用户名: 密码: 验证码:
川崎病患儿冠状动脉损害相关因素临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川崎病(kawasaki disease,KD)是以全身性血管炎为主要病变的急性、发热性、出疹性疾病。近年来全球发病率有逐年上升的趋势。该病主要累及中小血管,特别是冠状动脉损害是该病的主要危害,部分患儿可在急性期或以后形成冠状动脉扩张、冠状动脉瘤和多发性狭窄,严重威胁患儿的生活质量甚至生命安全,是儿童后天获得性心脏病的重要原因之一。所以早期诊断KD的心肌及冠脉损害以便及早用药及预防并发症有着重大的临床意义。但本病发病机制不十分清楚,但目前多认为KD是一种由多种感染性病原触发的免疫系统异常激活引起的血管炎。现有研究表明川崎病发病过程中存在着明显抗β2GPI抗体及基质金属蛋白酶9(MMP-9)增高,且二者在川崎病发生、发展及进展至合并冠状动脉损害的过程中,与其有密切关系。
     本研究内容包括:(1)采用ELISA方法检测KD患儿急性期与发热对照组血清抗β2GPI抗体及基质金属蛋白酶9(MMP-9)的水平并进行比较。(2)就KD患儿急性期血清抗β2GPI抗体及基质金属蛋白酶9(MMP-9)升高和冠脉扩张之间的关系进行初步研究。(3)对KD急性期患儿血清抗β2GPI抗体及基质金属蛋白酶9(MMP-9)升高之间的关系及其与冠脉扩张的关系进行初步研究。
     结果表明:KD患儿急性期血清抗β2GPI抗体及基质金属蛋白酶9(MMP-9)的水平明显高于发热对照组,经统计学分析有显著意义,有可能成为早期诊断川崎病血清学指标,同时二者在川崎病发病过程中可能有协同作用。本研究还显示抗β2GPI抗体及MMP-9在川崎病急性期尤其伴冠状动脉病变时明显升高,二者可能均参与了川崎病血管炎尤其是冠脉损伤扩张的病理过程,提示抗β2GPI抗体及MMP-9与KD有很强的相关性,可能成为KD冠状动脉损伤的标志性指标。这对早期诊断川崎病及预测合并冠脉病变具有重要的理论与临床意义,可以用来指导临床早期用药,并对预后判断具有重要参考价值。
Objective: Kawasaki disease (kawasaki disease, KD) is systemic vasculitis of the main acute lesions, fever, rash disease. In recent years, with the progress of technology and scientific development, as well as clinicians to raise awareness of the disease, the global incidence rate has increased year by year trends. The disease mainly involving small blood vessels, in particular Coronary artery disease is the damage to the main hazards, and some children in the acute phase or after the formation of coronary artery dilatation, coronary artery aneurysms and multiple narrow, serious threat to the quality of life for children with life or safety of the children acquired heart disease One of the important factors. However, the pathogenesis of this disease is not very clear, but more than that KD is a variety of sexually transmitted infections from the original trigger abnormal activation of the immune system caused by vasculitis that systemic immune activation, and increased cytokine production of autoantibodies increase is the KD characteristics. KD plasma in the presence of circulating antibody, such as cytoplasmic antibodies, anti-endothelial cell antibodies, anticardiolipin antibody, their IL-1β, TNFαor IFN-γstimulated endothelial cells with cytotoxic effect However, their specificity still controversial, and the vascular injury may occur process.Β2GPI is a relatively rich plasma glycoprotein is to determine the ACA and cardiac combination of phospholipid cofactor, in some autoimmune diseases is an important autoantigen, immune activation in endothelial cells, vascular inflammation and thrombosis formation process from the role of crucial importance, especially anti-β2GP1 the emergence of antibodies increased the risk of thrombosis. At the same time a specific collagenase and elastase activity in the zinc-dependent matrix metalloproteinase superfamily of MMP-9, can degrade collagen from the main organization, flexible hardware protein, a protein vascular endothelial polysaccharide lower in inflammation in response to inflammatory cells such as T-lymphocytes, monocytes macrophages to the vascular wall deep Mobile, immune injury to the blood vessel wall deep development. MMP-9 through the degradation of extracellular matrix, in atherosclerotic vascular remodeling and plaque instability caused by cardiovascular diseases in the development process plays an important role. Some scholars study the use of high-fat meal-induced rabbit model of atherosclerosis found in atherosclerosis and progress with the process of activation of MMPs, and gradually increasing trend. In recent years, studies indicate that the pathogenesis of Kawasaki disease there is a clear anti-β2GPI antibody and matrix metalloproteinase-9 (MMP-9) increased, and two in Kawasaki disease, development and progress of coronary artery damage to the merger process, which they have close relationship. This study aimed to investigate the acute phase of Kawasaki disease in children with serum anti-β2 GPI antibody, MMP-9 levels of Kawasaki disease in the early diagnosis and prediction of the value of coronary artery disease.
     Methods: First Clinical Hospital of Jilin University Pediatric clear diagnosis of KD 37 cases of children hospitalized for observation group, which Doppler ultrasound examination of 20 cases with normal coronary artery, the merger were 17 cases of coronary artery disease. Replacement of 20 cases in our hospital during the same period in the age of diagnosis was similar to sepsis or pneumonia and other infectious diseases in children with fever control group, all except for the heart, liver, kidney, blood diseases and autoimmune diseases such as rheumatoid. By ELISA measurement of serum antibody anti-β2GPI, MMP-9 levels. Using SAS software analysis of the data collected, testedα= 0.05 level.
     Results: Observer Group in children with Kawasaki disease and fever in the control group, serum anti-β2GPIantibody levels are 8.0595±1.9177U/ml and 5.21±1.1259U/ml; serum levels of MMP-9 is 912.73 and 790±87.396ng/ml 14.712ng/ml, the two were significantly different, the statistical test statistically significant (P<0.05); Observer Group coronary artery and coronary artery injury group were normal serum level of anti-β2GPI serum antibody levels are 9.3118±2.1482 U/ml and 6.995±0.697U/ml, serum levels of MMP-9 is 979.71±90.559ng/ml and 855.8±11.87ng/ml, the two were significantly different statistically the test statistical significance (P<0.05) in children with Kawasaki disease observed in the serum MMP-9, anti-β2GP1antibody levels were significantly correlated with a correlation coefficient r=0.66533, (P<0.0001).
     Conclusion: Anti-β2GPI antibody and MMP-9 in the acute phase of Kawasaki disease with coronary artery disease, particularly significantly increased, and they may be involved in the Kawasaki disease are especially coronary vasculitis injury expansion of the pathologic process, suggesting that anti-β2GPI antibody and MMP﹣9 and KD have a strong correlation, the early diagnosis of Kawasaki disease may become serological indicators, in particular, may be a sign of coronary artery lesions KD indicators at the same time both in Kawasaki disease may occur in the process of the development of synergies. This early diagnosis and prediction of the merger of Kawasaki disease and coronary artery disease early clinical drug guide has important theoretical and clinical significance.
引文
[1] Impairment of the Fibrinolytic System is Present and is a Marker for Endothelial Dysfunction in Adolescents after Kawasaki Disease. Brian W. McCrindle, Manuela Albisetti [J], Pediatric Research, 2003 January; Volume 53(1):185, January 2003.
    [2] Successful thrombolytic therapy using tissue-type plasminogen activator in Kawasaki disease [J]. (eng; includes abstract) By Tsubata S, Pediatr Cardiol, 1995 Jul-Aug; Vol. 16(4), pp.186-9; PMID: 7567665.
    [3] Fhjiwara T, Fhjiwara H, Nakano H. Pathological features of coronary arteriesin children with Kawasaki disease in which coronary arterial aneurysm was absent at autopsy. Circulation, 1998;78:345-350.
    [4] Fujiwara H, Hamashima Y. Pathology of the heart in Kawasaki disease. Pediatrics. 1978;61:100.
    [5] Fujiwara H, Kawai C, Hamashima Y. Clinicopathologic study of the conduction systems in 10 patients with Kawasaki disease (mucocutaneous lymph node syndrome). Am Heart J. 1978; 96:744.
    [6] 刘桂英, 谭岩, 杜军保, 川崎病患儿血清抗 β2 糖蛋白Ⅰ抗体和抗心磷脂抗体的检测及其意义[J]. 中华儿科杂志, 2005,43(3):214-215.
    [7] Senzaki H, Masutani S, Kobayashi J, et al. Circulating Matrix Metalloproteinases and their inhibitors in patients with Kawasaki disease [J]. Circulation, 2001,104:860-864.
    [8] Gavin PJ, Crawford SE,Shulman ST, et al. Systemic arterial expression of matrix metalloproteinases 2 and 9 in acute kawasaki disease. Vase Biol, 2003,23:576-581.
    [9] Chua PK, Melish ME, Qigui YU, et al. Elevated levels of matrix metalloproteinase 9 and tissue inhibitor of metalloproterianse 1 during the acute phase of Kawasaki disease. Clin Diag Lab Immun, 2003, Mar, 308-314.
    [10] Cabral AR, Alar con-stgovia D. Anti-beta 2 gly coprotein! Antibody testing in pationts with amtiphosphlipid syndome. Br J Rhoumato! 1997;36(11):1235.
    [11] Tsutsumi A, Matsuura E, IchiKawa K, et al. IgA dass anti-beta- 2-ghycoprotein in pationts with systemic lupus erythemtosus Jkhenmatol, 1998;25(1):74-78.
    [12] Hammel M, Schwar to bacher R, Gries A, et al. Mechanism of the interaction of beta 2-glycoprotein 1 with negatirely charged phospholipid membranes.Biochemistry 2001 nov; 40(47): 14173-14181.
    [13] Kamboh, ML, Ferrell. RE and Sepehmia B. Genetic studies of human apolipoprotein. IV. Structural heterogeneity of apolipoprotein H. Am. J. Hum. Genet. 1988;4(3):452-457.
    [14] Kandiah DA, Krilis SA. B2-glycoprotein 1 Lupus 1994,3:207-212.
    [15] Hunt J and Krilis S. The fifth domain of beta 2-glycoprotein I contains aphosphlipid binding site (Cys281-Cys288) and a region recognized by anticardiolipin antibodies. J Immunol. 1994;152:653-659.
    [16] Haginara Y, Hong DP, Hoshino M, et al. Aggregation of beta2 -glycoprotein I induced by sodium lauryl suffate and lysophos pholipids Buicgenstrt 2002 Jan 341(3):1020-1026.
    [17] Wurm H, Beubler E, Polz E, et al. studies on the possible function of beta2-glycoprotein 1 Influence in the triglyceride metabolism in the rat. Metabolism 1982;31(5):484-6.
    [18] Brighton AT, Hogg PJ, Dai YP el al. Beta-2-gylcoprotein I in thrombosis: evidence for a role as a natural anticoagulant. Br J Haemato 1 1996;93(1):185-194.
    [19] BalasubrananianK,Chandra J, Schroit AJ. Immune clearance of phosphatidylserine-expressing cells by phagocytes. The role of beta2-glycoprotein I in macrophage recognition J Biol Chem 1997;272(49):31113-7.
    [20] Price BE, Rauch J, Levine JS. Antiphosphoslipid autoantibodies binol to apoptotic, but not viable, thymocytes in a β2gpycoprotein 1 depenclent manner J Immunol 1996;157: 2201-2208
    [21] Manfredi AA, Rovere P, Heltaic, et al. Apoptotic cell clearance in systemic lupus erythematosus II. Role of beta2-glycoprotein IArthritis and Rheumatism. 1998;41(2):215-223.
    [22] Pittoni V, Ravirajan CT, and Isenberg DA. Human monoclonal anti-phospholipid antibodies selectively bind to membrane phospholipid and beta2-glycoprotein I (beta2-GPⅠ) on apoptotic cells Clin Exp Immunol 2000;119(3):533-43.
    [23] Harris EN, Gharavi AE, Hughes GKV. Anti-phospholipid antibodies. 1985 Clin. Rheum. Dis. 11:591-609.
    [24] McNeil HP, Simpson RJ, Chesterman N, et al. Antiphospholipid antibodies are directed against a complex antigen that includes a lipid binding inhibitor of coagulation: beta-2 Glycoprotein-1. Proceed Natl Acad Sci USA. 1990;87:4120-4124.
    [25] Roubey RAS. Autoantibodies to phospholipid-binding plasima proteins: anew view of lupus anticagulants and other antiphospholipid autoantibodies. Blood 1994;84:2854-2867.
    [26] Roubey R. Zmmunology of the auti phospholipid syndnome Arthirtis Rheum 1996;39:1444-1454.
    [27] Galli, M., Comfurius, P, Maassen, C, Hemker, HC, Dcbaets, M.H. Van Breda-Vriesman, PJC, Barbui, T., Zwaal, R.F.A., ang Bevers, E.M. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 1990;335, 1544-1547.
    [28] Matsuura, E., Igarashi, Y., Eujimoto, M., Ichikawa, K., and Koike, T. Anticardiolipin cofactor (s) and differential diagnosis of autoimmune disease.Lancet 1990;336:177-178.
    [29] Koike T, Matsuura E. Lupus, 1996;5(5):378-380.
    [30] Matsuura E, lgarashi Y, Fujimoto M, et al. Lancet, 1990;336 (8708):177-178.
    [31] Horkko S, Miller E, Branch DW. The epitopes for Anti- phospholipid antibodies are adducts of oxidized phospholipid and beta-2-glycotrotein I (and other proteins). Proc Natl Acad Sci USA 1997;94:10356-10361.
    [32] Loizon S, Mccrea JD, Rudge AC, Harris EN, Measurement of anticardiolipin antibody by an enzyme-linked immunosorbort assays standardization and quantitation of results. Clin Exp Immunol. 1985;62;738-745.
    [33] Matsuda J, Saitoh N, Ciotoh M. Distinguishing beta-2- Glycoprotein-I dependent and independent Antiphospholipid antibodies with Tween 20. Br. J. Haematol 1993;85:799-802.
    [34] Hunt JE, McNeil HP, Morgan GJ, et al. A phospholipid-β2- glycoprutein/complex is an antigen for anticardiolipin antibodies ouwrring in antoimmiune aisease but not with infection. Lupus 1992;1:75-81.
    [35] Wilson WA, Gharavi E, Koike T, et al. International consensus statement on preliminary classification oriteria for define antiphos pholipid syndrome Arthritis. Rheum 1999;42:1309- 1311
    [36] Del Papa N, Guidali L, Sala A, etal. Endothelial cells as target for antiphospholipid antihodies: human polyclonal andmonoclonal anti: 2-glycoprotein 1 antiboelies react in vitro with endothelial cells through adherent β2-glycqovotein 1 and induce endothelial aetivation. Arthritis Rheum 1997;40:551-561
    [37] Meroni PL, Raschi E, Tostoni C, et l. Statins prerent endothelial cell activation inoluced by antiphospholipid canti beta2- glycopnotein, antiboclies: effect on the proadhesive and proinflammotory phenotype. Arthritis Rheum 2001 Dec; 44(12): 2870-2878.
    [38] Bondanza A, Sabbadini MG, Rellegatta F, etal. Anti-btta2- glycoprotein antibodies prerent the De-actiration of platelets and sustain their phagocytic dearance J Autoinmun 2000 Dec;15(4): 469-477.
    [39] Galli M, Ruggeri L, Barbui T. Differential effects of anti-β2-glyloprotein and antiprothrombin antibalies on the anticoagulant outivity of activateel protein C. Blood 1998;91: 1999-2004.
    [40] Sanmarco M, Soler C, Christides C. Prevalence and clinical significance of LgG isotope anti-beta2-Glycoprotein 1 antibodies in anti-phospholipid syndrome J Lab Clin 1997;1295: 499-506
    [41] Pengo V, Biasiolo A, Brocco T. Autoantibodies to phospholipid-binding plasma proteins in patients with thrombosis and lipid-reactive antibodies. Thromb and Haemost 1996;75:25-724
    [42] Forastiero R, Martinuzzo M, Carreras LO. Anti-beta-2 Glycoprotein I antibodies and platelet activation in patients with Anti-phospholipid antibodies. Thromb Haemost 1998;79:42-5.
    [43] Del Papa N, Guidali L, Spatola L, et al. Relationship bttween anti-phospholipid and anti endothelial antibodies III β2-glycoproteinl mediates the antibody binding to endothelial meacbraues and induce the erpression of adhesion nuolecules Clin Exp Rheumatol 1995;13:179
    [44] Del Papa N, Sheng YH, Raschi E, et al. Haman β2-glycopntein 1 binds toendothelial cells through a cluster of lysine resiclues that are critical for anionic phospholipid binday and offers epitppes for antiβ2-glycoprotein 1 antibodies J Imnunol 1998; 160:5572-5578
    [45] Blank M, Faden D, Tincain A. Immunization with anticardiolipin cofactor (beta-2-glycoprotein I) induces experimental anti-phospholipid syndrome in naive mice. J Autoimmun 1994;7:441-455.
    [46] Gerorge J, Blank M, Lery Y, et al. Differential effects of anti β 2-glycoprotoin 1 antibidies on endothelial cells and the mamifestations of experimental antiphospholipid syndrome Circnlation 1998;97:900-906
    [47] Ulcova-Gallova Z, Bouse V, Krizanovska K, et al. Beta2 glycoprotem 1 is a good indieator of certain adverse pregnancy. Int J Fertil Womens Med 2001 Nor-Dec;46(6):304-308.
    [48] Harrison CN, Donohoe S, Carr P, et al. Patient with essential thormbocythaemia have an increased prevaleuce of antiphosphotipid antihodies which may be associated with thrombosrs. Thromb Haemost 2002 may;87(5):802-807
    [49] Manzi S, Moilahn EN, Rairie JE, et al. Age-specific incidence rates of myocorrdial infarction and angina in women with system lupuserythematosus comparison with the Framingham study. Am J Epidem 1997;145:408-415.
    [50] Belmont M, Abramson B, Lie JT. Pathology and pathogenesis of vas aular injury in system lupus erythematosus. Arthritis Rheum 1996;39:9-22.
    [51] Shapiro S. The lupus aubicongulant/antiphospholipid syndrome. Ann Rev Med, 1996;47: 533-553.
    [52] Triplett AD Anti-phospholipid antibodies: laboratory detection and clinical relevance. Thrombosis Research. 1995; 78:1-31.
    [53] Davies ML, Young SP, Welsh K, etal. Immune responses to native betaα-glycoprotein 1 in putionts with systemic lupus erythematosus and the autiphospholipid syndrome. Rheumatology (Oxford) 2002 Apr;41(4):395-400
    [54] Kalt M, Gertner E. Antibodies to beta α-glycoprotein 1 and cardiolipin with symptoms suggestive of systemic lupus erythematosus in parvovirus B19 infection. J Rheumatol 2001 Oct; 28(10):2335-2336
    [55] Horkko S, Miller E, Dudl E, et al. Antiphospholipid oureibodiesare directed against epitope of oxidized phospholipids. J Clin Invoest 1996;98:915-825
    [56] Wu R, Srenungsson E, Gunnarsson I, et al. Antibodies to adult human endothelial cells cross-react with oxidized low-density lipoprotein andβ2-glycopntein 1 (β2-GPⅠ) insystemic lupus erythematosus. Clin Erp Immand 1999;115:561-566.
    [57] HasununaY, Matsuura E, Makia Z. Involvement of beta-2- GlycoproteinI and Anticardiolipid antibodies in oxidatively modified low-density lipoprotein uptake by macrophages, Clin Exp Immunol, 1997;107:569-573.
    [58] Lin KY, Pan JP, Yang DL, et al. Evidence for inhibi-tion of low density lipoprotein oxidation and cholesterol accumulation by apolipoprotein H (bota2-glycoprotein 1). LifeSci 2001 Jun 29:69(6):707-719.
    [59] Harats D, George J. Beta α-glycoprotein 1 and atherosclerosis. Curr Opin Lipidol 2001 Oct; 12(5):543-546.
    [60] Visvanathan S, and McNeil H P ,Cellualar immunity to beta2-glycoprotein I inpatients with the antiphospholipid syndrome J. Immunol 1999;162:6919-1925.
    [61] Hattori N, Kuwana M, Kaburaki J, Tcolls that are autoreactire toβ2-glycoprotein1 inpatients with antiphos pholipid syndrome and healtlgy individuals et al. Arthritis Rheum 2000;43(1): pp65-75.
    [62] Arai T Yoshidak, Kaburaki J, et al. AutoreactiveCO4+T-cellclones to betaγ-glycoprotein f1 in patients with anti phospholipid syndrome:preferentralrecognition of the major phosphoolipid-bingling site. Blood 2001;98(6):1889-1896.
    [63] Yoshida K, Arai T, Kaburabi J, et al. Restricated T-cell receptor beta-chain usage by T cells autoreactive to beta2-glycoprotein1 in patients with autiphospholipid syndrome Blood 2002 Apr; 99(7):2499-2504
    [64] GerogeJ, HaratsD, ShoenfeldY. Adoptivetransfenof beta2- glycoprotein1-reactive lymphocytes enchances early atheros clerosis in LDLreceptor-deficieut mice. Circulation. 2000;102: 1822-1827.
    [65] TakaharaM, Naruse T, TakagiM, et al. Matrixmetalloproteinase- 9 expression, tartrate-resistant acid pHospHatase activity,and DNA fragmentation in vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bones [J]. J Orthop Res,2004,22(5):1050-7.
    [66] FunayamaH, IshikawaSE, KuboN, et al. Increases in interleukin- 6 and matrixmetalloproteinase -9 in the infarct- related coronary artery of acute myocardial infarction [J]. Circ J, 2004,68(5): 451-4
    [67] Hulkkonen J, PertovaaraM, Antonen J, et al. Matrix metalloproteinase 9 (MMP-9) gene polymorpHism and MMP-9 plasma levels in primary Sjogren’s syndrome [J]. Rheumatology (Oxford), 2004.17.
    [68] Wu CY, Hsieh HL, Jou MJ, et al. Involvement of p42/p44MAPK, p38MAPK, JNK and nuclear factor-kappaB in inter leukin- 1beta-induced matrixmetalloproteinase-9 expression in ratbrain astrocytes [J]. J Neurochem, 2004,90(6): 1477-88.
    [69] GrossJ &LapiereCM: Collagenogenolyticactivity in amphibian tissue; a tissue culture assay. Proc. Natl. Acad. Sci. USA, 1962; 48:1041.
    [70] Krane SM, ByrneMH,LemaitrV. etal:Different collagenase gene products have different roles in degradation of Type I collagen. J. Biol. Chem 1996;271:28509.
    [71] Sopata I & Dancew icz: Presence of a gelatinspecific proteinase and its latent form in human leukocytes. Biochim. Biophys. Acta 1974;370;510.
    [72] Nagase H, Barrett AJ, and Woessner JF:Nomenclature and glossary of the matrix metalloproteinase. M atrix Suppl. 1992;1:421.
    [73] Huhtala P, Tuuttila A, Chow LY, et al:Complete structure of the human gene for 92-kDa type IV collagenase. J. Biol Chem 1991; 266:16485.
    [74] Collier IE, BrunsGA, Goldberg GI, et al: On the structure and chromosome location of the 72-and 92-kDa human type IV collagenase genes. Genom ics 1991;9:429.
    [75] St Jean PL, Zhang XC, Hart BK, et al: Characterization of adinucleotide repeat in the 92kDa type IV collagenase gene (CLG4B ), localization of CLG4B to chromosome 20 and the role of CLG4B in aortic aneurysmaldisease. Ann.Hum. Genet 1995;59:7.
    [76] L inn R, Dupont BR, Knight CB, et al: Reassignment of the 92-kDa type IV collagenase gene (CLG4B) to human chromosome 22. Cytogenet. Cell Genet 1996;72:159.
    [77] Sheu JR, Fong TH, Liu CM, etal. Expression of matrixmetallo proteinase- 9 in human platelets: regulation of platelet activation in vitro and in vivo studies[J]. BrJ Pharmacol, 2004,143(1):193 -201
    [78] Wilson SR, Gallagher S, Warpeha K, et al. Amplification of MMP-2 and MMP-9 production by prostate cancercell lines via activation of protease-activated receptors [J]. Prostate, 2004, 602(2):168-74.
    [79] EgiK,Conrad NE,KwanJ,etal. In hibition of inducible nitric oxide synthase and superoxideproduction reducesmatrixmetallo proteinase-9activityand restorescoronary vasomotorfunction in rat cardiac allografts [J]. Eur J Cardiothorac Surg, 2004, 26(2):262-9.
    [80] Reno F,Baj G, Surico N, etal. Exogenous prostagl and in E2 in hibits TPA induced matrix metalloproteinase-9 production in MCF-7 cells [J]. Prostaglandins O ther Lipid Mediat, 2004, 73(3-4):237-47.
    [81] Chase AJ, Newby AC. Regulation of matrix metalloproteinase(Matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodeling. [J] J Vase Res 2003,40: 329-343.
    [82] Hovsepian DM, Ziporin SJ, Sakurai MK, et al. Elevated plasma levels of matrix metalloproteinase-9 in patients with abdominal aortic aneurysms: a circulating markers of degenerative aneurysm disease [J]. J Vase Interv Radiol 2000,11:1345-1352.
    [83] 杨世伟, 王大为, 秦玉明等. 人血丙种球蛋白对川崎病血清诱导血管内皮细胞表达基质金属蛋白酶 9 的影响[J]. 实用儿科临床杂志, 2005,20(3):223-225.
    [84] Senzaki H. The pathophysiology of coronary artery aneurysms in Kawasa-ki disease:Role of matrix metalloproteinases [J]. Arch Dis Child, 2006,91(10):847-851.
    [1] Kawasaki T, Kosaki F, Okawa S, etal. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. [J] Pediatrics 1974,54:271-276.
    [2] Yamakawa R, Ishii M, Sugimura T, etal. coronary endothelium dysfunction after Kawasaki disease:evaluation by intracoronary injection of acetylcholine. [J] Am Coll Cardiol 1998,31: 1074-1080
    [3] lemura M, Ishii M, Sugimura T, etal. Long-term consequences of regressed coronary aneurysms after Kawasaki disease: vascular wall morphology and function. [J] Heart 2000,83: 307-311
    [4] Fhjiwara T, Fhjiwara H, Nakano H. Pathological features of coronary arteriesin children with Kawasaki disease in which coronary arterial aneurysm was absent at autopsy. [J]Circulation, 1998;78:345-350.
    [5] Tsuda E, Kamiya T, Ono Y, et al. Incidence of stenotic lesions predicted by acute phase changes in coronary[J]. Pediatr Cardiol, 2005,26:73-79.
    [6] Successful thrombolytic therapy using tissue-type plasminogen activator in Kawasaki disease. [J] (eng; includes abstract) By Tsubata S, Pediatr Cardiol, 1995 Jul-Aug; Vol. 16(4), pp. 186-9;PMID:7567665.
    [7] 刘桂英,谭岩, 杜军保, 川崎病患儿血清抗 β2 糖蛋白 I 抗体和抗心磷脂抗体的检测及其意义[J] . 中华儿科杂志,2005,43(3): 214-215.
    [8] Senzaki H, Masutani S, Kobayashi J,et al.Circulating Matrix Metalloproteinases and their inhibitors in patients with Kawasaki disease [J]. Circulation, 2001,104:860-864.
    [9] Gavin PJ, Crawford SE,Shulman ST, et al. Systemic arterial expression of matrix metalloproteinases 2 and 9 in acute kawasaki disease[J].Vase Biol, 2003,23:576-581.
    [10] Chua PK, Melish ME, Qigui YU, et al. Elevated levels of matrix metalloproteinase 9 and tissue inhibitor of metalloproterianse 1 during the acute phase of Kawasaki disease [J].Clin Diag Lab Immun, 2003,Mar,308-314.
    [11] 吴瑞萍, 胡亚美, 江载芳, 主编. 实用儿科学[M]. 第 6 版, 北京: 人民卫生出版社, 2002.687-694。
    [12] NewburgerJW, TakahashiM, GerberMA, etal. Diagnosis, treat-ment, andlong-termmanagementofkawasakidisease: astate- mentforhealthprofessionalsfromthecommitteeonrheumaticfever,endocarditisandkawasakidisease,counciloncardiovascu-lardiseaseintheyoung, AmericanHeartAssociation. Circulation, 2004,110: 2747-2771.
    [13] KarasawaK. Advancesintheimagingofvascularcomplication and theirimpact. ProgPediatrCardiol, 2004,19:153-160.
    [14] McCrindleBW. Cardiovascular complications: coronary arterystructureandfunction. MinervaPediatr, ProgPediatrCardiol, 2004,19:147-152.
    [15] NewburgerJW, FultonDR. Kawasakidisease. CurrOpinPediatr,2004,16:508-514.
    [16] ShulmanST, RowleyAH. Advancesin Kawasakidisease. EurPediatr, 2004,163:285-291.
    [17] Kamboh, ML, Ferrell. RE and Sepehmia B. Genetic studies of human apolipoprotein. IV. Structural heterogeneity of apolipoprotein H. Am. J.Hum. Genet. 1988;4(3):452-457.
    [18] Cabral AR, Alar con-stgovia D. Anti-beta 2 gly coprotein! Antibody testing in pationts with amtiphosphlipid syndome. Br J Rhoumato! 1997;36(11):1235.
    [19] Tsutsumi A, Matsuura E, IchiKawa K, et al. IgA dass anti-beta-2- ghycoprotein in pationts with systemic lupus erythemtosus Jkhenmatol, 1998;25(1):74-78.
    [20] Hammel M, Schwar to bacher R,Gries A, etal. Mechanism of the interaction of beta 2-glycoprotein 1 with negatirely charged phospholipid membranes. Biochemistry 2001nov;40(47): 14173-14181.
    [21] 肖云山, 林其德. 自身免疫型习惯性流产的病因、病机、诊断和治疗[J]. 实用妇产科杂志,2005, (02):72-74 .
    [22] LoizouS, SinghS, WypkemaE, et al. Anticardiolipin, anti-beta2- glycoprotein1 and antiprothrombinantibodiesinblackSouth African patients with infectiousdisease. AnnRheumDis, 2003,62: 1106-1111.
    [23] Pottier P, Cormier G, Truchaud F, et al. Antiphospholipid syndrome in the structure of hematogenic thrombophilia in young and middle-aged patients with venous thrombosisJ. Ter Arkh ,2005,77(5):47-51
    [24] Chase AJ, Newby AC. Regulation of matrix metalloproteinase (Matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodeling. [J] J Vase Res 2003,40: 329-343.
    [25] Hovsepian DM, Ziporin SJ, Sakurai MK, et al. Elevated plasma levels of matrix metalloproteinase-9 in patients with abdominal aortic aneurysms: a circulating markers of degenerative aneurysm disease [J]. J Vase Interv Radiol 2000,11:1345-1352.
    [26] Higo S,Uematsu M, Yamagishi M, Ishibashi-Ueda H, Awata M,Morozumi T, et al. Elevation of plasma matrix metalloproteinase-9inthe culprit coronaryar-teryin patients with acute myocardial infarction:clinical evidence from distal protection [J]. Circ J, 2005,69(10):1180-185.
    [27] Sluijter JP, Pulskens WP, Arjan H, et al. Matrix metallopro- teinase2is associated with stable and matrix metalloproteinases 8 and 9 with vulnerable carotid atherosclerotic Lesions. Stoke, 2006,37(1):235-239 .
    [28] Aoki T, Kataoka H, Morimoto M. Macrophage-drived matrix metalloproteinases-2 and -9promote the progression of cerebral aneurysms in rats [J]. Stroke, 2007,38(1):162-169 .
    [29] Faia KL,Davis WP,Marone AJ,etal. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in hamster aortic atherosclerosis: correlation with in-situ zymography J. Atherosclerosis , 2002,160:325-337.
    [30] Luttun A, Lutgens E, Manderveld A, et al. Loss of matrixmetalloproteinase-9 or matrix metalloproteinase-12protectsapolipoprotein E-deficient mice against atherosclerotic mediadestruction but differentially affects plaque growthJ. Circulation, 2004,109:1408-14141.
    [31] Senzaki H. The pathophysiology of coronary artery aneurysms in Kawasa-ki disease:Role of matrix metalloproteinases [J]. Arch Dis Child, 2006,91(10):847-851.
    [32] Lau AC, Rosenberg H, Duong TT, et al. Elastolytic matrix metalloprotei-nases and coronary outcome in children with Kawasaki disease [J]. Pe-diatr Res, 2007,61(6):710-715 .
    [33] DuongTT, SilvermanED, BissessarMV, et al. Superantigenicac -tivityisresponsibleforinductionofcoronaryarteritisinmice:ananimalmodelofKawasakidisease.IntImmunol, 2003,15:79-89.
    [34] 杨世伟, 王大为, 秦玉明, 基质金属蛋白酶-9 在川崎病外周血表达及其在冠状动脉损伤中的临床意义[J]. 南京医科大学学报 (自然科学版), 2005,25(2): 87-90.
    [35] 彭茜, 周同甫, 洪华, 基质金属蛋白酶 9 及组织抑制物 1 对预测和早期诊断川崎病冠状动脉病变的意义[J]中华儿科杂志, 2005,43(9):676-680。
    [36] 沈捷, 李锦康, 黄敏, 川崎病患儿血清中基质金属蛋白酶-9及其组织抑制物-1 的变化[J]. 临床儿科杂志, 2007 年 25(08): 676-678+688。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700