用户名: 密码: 验证码:
硅基复合锂离子电池负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在详细综述了国内外锂离子电池及其相关材料,尤其是Si基负极材料的研究进展基础上,针对Si具有最大的嵌锂理论容量,但是由于在循环过程中具有不可避免的严重的体积效应,提出以纳米Si粉为原材料,采用溶胶-凝胶法和热气相分解法分别制备Li4Ti5O12和碳不同包覆,具有核壳结构的(Si/Li4Ti5O12和Si/C)硅基复合材料作为锂离子电池负极材料。运用XRD、SEM和TEM等技术对合成材料的微观结构和形貌进行了分析,采用恒流充放电、循环伏安法和交流阻抗技术测试其电化学性能。论文系统研究了主要制备工艺对合成材料的微观形貌结构和电化学性能的影响。
     论文采用溶胶-凝胶法,以钛酸丁酯、乙酸锂和纳米硅粉体为原材料,在烧结温度为500-1000℃的条件下,成功制备了数纳米厚度的Li4Ti5O12包覆纳米Si的Si/Li4Ti5O12复合材料,Li4Ti5O12相在600-800℃下结晶化程度很高,其余温度下出现杂相。干凝胶球磨预处理可降低合成材料的颗粒团聚度,改善其分散性,有效提高复合材料的电化学性能。Li4Ti5O12部分抑制了首次嵌锂过程中生成SEI膜的反应,缓解了Si在脱嵌锂过程中体积的变化,从而改善材料的循环性能。1000℃合成的样品,具有更好的循环稳定性,但含有较多的非活性杂质相,其容量相对较低。Si和Li4Ti5O12的质量比为8,在700℃合成材料具有最大的可逆容量,为2075 mAh/g,经50次循环后,容量保持为490 mAh/g,比初始Si的容量(245 mAh/g)高一倍。
     采用热气相分解法成功制备了具有均匀碳包覆层的纳米Si/C复合材料。乙炔在700-900℃的温度下经不同时间(15-90 min)分解,分解为无定形的碳包覆于纳米颗粒表面,包覆碳厚度在数十纳米,并随分解温度及分解时间的延长而增加,含量在1-40wt%。碳包覆明显提高了Si电极的循环稳定性,纳米Si在乙炔中经800℃保温30 min合成样品经50次循环后容量为705 mAh/g,为未包覆碳的纳米Si样品的3倍多。
In this thesis, the recent research development on the related materials for lithium-ion batteries (LIB) at home and abroad, especially Si-based anode materials, are detailed reviewed. Based on the advantages and disadvantages of Si as anode material, two Si-based nanocomposites (Si/Li4Ti5O12 and Si/C) with a core-shell structure were synthesized through Sol-Gel method and thermal vapor decomposition method, respectively. The microstructures of the synthesized Si-based nanocomposites were investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) as well as element analysis, etc. The electrochemical properties of the composites were studied by galvanostatic charge-discharge, Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) methods. The effects of the fabrication parameters on the microstructures and electrochemical properties of the synthesized Si-based nanocomposites were systematically studied.
     The Si/Li4TisO12 composites with a thin shell of Li4Ti5O12 coating on the surface of silicon nanoparticle core were synthesized via a Sol-Gel method by using nano-Si powders, tetrabutyl titanate and lithium acetate as the starting materials. Sintering temperatures ranging 500-1000℃were used. The agglomeration of the synthesized Si/Li4Ti5O12 composites was reduced by the pre-treatment of the dry-Gel by ball milling with conductive agent, and hence, the electrochemical properties were improved effectively. The purity of the synthesized Li4Ti5O12 was high in the sintering conditions of 600-800℃, a few impurity phases would exist when the sintering temperature was too high or too low. The presence of Li4Ti5O12 coating-layer bated the formation of SEI film as well as weakened the silicon volume variation during Si alloying/dealloying with lithium, so that the cycle performance of composite materials was effectively improved. The reversible capacity of the synthesized composite with the sintering temperature of 700℃is 2075 mAh/g for the first cycle which is the largest of the synthesized samples, and 490 mAh/g after fiftieth cycle, which is two times of 245 mAh/g for the bare Si. The synthesized composite with the sintering temperature of 1000℃has a high initial Coulomb efficiency (80%) and better cycling stability, though its reversible capacity is relatively lower. The causation may be that there are more impurities which are inactive or weaker active.
     The Si/C nanocomposites with a uniform layer of carbon-coated were successfully prepared through thermal vapor decomposition method. Acetylene decomposed into amorphous carbon which through the temperature of 700-900℃for different time (15-90 min). The thickness of carbon coating was a few nanometers, and the carbon content increased from 1 wt%to 40 wt%along with the extention of the decomposition temperature and time. The cycle stability of nano-Si was significantly improved through the carbon uniformly coated on the surface of the Si nanoparticles. For example, the Si/C nanocomposite synthesized at 800℃for 30 min has a capacity of 705 mAh/g after 50 cycles, which is 3 times of the bare Si sample.
引文
[1]吴宇平,万春荣,姜长印,方世璧,锂离子二次电池,北京:化学工业出版社,2002.
    [2]M. S. Whittingham, Electrical energy storage and intercalation chemistry, science,1976.192:1126-1127.
    [3]K. Mizushima, K. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0    [4]J. M. Paulsen, J. R. Muller-Nehaus, J. R. Dahn, Layered LiCoO2 with a different oxygen stacking (O-2 structure) as a cathode material for rechargeable lithium batteries, Journal of the Electrochemical Society,2000, 147(2):508-516.
    [5]D. Huang, Solid solution:new cathodes for next generation lithium-ion batreries, Advanced Battery Technology,1998,11:23-27.
    [6]H. S. Kim, T. K. Ko, B. K. Na, W. I. Cho, B. W. Chao, Electrochemical properties of LiMxCo1-xO2 [M= Mg, Zr] prepared by sol-gel process, Journal of Power Sources,2004,138(1-2):232-239.
    [7]S. Castro-Garcia, A. Castro-Couceiro, M. A. Senaris-Rodriguez, F. Soulette, C. Julien, Influence of aluminum doping on the properties of LiCoO2 and LiNi0.5Co0.5O2 oxides, Solid State Ionics,2003,156(1-2):15-26.
    [8]A. Deptula, W. Lada, T. Olczak, D. Wawszczak, B. Sartowska, K. C. Goretta, Formation of LiNixCo1-xO2 by decarbonization of organic gel precursors through treatment with nitric acid and hydrogen peroxide, Ceramics International,2007,33(8):1617-1621.
    [9]C. M. Julien, A. Amdouni, S. Castro-Garcia, A. Selmane, S. Rangan, LiCol-yMyO2 positive electrodes for rechargeable lithium batteries. Ⅱ.Nickel substituted materials grown by the citrate method, Materials Science and Engineering B-Solid State Materials for Advanced Technology,2006,128(1-3): 138-150.
    [10]A. Subramania, N. Angayarkanni, S. Lakshmidevi, R. Gangadharan, T. Vasudevan, A microwave-induced combustion method for the synthesis of nano-crystalline Ni-and Mn-doped LiCoO2 for Li-ion battery, Bulletin of Electrochemistry,2005,21(9):411-413.
    [11]Y. X. Gu, D. R. Chen, X. L. Jiao, F. F. Liu, LiCoO2-MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties, Journal of Materials Chemistry,2007,17(18):1769-1776.
    [12]J. Cho, C. S. Kim, S. I. Yoo, Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2, Electrochemical and Solid State Letters,2000,3(8):362-365.
    [13]G. T. K. Fey, C. Z. Lu, J. D. Huang, T. P. Kumar, Y. C. Chang, Nanoparticulate coatings for enhanced cyclability of LiCoO2 cathodes, Journal of Power Sources,2005,146(1-2):65-70.
    [14]G. E. T. K. Fey, J. D. Huang, T. P. Kumar, Y. C. Chano, Zirconia-coated lithium cobalt oxide as a long-cycling cathode for lithium batteries, Journal of the Chinese Institute of Engineers,2005,28(7):1139-1151.
    [15]A. G. Ritchie, C. O. Giwa, J. C. Lee, P. Bowles, A. Gilmour, J. Allan, D. A. Rice, F. Brady, Future cathode materials for lithium rechargeable batteries, Journal of Power Sources,1999,80(1):98-102.
    [16]T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells, Electrochimica Acta,1993,38(9):1159-1167.
    [17]J. R. Dahn, U. v. Sacken, C. A. Michal, Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure, Solid State Ionics,1990,44(1-2):87-97.
    [18]W. Li, J. N. Reimers, J. R. Dahn, In situ x-ray diffraction and electrochemical studies of Li1-xNiO2, Solid State Ionics,1993,67(1-2):123-130.
    [19]A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamaura, M. Takano, K. Ohyama, M. Ohashi, Y. Yamaguchi, Relationship between non-stoichiometry and physical properties in LiNiO2, Solid State Ionics,1995,78(1-2):123-131.
    [20]H. Arai, S. Okada, Y. Sakurai, J. Yamaki, Electrochemical and thermal behavior of LiNi1_zMzO2 (M= Co, Mn, Ti), Journal of the Electrochemical Society,1997,144(9):3117-3125.
    [21]R. Sathiyamoorthi, P. Shakkthivel, S. Ramalakshmi, Y. G. Shul, Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells, Journal of Power Sources,2007,171(2): 922-927.
    [22]H. Lee, Y. Kim, Y. S. Hong, Y. Kim, M. G. Kim, N. S. Shin, J. Cho, Structural characterization of the surface-modified LixNi0.9Co0.1O2 cathode materials by MPO4 coating (M= Al, Ce, SrH, and Fe) for Li-ion cells, Journal of the Electrochemical Society,2006,153(4):A781-A786.
    [23]B. V. R. Chowdari, G. V. S. Rao, S. Y. Chow, Cathodic performance of anatase (TiO2)-coated Li (Ni0.8Co0.2)02, Journal of Solid State Electrochemistry,2002, 6(8):565-567.
    [24]J. Cho, T. J. Kim, Y. J. Kim, B. Park, High-performance ZrO2-coated LiNiO2 cathode material, Electrochemical and Solid State Letters,2001,4(10): A159-A161.
    [25]刘东强,刘兴泉,锂离子蓄电池正极材料LiMn2O4的高温性能研究进展,化工科技,2006,14(3):58-63.
    [26]M. M. Thackeray, Manganese oxides for lithium batteries, Progress in Solid State Chemistry,1997,25(1-2):1-71.
    [27]J. Molenda, W. Ojczyk, K. Swierczek, W. Zajac, F. Krok, J. Dygas, R. S. Liu, Diffusional mechanism of deintercalation in LiFe1-yMnyPO4 cathode material. Solid State Ionics,2006,177(26-32):2617-2624.
    [28]B. J. Hwang, Y. cture of Co-doped LiMn2O4 cathode material for lithium rechargeable batteries, Journal of Power Sources,2003,123(2):206-215.
    [29]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [30]J. S. Yang, J. J. Xu, Nonaqueous sol-gel synthesis of high-performance LiFePO4, Electrochemical and Solid State Letters,2004,7(12):A515-A518.
    [31]Z. H. Chen, J. R. Dahn, Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density, Journal of the Electrochemical Society,2002,149(9):A1184-A1189.
    [32]M. M. Doeff, J. D. Wilcox, R. Kostecki, G. Lau, Optimization of carbon coatings on LiFePO4, Journal of Power Sources,2006,163(1):180-184.
    [33]H. Liu, Q. Cao, L. J. Fu, C. Li, Y. P. Wu, H. Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries, Electrochemistry Communications,2006,8(10):1553-1557.
    [34]F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode, Electrochemical and Solid State Letters,2002,5(3):A47-A50.
    [35]倪江峰,周恒辉,陈继涛,苏光耀,Cr离子掺杂对LiFePO4电化学性能的影响,物理化学学报,2004,20:582.
    [36]G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou, J. H. Ahn, Physical and electrochemical properties of doped lithium iron phosphate electrodes, Electrochimica Acta,2004,50(2-3):443-447.
    [37]M. Gaberscek, R. Dominko, J. Jamnik, Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes, Electrochemistry Communications,2007,9(12):2778-2783.
    [38]Y. G. Xia, M. Yoshio, H. Noguchi, Improved electrochemical performance of LiFePO4 by increasing its specific surface area, Electrochimica Acta,2006, 52(1):240-245.
    [39]B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature,2009,458(7235):190-193.
    [40]黄可龙,王兆翔,刘素琴,锂离子电池原理与关键技术,北京:化学工业出版社,2007.
    [41]戴晓兵,吴宇平,马军旗,程预江,锂离子电池—应用与实践,北京:化学工业出版社.2004.
    [42]黄学杰,李泓,王庆,刘伟峰,师丽红,陈立泉,纳米储锂材料和锂离子电池,物理,2002,31:444-449.
    [43]S. B, Lithium rocking chair batteries:an old concept, Electrochemitry Society, 1992,139(10):2776-2781.
    [44]M. S. Yazici, D. Krassowski, J. Prakash, Flexible graphite as battery anode and current collector, Journal of Power Sources,2005,141(1):171-176.
    [45]G.T.K.Fey, C. L. Chen, High-capacity carbons for lithium-ion batteries prepared from rice husk, Journal of Power Sources,2001,97-8:47-51.
    [46]G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, W. Z. Li, Structure and lithium insertion properties of carbon nanotubes, Journal of the Electrochemical Society,1999,146(5):1696-1701.
    [47]F. Leroux, K. Metenier, S. Gautier, E. Frackowiak, S. Bonnamy, F. Beguin, Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes, Journal of Power Sources,1999,81:317-322.
    [48]尹鸽平,王程,新群,史鹏飞,锂离子电池新型负极材料的研究进展,电池,1999,29(6):270-274.
    [49]R. A. Huggins, Alternative materials for negative electrodes in lithium systems, Solid State Ionics,2002,152:61-68.
    [50]P.Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. tarason, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries, nature,2000,407(6803):496.
    [51]M. Dolle, P. Poizot, L. Dupont, J. M. Tarascon, Experimental evidence for electrolyte involvement in the reversible reactivity of CoO toward compounds at low potential, Electrochemical and Solid State Letters,2002,5(1): A18-A21.
    [52]H. Wang, Q. Pan, J. Zhao, G. Yin, P. Zuo, Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries, Journal of Power Sources,2007,167(1):206-211.
    [53]C. Q. Zhang, J. P. Tu, X. H. Huang, Y. F. Yuan, X. T. Chen, F. Mao, Preparation and electrochemical performances of cubic shape Cu2O as anode material for lithium ion batteries, Journal of Alloys and Compounds,2007, 441(1-2):52-56.
    [54]Y. G. Liang, S. J. Yang, Z. H. Yi, X. F. Lei, J. T. Sun, Y. H. Zhou, Low Temperature Synthesis of a Stable MoO2 as Suitable Anode Materials for Lithium Batteries, Materials Science and Engineering B-Solid State Materials for Advaced Technology,2005,121(1-2):152-155.
    [55]F. Zhou, X. M. Ni, Y. F. Zhang, H. G. Zheng, Size-controlled synthesis and electrochemical characterization of spherical CeO2 crystallites, Journal of Colloid and Interface Science,2007,307(1):135-138.
    [56]T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, Journal of the Electrochemical Society,1995,142(5):1431-1435.
    [57]D. Peramunage, K. M. Abraham, Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells, Journal of the Electrochemical Society,1998,145(8):2609-2615.
    [58]S. H. Huang, Z. Y. Wen, X. J. Zhu, Z. X. Lin, Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries, Journal of Power Sources,2007,165(1):408-412.
    [59]Y. K. Sun, D. J. Jung, Y. S. Lee, K. S. Nahm, Synthesis and electrochemical characterization of spinel Li[Li(1-x)3CrxTi(5-2x)/3]O4 anode materials, Journal of Power Sources,2004,125(2):242-245.
    [60]S. H. Huang, Z. Y. Wen, J. C. Zhang, X. L. Yang, Improving the electrochemical performance of Li4Ti5O12/Ag composite by an electroless deposition method, Electrochimica Acta,2007,52(11):3704-3708.
    [61]S. H. Huang, Z. Y. Wen, B. Lin, J. D. Han, X. G. Xu, The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries. Journal of Alloys and Compounds,2008,457(1-2):400-403.
    [62]I. A. Courtney, J. R. Dahn, Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of the Electrochemical Society,1997,144(6):2045-2052.
    [63]J. R. Dahn, R. E. Mar, A. Abouzeid, Combinatorial study of Sn1-xCox (0< x< 0.6) and [Sno.55Co0.45](l-y)Coy (0< y< 0.5) alloy negative electrode materials for Li-ion batteries, Journal of the Electrochemical Society,2006,153(2): A361-A365.
    [64]J.j.Zhang, Y. m. Zhang, X. Zhang, Y. y. Xia, NixCu6-xSn5 alloys as negative electrode materials for rechargeable lithium batteries, Journal of Power Sources,2007,167(1):171-177.
    [65]F. S. Ke, L. Huang, H. H. Jiang, H. B. Wei, F. Z. Yang, S. G. Sun, Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries. Electrochemistry Communications,2007,9(2):228-232.
    [66]J. G. Ren, X. M. He, L. Wang, W. H. Pu, C. Y. Jiang, C. R. Wan, Nanometer copper-tin alloy anode material for lithium-ion batteries, Electrochimica Acta, 2007,52(7):2447-2452.
    [67]J. J. Zhang, Y. Y. Xia, Co-Sn alloys as negative electrode materials for rechargeable lithium batteries, Journal of the Electrochemical Society,2006, 153(8):A1466-A1471.
    [68]H. L. Zhao, C. L. Yin, H. Guo, W. H. Qiu, Microcrystalline SnSb alloy powder as lithium storage material for rechargeable lithium-ion batteries, Electrochemical and Solid State Letters,2006,9(6):A281-A284.
    [69]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material, Science, 1997,276:1395-1397.
    [70]M. Behm, J. T. S. Irvine, Influence of Structure and Composition upon Performance of Tin Phosphate Based Negative Electrodes for Lithium Batteries, Electrochimica Acta,2002,47:1727-1738.
    [71]C. Gejke, E. Zanghellini, L. Fransson, K. Edstrom, L. Borjesson, The Bffect of Lithium Insertion on The Structure of Tin Oxide-based Glasses, Journal of Power Sources,2001,97-98:226-228.
    [72]R. Zhang, J. Y. Lee, Z. L. Liu, Pechini Process-derived Tin Oxide and Tin Oxide-Graphite Composites for Lithium-ion Batteries, Journal of Power Sources,2002,112:596.
    [73]K. Amezawa, N. Yamamoto, Y. Tomii, Y. Ito, Single-electrode Peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt, Journal of The Electrochemical Society,1998,145(6):1986-1993.
    [74]G. A. Roberts, E. J. Cairns, J. A. Reimer, Mechanism of lithium insertion into magnesium silicide, Journal of The Electrochemical Society,2004,151(4): A493-A496.
    [75]G. X. Wang, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, H.K. Liu, Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries, Journal of Alloys and Compounds,2000,306(1-2):249-252.
    [76]H. S. Kim, K. Y. Chung, W.I. Cho, B. W. Cho, Electrochemical Characteristics of Carbon-coated Si/Cu/graphite Composite Anode, Bulletin of the Korean Chemical Society,2009,30(7):1607-1610.
    [77]C. H. Doh, H. M. Shin, D. H. Kim, Y. D. Chung, S. I. Moon, B. S. Jin, H. S. Kim, K. W. Kim, D. H. Oh, A. Veluchamy, Effect of silicon content over Fe-Cu-Si/C based composite anode for lithium ion battery, Bulletin of the Korean Chemical Society,2008,29(2):309-312.
    [78]L. F. Cui, Y. Yang, C. M. Hsu, Y. Cui, Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries, Nano Letters,2009,9(9): 3370-3374.
    [79]H. P. Liu, W. M. Qiao, L. Zhan, L. C. Ling, In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage, New Carbon Materials,2009,24(2):124-130.
    [80]M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries, Advanced Materials,1998,10(10): 725-763.
    [81]H. Li, X. J. Huang, L. Q. Chen, G. W. Zhou, Z. Zhang, D. P. Yu, Y. J. Mo, N. Pei, The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature, Solid State Ionics,2000, 135(1-4):181-191.
    [82]H. Ma, F. Y. Cheng, J. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao, J. Liang, Nest-like silicon nanospheres for high-capacity lithium storage, Advanced Materials, 2007,19(22):4067-4070.
    [83]M. N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochemical and Solid State Letters,2004, 7(5):A93-A96.
    [84]J. Li, J. R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, Journal of The Electrochemical Society,2007,154(3): A156-A161.
    [85]J. Graetz, C. C. Ahn, R. Yazami, B. Fultz, Highly reversible lithium storage in nanostructured silicon, Electrochemical and Solid State Letters,2003,6(9): A194-A197.
    [86]S. Bourderau, T. Brousse, D. M. Schleich, Amorphous silicon as a possible anode material for Li-ion batteries, Journal of Power Sources,1999,81-82: 233-236.
    [87]H. Jung, M. Park, S. H. Han, H. Lim, S.-K. Joo, Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries, Solid State Communications,2003,125(7-8):387-390.
    [88]S. Ohara, J. Suzuki, K. Sekine, T. Takamura, Li insertion/extraction reaction at a Si film evaporated on a Ni foil, Journal of Power Sources,2003,119: 591-596.
    [89]H. X. Deng, C. Y. Chung, Y. T. Xie, P. K. Chu, K. W. Wong, Y. Zhang, Z. K. Tang, Improvement of electrochemical performance of Si thin film anode by rare-earth La PⅢ technique, Surface & Coatings Technology,2007,201(15): 6785-6788.
    [90]T. Zhang, H. P. Zhang, L. C. Yang, B. Wang, Y. P. Wu, T. Takamur, The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity, Electrochimica Acta,2008,53(18):5660-5664.
    [91]G. B. Cho, B. K. Lee, W. C. Sin, K. K. Cho, K. W. Kim, H. J. Ahn, Influences of fabrication processes on electrochemical properties of Si thin film electrodes for Li ion microbatteries, Journal of Alloys and Compounds,2008, 449(1-2):308-312.
    [92]J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie, O. Yamamoto, SiOx-based anodes for secondary lithium batteries, Solid State Ionics,2002, 152-153:5.
    [93]Y. S. Hu, R. Demir-Cakan, M. M. Titirici, J. O. Muller, R. Schlogl, M. Antonietti, J. Maier, Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries, Angewand Tchemie-international Eition,2008,47(9):1645-1649.
    [94]T. Zhang, J. Gao, H. P. Zhang, L. C. Yang, Y. P. Wu, H. Q. Wu, Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries, Electrochemistry Communications,2007, 9(5):886-890.
    [95]Q. Sun, B. Zhang, Z. W. Fu, Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries, Applied Surface Science,2008,254(13): 3774-3779.
    [96]B. K. Guo, J. Shu, Z. X. Wang, H. Yang, L. H. Shi, Y. N. Liu, L. Q. Chen, Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries, Electrochemistry Communications,2008,10(12): 1876-1878.
    [97]M. Martin-Gil, M. E. Rabanal, A. Varez, A. Kuhn, F. Garcia-Alvarado, Mechanical grinding of Si3N4 to be used as an electrode in lithium batteries, Materials Letters,2003,57(20):3063-3069.
    [98]C. H. Doh, N. Kalaiselvi, C. W. Park, B. S. Jin, S. I. Moon, M. S. Yun, Synthesis and electrochemical characterization of novel high capacity Si3-xFexN4 anode for rechargeable lithium batteries, Electrochemistry Communications,2004,6(10):965-968.
    [99]N. Kalaiselvi, Synthesis and electrochemical characterization of novel category Si3-xMxN4 (M= Co, Ni, Fe) anodes for rechargeable lithium batteries, International Journal of Electrochemical Science,2007,2(6):478-487.
    [100]D. Ahn, C. Kim, J. G. Lee, B. Park, The effect of nitrogen on the cycling performance in thin-film Si1-xNx anode, Journal of Solid State Chemistry,2008, 181(9):2139-2142.
    [101]N. Kurita, M. Endo, Molecular orbital calculations on electronic and Li-adsorption properties of sulfur-, phosphorus-and silicon-substituted disordered carbons, Carbon,2002,40(3):253-260.
    [102]T. D. Hatchard, J. R. Dahn, Study of the electrochemical performance of sputtered Si1-xSnx films, Journal of The Electrochemical Society,2004, 151(10):A1628-A1635.
    [103]L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, J. R. Dahn, Reaction of Li with alloy thin films studied by in situ AFM, Journal of The Electrochemical Society,2003,150(11):A1457-A1464.
    [104]X. L. Yang, L. L. Zhang, M. You, Z. Y. Wen, Q. Wang, Synthesis of Si/Sn binary lithium-storage host composite anode materials by in-situ mechanochemical reaction, Chinese Journal of Inorganic Chemistry,2008, 24(8):1320-1324.
    [105]M. D. Fleischauer, J. R. Dahn, Combinatorial investigations of the Si-Al-Mn system for Li-ion battery applications, Journal of The Electrochemical Society, 2004,151(8):A1216-A1221.
    [106]Z. B. Sun, X. D. Wang, X. P. Li, M. S. Zhao, Y. Li, Y. M. Zhu, X. P. Song, Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries, Journal of Power Sources,2008,182(1):353-358.
    [107]Y. Kwon, G. S. Park, J. H. Cho, Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots, Electrochimica Acta,2007,52(14):4663-4668.
    [108]N. Dimov, K. Fukuda, T. Umeno, S. Kugino, M. Yoshio, Characterization of carbon-coated silicon Structural evolution and possible limitations, Journal of Power Sources,2003,114:88-95.
    [109]T. Morita, N. Takami, Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries, Journal of The Electrochemical Society,2006,153(2):A425-A430.
    [110]J. H. Lee, W. J. Kim, J. Y. Kim, S. H. Lim, S. M. Lee, Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries, Journal of Power Sources,2008,176(1):353-358.
    [111]C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi, W. Z. Li, Lithium insertion in carbon-silicon composite materials produced by mechanical milling, Journal of The Electrochemical Society,1998,145(8):2751-2758.
    [112]Z. Wang, W. H. Tian, X. G. Li, Study on lithiation/delithiation properties of Si-TiN composited nanoparticles as anode materials for lithium-ion batteries, Rare Metal Materials and Engineering,2007,36(10):1874-1877.
    [113]Z. P. Guo, Z. W. Zhao, H. K. Liu, S. X. Dou, Lithium insertion in Si-TiC nanocomposite materials produced by high-energy mechanical milling, Journal of Power Sources,2005,146(1-2):190-194.
    [114]Z. Y. Zeng, J. P. Tu, Y. Z. Yang, J. Y. Xiang, X. H. Huang, F. Mao, M. Ma, Nanostructured Si/TiC composite anode for Li-ion batteries, Electrochimica Acta,2008,53(6):2724-2728.
    [115]H. Y. Lee, Y. L. Kim, M. K. Hong, S. M. Lee, Carbon-coated Ni20Si80 alloy-graphite composite as an anode material for lithium-ion batteries, Journal of Power Sources,2005,141(1):159-162.
    [116]H. Kim, D. Im, S. G. Doo, Electrochemical properties of Ni-based inert phases incorporated Si/graphite composite anode, Journal of Power Sources,2007, 174(2):588-591.
    [117]T. Ishihara, M. Nakasu, M. Yoshio, H. Nishiguchi, Y. Takita, Carbon nanotube coating silicon doped with Cr as a high capacity anode, Journal of Power Sources,2005.146(1-2):161-165.
    [118]S. Yoon, C. M. Park, H. Kim, H. J. Sohn, Electrochemical properties of Si-Zn-C composite as an anode material for lithium-ion batteries, Journal of Power Sources,2007,167(2):520-523.
    [119]K. Wang, X. He, L. Wang, J. Ren, C. Jiang, C. Wan, Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries, Solid State Ionics, 2007,178(1-2):115-118.
    [120]C. H. Doh, H. M. Shin, D. H. Kim, Y. D. Jeong, S. I. Moon, B. S. Jin, H. S. Kim, K. W. Kim, D. H. Oh, A. Veluchamy, A new composite anode, Fe-Cu-Si/C for lithium ion battery, Journal of Alloys and Compounds,2008, 461(1-2):321-325.
    [121]H. Dong, R. X. Feng, X. P. Ai, Y. L. Cao, H. X. Yang, Structural and electrochemical characterization of Fe-Si/C composite anodes for Li-ion batteries synthesized by mechanical alloying, Electrochimica Acta,2004, 49(28):5217-5222.
    [122]T. Li, Y. L. Cao, X. P. Ai, H. X. Yang, Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries, Journal of Power Sources,2008,184(2):473-476.
    [123]J. W. Kim, J. H. Ryu, K. T. Lee, S. M. Oh, Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries, Journal of Power Sources,2005,147(1-2):227-233.
    [124]X. D. Wu, Z. X. Wang, L. Q. Chen, X. J. Huang, Ag-enhanced SEI formation on Si particles for lithium batteries, Electrochemistry Communications,2003, 5(11):935-939.
    [125]X. Yang, Z. Wen, S. Huang, X. Zhu, X. Zhang, Electrochemical performances of silicon electrode with silver additives, Solid State Ionics,2006,177(26-32): 2807-2810.
    [126]M. H. Kim, Y. J. Kim, J. Y. Kim, Y. K. Lee, J. A. Ascencio, J. W. Park, Electrochemical characteristics of Si/Mo multilayer anode for Li ion batteries, Revista Mexicana De Fisica,2007,53(1):17-20.
    [127]Y. L. Kim, Y. K. Sun, S. M. Lee, Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology, Electrochimica Acta,2008,53(13):4500-4504.
    [128]X. L. Yang, Z. Y. Wen, L. Zhang, M. You, Synthesis and electrochemical properties of novel silicon-based composite anode for lithium-ion batteries, Journal of Alloys and Compounds,2008,464(1-2):265-269.
    [129]H. Li, X. J. Huang, L. Q. Chen, Z. G. Wu, Y. Liang, A high capacity nano-Si composite anode material for lithium rechargeable batteries, Electrochemical and Solid State Letters,1999,2(11):547-549.
    [130]C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, B. Scrosati, A high-rate nanocomposite LiFePO4/carbon cathode, Electrochemical and Solid State Letters,2005,8(9):A484-A487.
    [131]M. S. Park, Y. M. Kang, S. Rajendran, H. S. Kwon, J. Y. Lee, Si-Ni-Carbon composite synthesized using high energy mechanical milling for use as an anode in lithium ion batteries, Materials Chemistry and Physics,2006, 100(2-3):496-502.
    [132]李荻,电化学原理,北京:北京航空航天大学出版社,1999.
    [133]M. N. Obrovac, L. J. Krause, Reversible cycling of crystalline silicon powder, Journal of The Electrochemical Society,2007,154(2):A103-A108.
    [134]P. F. Gao, J. W. Fu, J. Yang, R. G. Lv, J. L. Wang, Y. N. Nuli. X. Z. Tang, Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material, Physical Chemistry Chemical Physics,2009,11(47):11101-11105.
    [135]J. L. G. Camer, J. Morales, L. Sanchez, P. Ruch, S. H. Ng, R. Kotz, P. Novak, Nanosized Si/cellulose fiber/carbon composites as high capacity anodes for lithium-ion batteries:A galvanostatic and dilatometric study, Electrochimica Acta,2009,54(26):6713-6717.
    [136]S. M. Jang, J. Miyawaki, M. Tsuji, I. Mochida, S. H. Yoon, The preparation of a novel Si-CNF composite as an effective anodic material for lithium-ion batteries, Carbon,2009,47(15):3383-3391.
    [137]S. H. Ng, J. Wang, D. Wexler, S. Y. Chew, H. K. Liu, Amorphous carbon-coated silicon nanocomposites:A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries, Journal of Physical Chemistry C,2007,111(29):11131-11138.
    [138]N. Dimov, S. Kugino, M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries:advantages and limitations, Electrochimica Acta,2003, 48(11):1579-1587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700