醇的影响[J].过程工程学报,2004,4(6):567-571.
    [112]张延平,饶治,杜晨宇等.维生素C和E对Klebsiella pneumoniae合成1,3-丙二醇的调控[J].过程工程学报,2005,5(2):197-200.
    [113]Lin R H, Liu H J, Hao J et al. Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition [J]. Biotechnology Letters,2005,27(22):1755-1759.
    [114]Xue X D, Li W, Li Z M et al. Enhanced 1,3-propanediol production by supply of organic acids and repeated fed-batch culture [J]. Journal of Industrial Microbiology and Biotechnology,2010,37(7): 681-687.
    [115]Malaoui H, Marczak R. Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture [J]. Applied Microbiology and Biotechnology,2001,55 (2):226-233.
    [116]Biebl H, Marten S. Fermentation of glycerol to 1,3-propanediol:use of cosubstrate [J]. Applied Microbiology and Biotechnology,1995,44 (1-2):15-19.
    [117]Xiu Z L, Chen X, Sun Y Q et al. Stoichiometric analysis and experimental investigation of glycerol-glucose co-fermentation in Klebsiella pneumoniae under microaerobic conditions [J]. Biochemical Engineering Journal,2007,33(1):42-52.
    [118]Zheng Z M, Hu Q I, Hao J et al. Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumoniae AC15 via central composite design [J]. Bioresource Technology,2008,99(5): 1052-1056.
    [119]Oh B R, Seo J W, Choi M H et al. Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumoniae using response surface methodology [J]. Biotechnology and Bioprocess Engineering,2008,13 (6):666-670.
    [120]Du CY, Yan H, Zhang YP et al. Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumonia [J]. Applied Microbiology and Biotechnology, 2006,69(5):554-563.
    [121]Papanikolaou S, Fakas S, Fick M et al. Biotechnological Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process:Production of 1,3-propanediol, citric acid and single cell oil [J]. Biomass Bioenergy,2008,32(1):61-70.
    [122]Hirschmann S, Baganz K, Koschik I et al. Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters [J]. Landbauforschung Volkenrode,2005, 55 (4):261-267.
    [123]Bock R. Biokonversion von Glycerin zu 1,3-Propandiol mit freien und immobilisierten Mikroorganismen [D]. Germany:TU Braunschweig,2004.
    [124]Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F et al. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol [J]. Metabolic Engineering,2005,7 (5-6):329-336.
    [125]Pflugmacher U, Gottschalk G. Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii [J]. Applied Microbiology Biotechnology,1994,41 (3): 313-316.
    [126]储炬,李友荣.现代工业发酵调控学[M].北京:化学工业出版社.2001.
    [127]Xiu Z L, Zeng A P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol [J]. Applied Microbiology and Biotechnology,2008,78(6): 917-926.
    [128]Adkesson D M, Alsop A W, Ames T T et al. Purification of biologically-produced 1,3-propanediol [P]. US 20050069997,2005.
    [129]Ames T T. Process for the isolation of 1,3-propanediol from fermentation broth [P]. US 6361983, 2002.
    [130]Kelsey D R. Purification of 1,3-propanediol [P].US 5527973,1996.
    [131]Hao J, Xu F, Liu H J et al. Downstream processing of 1,3-propanediol fermentation broth [J]. Journal of Chemical Technology and Biotechnology,2006,81(1):102-108.
    [132]Gong Y, Tong Y, Wang X L et al. The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis [J]. Desalination,2004, (161):169-178.
    [133]郝健,刘德华.1,3-丙二醇发酵液电渗析法脱盐[J].过程工程学报,2005,5(1):36-39.
    [134]Gao S J, Zhang D J,Sun Y Q et al. Separation of 1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol dilution crystallization [J]. Frontiers of Chemical Engineering in China,2007,1(2):202-207.
    [135]Xiang B T, Chen S F, Liu D H. Extraction of 1,3-propanediol from in dilute fermentation broth [J]. Journal of Tsinghua Univ, Science and Technology,2001,41(12):53-55.
    [136]Hao J, Liu H J, Liu D H. Novel route of reactive extraction to recover 1,3-propanediol from a dilute aqueous solution [J]. Industrial and Engineering Chemistry Research,2005,44 (12):4380-4385.
    [137]Wilkins A E, Lowe D J. Product removal process for use in a biofermentation system [P]. US 6812000,2004.
    [138]Corbin D R, Norton T. Process to separate 1,3-propanediol or glycerol, or a mixture thereof from a biological mixture [P]. US 6603048,2003.
    [139]Li S G, Tuan V A, Falconer J L et al. Separation of 1,3-propanediol from glycerol and glucose using a ZSM-5 zeolite membrane [J]. Journal of Membrane Science,2001,191 (1-2):53-59.
    [140]Li Z G, Jiang B, Zhang D J et al. Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths [J]. Separation and Purification Technology,2009,66 (3): 472-478.
    [141]Bailey J E. Towards a science of metabolic engineering [J].Science,1991,252(5013):6682-6741.
    [142]唐功利,陈海宝.代谢工程研究进展[J].有机化学,2000,20(5):634-640.
    [143]孙丽萍,吴海珍,张惠展.第三代基因工程-代谢工程[J].药物生物技术,2000,7(2):71-76.
    [144]Stols L, Kulkarni G, Harris BG et al. Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose [J]. Applied biochemistry and biotechnology,1997,63(1):153-158.
    [145]Vemuri G, Eiteman M, Altman E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli [J]. Applied and environmental microbiology,2002,68(4):1715-1727.
    [146]Gokarn R, Eiteman M, Altman E. Metabolic analysis of Escherichia coli in the presence and absence of the carboxylating enzymes phosphoenolpyruvate carboxylase and pyruvate carboxylase [J]. Applied and environmental microbiology,2000,66(5):1844-1850.
    [147]Eliasson A, Christensson C, Wahlbom C F et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J]. Applied and environmental microbiology,2000,66(8):3381-3386.
    [148]Toivari M, Aristidou A, Ruohonen L et al. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability [J]. Metabolic Engineering,2001,3(3):236-249.
    [149]Sanchez A M, Bennett G N, San K Y, Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity [J]. Metabolic Engineering,2005,7(3):229-239.
    [150]Lin H, Bennett G N, San K Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions [J]. Biotechnology and bioengineering,2005,90(6):775-779.
    [151]Stephanopoulos G N, Aristidou A A, Nielsen J代谢工程:原理与方法[M].北京:化学工业出版社,2003.
    [152]Stephanopoulos G N. Metabolic fluxes and metabolic engineering [J]. Metabolic Engineering, 1999,1(1):1-11.
    [153]Heinrich R, Rapoport S M, Rapoport T A. Metabolic regulation and mathematical models [J]. Progress Biophysics Molecular Biology,1977,32(1):1-82.
    [154]Kascer H, Burns J A. The control of flux [C]. Symposia of the Society for Experimental biology, 1973, (27):65-104..
    [155]Nielsen J. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates [J]. Biochemical Journal,1997.321(1):133-138.
    [156]程可可,刘宏娟,刘德华.1,3-丙二醇有氧分批发酵动力学模型[J].现代化工,2005,25(7):185-188.
    [157]程可可,林日辉,刘宏娟等.1,3-丙二醇分批发酵动力学模型[J].过程工程学报,2005,5(4):425-429.
    [158]修志龙,曾安平,安利佳.甘油生物歧化过程动力学数学模拟和多稳态研究[J].大连理工大学学报,2000,40(4):428-433.
    [159]Ohta K, Beall D S, Mejia J P et al. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase Ⅱ [J]. Applied and environmental microbiology,1991,57(4):893-900.
    [160]Ohta K, Beall D S, Mejia, J P et al. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose [J]. Applied and environmental microbiology,1991,57(10): 2810-2815.
    [161]Tantirungkij M, Nakashima N, Seki T et al. Construction of xylose-assimilating Saccharomyces cerevisiae [J]. Journal of Fermentation and Bioengineering,1993,75(2):83-88.
    [162]Han Y S, Van der Heijden R, Verpoorte R. Biosynthesis of anthraquinones in cell cultures of the Rubiaceae [J]. Plant Cell, Tissue and Organ Culture,2001,67(3):201-220.
    [163]Tsai PS, Hatzimanikatis V, Bailey J E. Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism [J]. Biotechnology and Bioengineering,49(2): 139-150.
    [164]Valadi H, Larsson C, Gustafsson L. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae [J]. Applied Microbiology Biotechnology,1998, 50(4):434-439.
    [165]Nissen T L, Hamann C W, Kielland-Brandt M C et al. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis [J]. Yeast,2000,16(5):463-474.
    [166]Lee J Y, Jung K W, Choi S H et al. Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of benzene, toluene, and p-xylene mixture of special interest [J].Applied Environment Microbiology.1995,61(6):2211-2217.
    [167]Suyama A, lwakiri R, Kimura N et al. Suyama, A et al. Engineering hybrid pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene [J]. Journal of Bacteriology,1996,178(14):4039-4046.
    [168]Sauer U.Metabolic networks in motion:13C-based flux analysis [J]. Molecular systems biology,2006, 2(1):62.
    [169]Wiechert W. 13C metabolic flux analysis [J]. Metabolic Engineering,2001,3(3):195-206.
    [170]Vallino J V, Stphanopoulos G. Metabolic flux distributions in corynebacterium glutamicum during growth and lysine overproduction [J].Biotechnol Bioeng,2000,67(6):872-875.
    [171]Jrgensen H, Nielsen J, Villadsen J et al. Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations [J]. Biotechnology and Bioengineering,1995,46(2):117-131.
    [172]Jin S, Ye K, Shimizu K. Metabolic flux distributions in recombinant Saccharomyces cerevisiae during foreign protein production [J]. Journal of biotechnology,1997,54(3):161-174.
    [173]Marx A, de Graaf A A, Wiechert W et al. Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing [J]. Biotechnology and Bioengineering,1996,49(2):111-129.
    [174]张蓓.代谢工程[M].天津:天津大学出版社,2003.
    [175]Venkatesh K V. Metabolic flux analysis of lactic acid fermentation:effects of pH and lactate ion concentration [J]. Process Biochemistry,1997,32(5):651-655.
    [176]Hua Q, Fu PC, Yang C et al. Microaerobic lysine fermentations and metabolic analysis. [J]. Biochemical Engineering Journal,1998,2(2):89-100.
    [177]Franzen, C J. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae [J]. Yeast,2003,20(2):117-132.
    [178]Maczek J, Junne S, Nowak P et al. Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae [J]. Bioprocess and Biosystems Engineering,2006,29(4):241-252.
    [179]Sanchez A M, Bennett GN, San KY. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains [J]. Metabolic Engineering,2006,8(3):209-226.
    [180]Antoniewicz M R, Kraynieb D F, Laffend L A et al. Metabolic flux analysis in a nonstationary system:Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J]. Metabolic Engineering,2007,9(3):277-292.
    [181]修志龙.1,3-丙二醇的微生物法生产分析[J].现代化工,1999,19(3):33-35.
    [182]陈菁,陈建华,周怡雯等.高效液相色谱法检测发酵液中二羟基丙酮和甘油的含量[J].中国生化药物杂志,2007,28(3):170-172.
    [183]王剑峰,修志龙,范圣第.甘油转化生产1,3-丙二醇发酵液中甘油含量的测定[J].工业微生物,2001,31(2):33-35.
    [184]王剑峰.气相色谱测定1,3-丙二醇发酵液中主要成分[J].大连民族学院学报,2002,4(2):19-20.
    [185]Cheng K K, Liu H J, Liu D H. Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation [J]. Biotechnology Letters,2005,27(1):19-22.
    [186]Circle S J, Stone L, Boruff C S. Acrolein determination by means of tryptophan [J]. Industrial and Engineering Chemistry,1945,17:259-262.
    [187]Tobimatsu T, Kajiura H, Yunoki M et al. Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase [J].Journal of Bacteriology, 1999,181(13):4110-4113.
    [188]Chen H W. Fang B,Hu Z D. Simultaneous HPLC determination of four key metabolites in the metabolic pathway for production of 1,3-propanediol from glycerol [J]. Chromatographia,2007, 65(9-10):629-632.
    [189]Selvaraj P T, Little M H, Kaufman E N. Biodesulfurization of flue gases and other sulfate/sulfite wasteStreams using immobilized mixed sulfate-reducing bacteria [J]. Biotechnology Progress,1997, 13(5):583-589.
    [190]周会.DX-300离子色谱测定山地冰川雪冰中的有机酸与无机酸阴离子[J].色谱,2001,19(4):353-355.
    [191]唐长波,岳田利.色谱法分析食品中的有机酸[J].食品科技,2006,(10):249-251.
    [192]Patrick A W H, Johan D, Ulla S et al. Determination of low molecular weight organic acids in soil solution by HPLC [J]. Talanta,1999,48(1):173-179.
    [193]Shelly L, James S F. Organic modifiers for the separation of organic acids and bases by liquid chromatography [J].Journal of Chromatography A,2002,964(1):91-98.
    [194]Julia B E, Jonathan M N, Wade A et al. High-performance liquid chromatographic assay of lactic, pyruvic and acetic acids and lactic acid stereoisomers in calf feces, rumen fluid and urine [J]. Journal of Chromatography B,2004,805(2):347-351.
    [195]蔡婷,苏溧,陈可等.高效液相色谱法在测定丁二酸厌氧发酵体系中有机酸的应用[J].生物加工过程,2007,5(1):66-70.
    [196]李康乐,吴梧桐.高效液相色谱法同时测定药用苹果酸中的马来酸与富马酸[J].中国药科大学学报,1994,25(2):106-108.
    [197]许龙福.高效液相色谱法同时测定食品中安塞密糖精苹果酸山梨醇和咖啡因[J].分析试验室, 2002,21(2):30.
    [198]施介华,徐秀莉.反相高效液相色谱法分离和测定富马酸[J].分析化学研究简报,2000,24(4):470-472.
    [199]白冬梅,赵学明,胡宗定.应用HPLC-反相色谱法测定米根霉乳酸发酵液中的有机酸[J].工业微生物,2001,31(1):8-11.
    [200]牟英,王元好,修志龙等.高效液相色谱法测定1,3-丙二醇发酵液中的有机酸[J].分析化学,2006,34(S1):183-186.
    [201]Kazunori T, Hisako H, Yoko D et al. Effects of dietary fiber prepared from sweet potato pulp on cecal fermentation products and microflora in Rats [J].The Japanese Society of Applied Glycoscience, 2005,52(1):1-5.
    [202]Nicholson J K, Connelly J, Linden J C et al. Metabonomics:a platform for studying drug toxicity and gene function [J].Nature Reviews Drug Discovery,2002,1(2):153-161.
    [203]Xiu Z L, Song B H, Wang Z T et al. Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures [J]. Biochemical Engineering,2004, 19(3):189-197.
    [204]Jin L H, Li J H. Change in proteomic profiles of genetically modified 1,3-propanediol-producing recombinant E. coli [J]. Journal of Microbiology and Biotechnology,2008,18(8):1439-1444.
    [205]Zheng Z M, Xu Y Z, Liu H J et al. Physiologic mechanisms of sequential products synthesis in 1,3-propaendiol fed-batch fermentation by Klebsiella pneumonia [J]. Biotechnology and Bioengineering,2008,100(5):923-931.
    [206]Ma B B, Xu X L, Zhang GL et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae XJPD-Li under different aeration[J].Applied Biochemistry and Biotechnology,2009,152(1): 127-134.
    [207]Nelson D L,Cox M M. Lehninger principles of biochemistry [C]. New York:3rd edn. Worth Publishers,2000.
    [208]管桂萍,王红兵,田杰生.琥珀酸对产酸K.pneumoniae好氧发酵甘油产1,3-丙二醇的影响[J].食品与发酵工业,2008,34(5):14-17.
    [209]Barbirato F, Astruc S, Soucaille P et al. Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210:limitations and regulations [J].Microbiology,1997, (143): 2423-2432.
    [210]李建武.生物化学实验原理和方法[M].北京:北京大学出版社.1994.
    [211]Zhang Q R, Xiu Z L. Metabolic Pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system [J].Biotechnology Progress,2009,25 (1):103-115.
    [212]Kosaric N, Magee R, Blaszczyk R. Redox potential measurement for monitoring glucose and xylose conversion by K. pneumonia [J].Chemical and Biochemical Engineering Quarterly,1992,6(3): 145-52.
    [213]Converti A, Perego P, Del Borghi M. Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics:carbon and reduction degree balances in batch cultivations [J]. Biotechnology Bioengineering,2003,82(3):370-377.
    [214]Fromanger R, Guillouet S E, Uribelarrea J L et al. Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose [J].Journal of Industrial Microbiology Biotechnology,2010,37(5):437-445.
    [215]San K Y, Bennett G N, Berrios-Rivera S J et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli [J]. Metabolic Engineering,2002, 4(2):182-192.
    [216]Berrios-Rivera S J, Bennett G N, San K Y. The effect of increasing NADH availability on the redistribution of metabolic fluxed in Escherichia coli chemostat cultures [J]. Metabolic Engineering, 2002,4(3):230-237.
    [217]Celinska E, Grajek W. Biotechnological production of 2,3-butanediol-Current state and prospects[J].Biotechnology Advances,2009,27(6):715-725.
    [218]Ahrens K, Menzel K, Zeng A P et al. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅲ. enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation [J].Biotechnology Bioengineering,1998,59(5):544-552.
    [219]Zhang Q R, Hu T, Sun Y Q et al. Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumonia [J]. Bioprocess Biosystem Engineering,2008,31(2):127-35.
    [220]Sun Y Q, Qi W T, Teng H et al. Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae:concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane [J]. Biochemical Engineering Journal,2008,38(1):22-32.
    [221]Herbert D, Phipps P J, Strange R E.Chemical analysis of microbial cells.In:Noms JM, Ribbons D W, editors [C]. Methods in microbiology, London:Academic Press,1971, (5b):209-344.
    [222]Gong Z H. A multistage system of microbial fed-batch fermentation and its parameter identification [J]. Mathematics and Computers in Simulation,2010,80(9):1903-1910.
    [223]Melchiorsen C R, Jokumsen K V, Villadsen J et al. Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis [J]. Journal of Bacteriology,2000,182(17):4783-4788.
    [224]San K Y, Bennett G N, Berrios-Rivera S J et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli [J]. Metabolic Engineering,2002, 4(2):182-192.
    [225]de Graef M R, Alexeeva S, Snoep J L et al. The steady-state internal redox state (NADH/NAD+) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli [J].Journal of Bacteriology,1999,181 (8):2351-2357.
    [226]Menzel K, Ahrens K, Zeng A P et al. Kinetic,dynamic,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅳ. Enzymes and fluxes of pyruvate metabolism [J]. Biotechnology and Bioengineering,1998,60 (5):617-626.
    [227]Chevlier M, Lin E C C, Rodney L. Hydrogen peroxide mediates the oxidative inactivation of enzymes following the switch from anaerobic to aerobic metabolism in Klebsiella pneumonia [J]. Journal of Biology and Chemistry,1990, (265):40-46.
    [228]马成伟,杜彤,孙亚琴等.生物转化法生产2,3-丁二醇的研究[J].精细与专用化学品,2006,114,14(15):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700