用户名: 密码: 验证码:
F-18标记的酪氨酸类化合物的合成、动物实验及临床实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子发射断层显像(positron emission tomography,PET)作为临床诊断肿瘤的一种有力手段已在全世界广泛应用。PET显像剂有多种,目前最常应用的是糖代谢显像剂~(18)F-FDG,它已成功地应用于鉴别肿瘤的良恶性、评价肿瘤的恶性程度以及指示肿瘤的预后情况等。但它存在着特异性差,某些肿瘤细胞对它不摄取,炎性细胞也有摄取等问题;尤其是不易显示脑肿瘤,因为正常脑组织摄取较高。因此,研制开发特异性强、灵敏度高的肿瘤显像剂已成为一项十分迫切的任务。
     在癌细胞中,蛋白质的代谢也会增加,因此标记氨基酸就成为另一类重要的代谢显像剂。与~(18)F-FDG相比,标记氨基酸具有更好的肿瘤特异性;在正常脑组织摄取少,肿瘤显像时病灶部位更清晰,更便于区分炎性组织,尤其对脑肿瘤显像很有发展前景。O-(2-[~(18)F]氟代乙基)-L-酪氨酸(~(18)F-FET)是一种人工合成的酪氨酸类似物,不会被进一步代谢和参入蛋白质,但恶性细胞中增加的氨基酸转运同样可以体现组织中增加的氨基酸需求。~(18)F-FET具有标记简单、收率较高、~(18)F的半衰期长等优点,近年来国外已开始试用于临床,但国内还未见临床报道。为了弥补这方面的空白,在原有工作的基础上,经过多次实验,找到适合本实验室的最佳反应条件,合成出~(18)F-FET,其放化纯度大于95%,室温下放置6小时稳定;其临床前研究(包括异常毒性实验、细菌及细菌内毒素的检查)各项指标均符合中国药典标准。对脑瘤患者进行的与~(18)F-FDG-PET的显像结果显示,正常脑组织中~(18)F-FET的摄取明显低于肿瘤组织,肿瘤组织摄取高于~(18)F-FDG,显像清晰,进一步证实了它的临床诊断价值。
     另一个L-酪氨酸的类似物6-[~(18)F]氟代-L-多巴(6-FDOPA)在诊断帕金森病(Parkinson's disease,PD)中起着重要的作用。PD是中、老年人较为常见的进行性神经系统退变性疾病,严重危害着患者的健康和生活质量。用6-FDOPA可以无创地诊断及鉴别PD。我们首先合成了芳烃的三甲基铵盐作为不对称合成6-FDOPA的反应前体,经亲核取代法引入氟,通过手性烷基化试剂实现立体定向合成,整个反应过程需
Positron emission tomography (PET) , which is an important tool for the clinical detection of tumors, has been widely employed all over the world. There are many kinds of PET imaging agents. The most commonly used one is ~(18)F-FDG, which has been used in oncology for the differentiation of benign from malignant lesions, the detection and staging of malignancy, and the follow-up of therapeutic responses. However, several recent studies have demonstrated diagnostic limitations of ~(18)F-FDG-PET such as its low specificity, no uptake in some tumor cells and appreciable uptake in inflammatory lesion. Furthermore, for brain tumor imaging, contrast between tumor tissue and normal brain is often low owing to the high glucose utilization of normal grey matter. Therefore designing and synthesizing specific and sensitive tumor imaging agents would be an important research field.
    The metabolism of protein will increase in cancer cells, so radiolabelled amino acids constitute another class of metabolic imaging agents which have higher specificity for differentiating inflammatory lesions from tumors, lower uptake in normal tissues, clearer images of brain tumors than those of ~(18)F-FDG. ~(18)F-FET is a synthetic analogue of L-tyrosine that is not metabolized in cells and does not incorporate into proteins. The increased amino acid transport into malignant cells reflects the increasing amino acid requirement in tissues. ~(18)F-FET can be synthesized easily with relatively high radiochemical yield and has been put into clinical trial in several isolated cases, but so far there has been no such clinical report in China. We have synthesized ~(18)F-FET with radiochemical purity of 95% which remained stable for 6 hours. A series of experiments have been carried out to seek for the optimal reaction conditions. Preclinical studies including sterility, endotoxin and toxicity tests were performed and the results accorded with the standards of Chinese Pharmacopoeia. Several brain tumor cases were studied using F-FET-PET and compared with ~(18)F-FDG-PET. The results demonstrated that the uptake of ~(18)F-FET in the normal brain tissues was significantly lower than that of the tumor, and the images of the brain tumor were clearer than those of ~(18)F-FDG. So, it appears to be a very promising agent for the diagnosis of tumors.
    Another analogue of L-tyrosine is 6-[~(18)F]fluoro-L-dopa which plays an important role in diagnosing Pakinson's disease. It is well known that Pakinson's disease is a progressive degenerative disease of nervous system which usually affects middle-aged and elderly
引文
1. Sasaki M. Kuwabara Y, Yoshida T, et al. A comparative study of thallium-201 SPECT, carbon-11 methionine PET and fluorine-18 fluoro-deoxyglucose PET for the differentiation of astrocytic tumors. Eur J Nucl Med. 1998; 25: 1261-1269.
    
    2. Weber W, Bartenstein P, Grob M, et al. F-18-fluorodeoxyglucose PET and I-123-alpha-methyl-tyrosine SPECT in the evaluation of brain tumors. J Nucl Med. 1997; 38: 802-808.
    
    3. Keen RE, Barrio JR, Huang SC, et al. In vivo cerebral protein synthesis rates with leucyl-transfer RNA used as a precursor pool: determination of biochemical parameters to structure tracer kinetic models for positron emission tomography. J Cereb Blood Flow Metab. 1989; 9: 429-445.
    
    4. Wiesel FA, Blomquist G, Halldin C, et al. The transport of tyrosine into the human brain as determined with L-[1-11C]tyrosine and PET. J Nucl Med. 1991; 32: 2041-2049.
    
    5. Comar D, Carton JC, Maziere M, et al. Labeling and metabolism of methionine-methyl-11C. Eur J Nucl Med. 1976; 1:11-14.
    
    6. Bolster JM, Vaalburg W, Elsinga PH, et al. The preparation of DL-[1-11C] methionine. Appl Radiat Isot. 1986; 37: 1069-1070.
    
    7. Arnstein HRV, Richmond MH. Utilization of p-fluorophenylalanine for protein synthesis by the phenylalanine-incorporation system from rabbit reticulosytes. Biochem J. 1984; 1:340-346.
    
    8. Coenen HH, Kling P, Stocklin G. Cerebral metabolism of 2-[18F]fluoro-tyrosine: a new PET tracer of protein synthesis. J Nucl Med. 1989; 30: 1367-1372.
    
    9. Coenen HH, Franken K, Kling P, et al. Direct electrophilic radiofluorination of phenylalanine, tyrosine and DOPA. Appl Radiat Isot. 1988; 39: 1243-1250.
    
    10. Derlon JM, Bourdet C, Bustany P, et al. [11C]L-methionine uptake in gliomas. Neurosurgery. 1989; 25: 720-728.
    
    11. Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma: evaluation with methionine PET. Radiology. 1993; 186:45-53.
    
    12. Herholz K, Holzer T, Bauer B, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998; 50: 1316-1322.
    
    13. Wester HJ, Herz M, Weber W, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med. 1999; 40:205-212.
    14. Heiss P, Mayer S, Herz M. et al. Investigation of transport mechanism and uptake kinetics of O-(2-[~(18)SF]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med. 1999; 40:1367-1373.
    15. Weber WA. Wester HJ, Grosu AL, et al. O-(2-[~(18)F]fluoroethyl)-L-tyrosine and L-[methyl-~(11)C]-methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med. 2000; 27:542-549.
    16.朴同阳,崔瑞雪,杜宜奎等,O-(2-[~18F]氟乙基)-L-酪氨酸(~(18)F-FET)的合成及初步动物实验.中华核医学杂志.2000;6:272~273.
    17. Sukellarios EJ. Phthalimide synthesis by means of p-toluenesulfonic esters. Helv Chim Acta.1946; 29: 1675-1684.
    18. Block D, Coenen HH, Stocklin G. The n.c.a, nucleophilic ~(18)F-fluorination of 1,n-disubstituted alkanes as fluoroalkylation agents. J Label Compds Radiopharm: 1997, 24:1029-1042.
    19. Friedrich WH. Preparation of aliphatic fluoride. J Org Chem. 1948; 70: 2596-2597.
    20. Solar SL, Schumaker RR. Selective O-alkylation of tyrosine. J Org Chem. 1966, 31: 1996-1997.
    21. Lelf G, Kerstin G, Ulf R. A simple method for tert-butoxycarbonylation of amides. Acta Chem Scandinavica. 1986; B40: 745-750.
    22.中华人民共和国药典委员会.中华人民共和国药典.二部,北京:化学工业出版社,2000.附录85.
    23. Gomzina NA, Zaitsev ⅤⅤ, Krasikova RN. Optimization of nucleophilic fluorination step in the synthesis of various compounds with fluorine-18 for their use as PET radiotracers. J Labelled Compd Radiopharm. 2001, 44 suppl 1, s895~s897.1. Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modifications of PD. N Eng J Med. 1967; 276: 374-379.
    
    2. Cotzias GC. Metabolic modification of some neurologic disorders. J Amer Med A. 1969:210: 1255-1262.
    
    3. Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Ann Neurol. 1990; 28: 547.
    
    4. Otsuka M, Ichiya Y, Hosokawa S, et al. Striatal blood flow , glucose metabolism and 18F-dopa uptake : difference in Parkinson's disease and atypical Parkinsonism. J Neuro Neurosurg Psychiat 1991; 54: 898.
    
    5. Ito K, Morrish PK, Rakshi JS, et al. Statistical parametric mapping with 18F-dopa PET shows bilaterally reduced striatal and nigral dopaminergic function in early Parkinson's disease. J Neurol Neurosurg Psychiat. 1999; 66: 754-758.
    
    6. Rakshi JS, Uema T, Ito K, et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease. A 3D [18F]dopa-PET study. Brain. 1999; 122: 1637-1650.
    
    7. Garnett ES, Firnau G, Nakmias C, et al. Dopamine visualized in the basal ganglia of living man. Nature. 1983; 305: 137-138.
    
    8. Barrio JR, Huang SC, Phelps ME. In vivo assessment of neurotransmitter biochemistry in humans. Annu Rev Pharacol Toxicol. 1988; 28: 213-230.
    
    9. Hietala J, Syvalahti E, Vilkman H, et al. Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizopherenia. Schizophrenia Res. 1999; 35: 41-50.
    
    10. Ernst M, Zametkin AJ, Matochik JA, et al. Low medial prefrontal dopaminergic activity in autistic children [Letter]. Lancet. 1997; 350: 638.
    
    11. Ernst M, Zametkin AJ, Matochik JA, et al. DOPA decarboxylase activity in attention deficit hyperactivity desorder adults. A [fluorine-18]fluorodopa positron emissiontomographic study. J Neurosci. 1998; 18: 5901-5907.
    12. Wu JC. Bell K, Najafi A, et al. Decreasing striatal 6-FDOPA uptake with increasing duration of cocaine withdrawal. Neuropsychopharmacology. 1997; 17: 402-409.
    13. Oldendorf WH. Brain uptake of radiolabelled amino acids, amines and hexoses after injection. Am J Physiol. 1971; 221 : 1626-1639.
    14. Ishiwata K, Kubota K, Kubota R, et al. Selective 2-(F-18)fluorodopa uptake for melanogenesis in murine metastatic melanomas. J Nucl Med. 1991; 32: 95-101.
    15. Van Langevelde A, van der Mole HD, Journee-de Korver JG, et al. Potential radiopharmaceuticals for the detection of ocular melanoma. Part Ⅲ. A study with C-14 and C-11 labelled tyrosine and dihydroxyphenylalanine. Eur J Nucl Med. 1988; 14: 382-387.
    16. Kubota R, Yamada S, Ishiwata K, et al. Active melanogenesis in non-S phase melanocytes in B16 melanomas in vivo investigated by double-tracer microautoradiography with ~(18)F-fluorodopa and ~3H-thymidine. Br J Cancer. 1992; 66: 614-618.
    17. Dimitrakopoulou-Strauss A, Strauss LG, Bruger C. Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[~(18)F]fluoro-L-Dopa with ~(18)F-FDG and ~(15)-water using compartment and noncompartment analysis. J Nucl Med. 2001; 42: 248-256.
    18.唐刚华,张岚,唐小兰,等.6-氟-L-多巴合成及其对映纯度测定的研究.药学学报.2001:36:739-742.
    19. Fimau G, Chirakal R, Sood S, et al. Aromatic fluorination with xenon difluoride: L-3, 4-dihydrox Y-6-fluoro-phenylalanineo Can J Chem. 1980; 58: 1449-1450.
    20. Adam MJ, Ruth TJ, Grierson JR, et al. Routine synthesis of L-[~(18)F]-6-L-fluorodopa with fluorine-18 acetylhypofluorite. J Nucl Med. 1986; 27: 1462-1466.
    21. Firnau G, Ghirakal R, Garnett ES, et al. Aromatic radiofluorination with [~(18)F]fluorine gas: 6-[~(18)F]fluoro-L-dopa. J Nucl Med. 1984; 25: 1228-1233.
    22. Chirakal R, Firnau G, Garnett ES. High yield synthesis of 6-[~(18)F]fluoro-L-dopa. J Nucl Med. 1986; 27: 417-421.
    23. Chaly T, Diksic M. High yield synthesis of 6-[~(18)F]fluoro-L-dopa by regioselective??fluorination of protected L-dopa with [~(18)F]acetylhypofluorite. J Nucl Med 1986; 27: 1896-1901.
    24. Namavari M, Bishop A, Satyamurthy N, et al. Regioselective radiofluoro destannylation with [~(18)F]F_2, and [~(18)F]CH_3COOF: a high yield synthesis of 6-[~(18)F] fluoro-L-dopa. Int Appl Radiat Isot. 1992; 43: 989-96.
    25. Luxen A Barrio JR, Bida GT, et al. Regioselective radiofluorodemurcuration: a simple high yield synthesis of 6-[~(18)F]fluoro-L-DOPA. J Labelled Compd Radiopharm. 1986; 23: 1066-1067.
    26. Luxen A, Guillaume M, Melega WP, et al. Production of 6-[~(18)F]fluoro-L-dopa and its metabolism in vitro — a critical review. Appl Radiat Isot. 1992; 19: 149-158.
    27. Luxen A, Perlmutter M, Bida GT, et al. Remote, semi-automated production of 6-[~(18)F]fluoro-L-dopa for human studies with PET. Appl Radiat Isot. 1990; 41: 275-281.
    28. Diksic M, Farrokhzad S. New synthesis of fluorine-18-labeled 6-fluoro-L-dopa by cleaving the carbon-silicon bond with fluorine. J Nucl Med. 1985; 26: 1314-1318.
    29. Dolle F, Demphel S, Hinner F, et al. J Labelled Compd Radiopharm. 1998; 41:105-114.
    30. Chang CW, Wang HE, Lin HM,et al. Robotic synthesis of 6-[~(18)F]fluoro-L-dopa. Nucl Med Commun. 2000; 21: 799-802.
    31. Lemaire C, Guillaume M, Cantineau R, et al. No-carrier-added regioselective preparation of 6-[~(18)F]fluoro-L-dopa. J Nucl Med. 1990; 31: 1247-1251.
    32. Lemaire C, Guillaume M, Cantineau R, et al. An approach to the asymmetric synthesis of L-6-[~(18)F]fluorodopa via nca nuleophilic fluorination. Appl Radiat Isot. 1991; 42: 629-635.
    33. Lemaire C, Damhaut P, Plenevaux A, et al. Enantioselective synthesis of 6-[fluorine- 18]-fluoro-L-dopa from no-carrier-added fluorine- 18-fluoride. J Nucl Med. 1994; 35: 1996-2002.
    34. Lemaire C, Guillaume M, Plenevaux A, et al. The synthesis of 6-[~(18)F]fluoro-L-dopa by chiral catalytic phase-transfer alkylation. J Labelled Compd Radioapharm. 1999; 42(suppl 1): s113-115.
    35. Lemaire C, Plenevaux A, Cantineau R, et al. Nucleophilic enantioselective synthesis of 6-[~(18)F]fluoro-L-dopa via two chiral auxiliaries. Appl Radiat Isot. 1993; 44: 737-744.36. Krasikova RN, Fedorova OS, Mosevich IK, et al. Asymmetric synthesis of 6-[~(18)F]fluoro-dopa using a chiral nickel complex of the Schiff base of (S)-O-[(N-benzylprolyl)-amino]benzophenone and glycine. J Labelled Compd Radioapharm. 1999; 42(suppl): 102.
    37. Kaneko S, Ishiwata K, Hatano K, et al. Enzymatic synthesis of no-carrier-added 6-[~(18)F] fluoro-L-dopa with beta-tyrosinase. Appl Radiat Isot. 1999; 50:1025-1032.
    38. Reddy GN, Haeberli M, Beer HF, et al. An improved no-carrier-added (NCA) 6-[~(18)F]fluoro-L-dopa and its remote routine production for PET investigations of dopaminergic systems. Appl Radiat Isot. 1993;44: 645-649.
    39. Guilloue S, Lemaire C, Bonmarchand G, et al. Large scale production of 6-[~(18)F]fluoro-L-dopa in a semi-automated system. J Labeled Compd Radiopharm. 2001: 44(suppl 1): s868-870.
    40. Tierling T, Hamacher K, Coenen HH. A new nucleophlic asymmetric synthesis of 6-[~(18)F]Fluoro-dopa. J Labelled Compd Radiopharm. 2001; 44(suppl 1): s146-147.
    41. Furlano DC, Kirk KL. An improved synthesis of 4-fluoroveratrole. Efficient route to 6-fluoroveratraldehyde and 6-fluoro-D, L-dopa. J Org Chem. 1986; 51:4073-4075.1.万德森主编.临床肿瘤学,北京:科学出版社,2000.3.
    
    2. Kubota K, Yamada S, Kubota R, et al. Intramural distribution of flurine-18-fluoro-deoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992; 33: 1972-1980.
    
    3. Kubota R, Kubota K, Yamada S, et al. Methionine uptake by tumor tissue: a microauto- radiographic comparison with FDG. J Nucl Med. 1995; 36: 484-492.
    
    4. Kubota K, Matsuzawa T, Fujiwara T, et al. Differential diagnosis of AH109A tumor and inflammation by radioscintigraphy with L-[methyl-11C]-methionine. Jpn J Cancer Res. 1989; 80: 778-782.
    
    5. Stryer L. Biochemistry. 4th ed. New York, NY: WH Freeman; 1995
    
    6. Souba WW, Pacitti AJ. How amino acids get into cells: mechanisms, models, menus and mediators. J Parenter Enteral Nutr. 1992; 16: 569-578.
    
    7. Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Phys Rev. 1990; 70: 43-77
    
    8. Oxender DL, Christensen HN. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem. 1963; 238: 3686-3699.
    
    9. Shotwell A, Jayme DW, Killberg M, et al. Neutral amino acid transport systems in Chinese hamster ovary cells. J Biol Chem. 1981; 256: 5422-5427.
    
    10. Shotwell MA, Killberg MS, Oxender DL. The regulation of neutral amino acid transport in mammalian cells. Biochim Biophys Acta. 1983; 737: 267-284.
    
    11. Killberg MS, Handlogten ME, Christensen HS. Characteristics of system ASC for transport of neutral amino acids in the isolated rate hepatocyte. J Biol Chem. 1981; 256: 3304-3312.
    
    12. Isselbacher KJ. Sugar and amino acid transport by cells in culture: differences between normal and malignant cells. N Engl J Med. 1972; 286: 929-933.
    
    13. Busch H, Davis JR, Honig GR, et al. The uptake of a variety of amino acids into nuclear proteins of tumors and other tissues. Cancer Res. 1959; 19: 1030-1039.
    14. William H. Oldendorf. Stereospecificity of blood-brain barrier permeability to amino acids. Am J Physiol. 224; 4: 967-969.
    15. Inoue T, Tomiyoshi K, Higuichi T. et al. Biodistribution studies on L-3-[fluorine-18] fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med. 1998; 39: 663-667.
    16. Wester HJ. Herz M. Weber W. et al. Synthesis and radiopharmacology of O-(2-[~(18)F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Meal. 1999; 40:205-212.
    17. Kubota K, Ishiwata K, Kubota R, et al. Feasibility of fluorine-18-fluorophenyl- alanine of tumor imaging compared with carbon-11-L-methionine. J Nucl Med. 1996; 37: 320-325.
    18. Bading JR, Kan-Mitchell J, Conti PS. System A amino acid transport in cultured human tumor cells: implications for tumor imaging with PET. Nucl Med Biol. 1996; 23: 779-786.
    19. Shoup TM. Olson J, Hoffman JM, et al. Synthesis and evaluation of [~(18)F]-1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med. 1999; 40: 331-338.
    20. Wester H J, Herz M, Senekowitsch-Schmidtke R, et al. Preclinical evaluation of 4-[~(18)F] fluoroprolines: diastereomeric effect on metabolism and uptake in mice. Nucl Med Biol. 1999; 26: 259-265.
    21. Langstrom B, Antoni G, Gullberg P, et al. Synthesis of L- and D-[methyl-~(11)C] methionine. J Nucl Med. 1987; 28: 1037-1040.
    22. Ishiwata K, Hatazawa J, Kubota K, et al. Metabolic fate of L-[methyl-~(11)C] methionine in human plasma. Eur J Nucl Med. 1989; 15: 665-669.
    23. Dominique C, Jean-Claude C, Mariannick M, et al. Labelling and metabolism of methionine-methyl-~(11)C. Eur J Nucl Med. 1976; 1: 11-14.
    24. Oldendonf WH. Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am J Physiol. 1971; 221: 1629-1639.
    25. Bergstrom M, Lundqvist H, Ericson K, et al. Comparison of the accumulation kinetics of L-(methyl-carbon-11)-methionine and D-(methyl-carbon-11)- methionine in brain tumors studied with positron emission tomography. Acta Radiol. 19987; 28: 225-229.26. Roelcke U. Radu E, Ametamey S, et al. Association of rubidium and 11C-methionine uptake in brain tumors measured by positron emission tomography. J Neurooncol. 1996; 27: 163-171.
    
    27. Kubota K, Ishiwata K, Kubota R, et al. Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine- 18-fluorodeoxyglucose or fluorine-18-fluoro- deoxyuridine, L-[methyl-14C]methionine, [6-3H]thymidine, and gallium-67. J Nucl Med. 1991; 32: 2118-2123.
    
    28. Minn H, Clavo AC, Grenman R, et al. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med. 1995; 36: 252-258.
    
    29. Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma: Evaluation with methionine PET. Radiology. 1993; 186: 45-53.
    
    30. O'Tuama LA, Guilarte TR, Douglass KH, et al. Assessment of [11C]-L-methionine transport into the human brain. J Cere Blood Flow Metab. 1988; 8: 341-345.
    
    31. Ericson K, Lilja A, Bergstrom M, et al. Positron emission tomography with ([11C]methyl)-L-methionine, [11C]D-glucose and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr. 1985; 9: 683-689.
    
    32. Meyer GJ, Schober O, Hundeshagen H. Uptake of 11C-L- and D-methionine in brain tumors. Eur J Nucl Med. 1985; 10: 373-376.
    
    33. Ogawa T, shishido F, Kanno I, et al. Cerebral glioma: evaluation with methionine PET. Radiology. 1993; 186: 45-53.
    
    34. Mosskin M, Bergstrom M, Collins VP, et al. Positron emission tomography with 11C-methionine of intracranial tumours compared with histology of multiple biopsies. Acta Radiol Suppl. 1986; 369: 157-160.
    
    35. Leskinen-Kallio S, Lindholm P, Lapela M, et al. Imaging of head and neck tumors with positron emission tomography and [11C]methionine. Int J Radiat Oncol Biol Phys. 1994; 30:1195-1199.
    
    36. Kubota K, Matsuzawa T, Fujiwara T, et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J Nucl Med. 1990; 31: 1927-1932.
    
    37. Yasukawa T, Yoshikawa K, Aoyagi H, et al. Usefulness of PET with 11C-methioninefor the detection of hilar and mediastinal lymph node metastasis in lung cancer. J Nucl Med. 2000:41:283-290.
    
    38. Miyazawa H. Arai T, Iio M, et al. PET imaging of non-small-cell lung carcinoma with carbon-11-methionine: relationship between radioactivity uptake and flow-cytometric parameters. J Nucl Med. 1993; 34: 1886-1891.
    
    39. Kubota K, Yamada S, Ishiwata K, et al. Evaluation of treatment response of lung cancer with positron emission tomography and L-[methyl-11C]methionine: a preliminary study. Eur J Nucl Med. 1993; 20:495-501.
    
    40. Leskinen-Kallio S, Nagren K, Lehikoinen P, et al. Uptake of 11C-methionine in breast cancer studied by PET: an association with the size of S-phase fraction. Br J Cancer. 1991; 64: 1121-1124.
    
    41. Jasson T, Westlin JE, Ahlstrom H, et al. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol. 1995; 13: 1470-1477.
    
    42. Huovinen R, Leskinen-Kallio S, Nagren K, et al. Carbon-11C-methionine and PET in evaluation of treatment response of breast cancer. Br J Cancer. 1993; 67: 787-791.
    
    43. Leskinen-Kallio S, Ruotsalainen U, Nagren K, et al. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin's lymphoma: a PET study. J Nucl Med. 1991; 32: 1211-1218.
    
    44. Rodriguez M, Rehn S, Ahlstrom H, et al. Predicting malignancy grade with PET in non-Hodgkin's lymphoma. J Nucl Med. 1995; 36: 1790-1796.
    
    45. Nuutinen J, Leskinen S, Lindholm P, et al. Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas. Eur J Nucl Med. 1998; 25: 729-735.
    
    46. Lindholm P, Leskinen S, Nagren K, et al. Carbon-11-methionine PET imaging of malignant melanoma. J Nucl Med. 1995; 36: 1806-1810.
    
    47. Ahlstrom H, Malmstrom PU, Letocha H, et al. Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol. 1996; 37: 180-185.
    
    48. Lapela M, Leskinen-Kallio S, Varpula M, et al. Metabolic imaging of ovarian tumors with carbon-11-methionine: a PET study. J Nucl Med. 1995; 36:196-200.
    49. Lapela M. Leskinen-Kallio S, Varpula M, et al. Imaging of uterine carcinoma by carbon-11-methionine and PET. J Nucl Med. 1994; 35:1618-1623.
    50. Ishwata K: Vaalburg W, Elsinga PH, et al. Comparison of L-[1-~(11)C]methionine and L-[methyl-~(11)C]methionine for measuring in vivo protein synthesis rates with PET. J Nucl Med. 1988; 29: 1419-1427.
    51. Willemsen AT, van Waarde A, Paans AM, et al. In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1-~(11)C]-tyrosine and PET. J Nucl Med. 1995; 36:411-419.
    52. Daemen BJG, Elsinga PH, Paans AMJ, et al. Suitability of rodent tumor models for experimental PET with L-[1-~(11)C]tyrosine and 2-[~(18)F]fluoro-2-deoxy-D-glucose. Int J Rad Appl Instrum B. 1991; 18:503-511.
    53. Bolster JM, Vaalburg W, Paans AM, et al. Carbon-11 labelled tyrosine to study tumor metaboli-sm by Positron emission tomography (PET). Eur J Nucl Med. 1986; 12: 321-324.
    54. Ishwata K, Vaalburg W, Paans AM, et al. A comparison of L-[1-~(11)c] tyrosine, L-[1-~(11)C]methionine and L-[S-methyl-~(11)IC]methionine for measuring protein synthesis rates in tumors with PET. In Clinical Demands in Nuclear Medicine, Proc European Nuclear Medicine Congress, Gosler, 37-40.
    55. Pruim J, Willemsen AT, Molenaar WM, et al. Brain tumors: L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology. 1995; 197: 221-226.
    56. Braams JW, Pruim J, Nikkels PG, et al. Nodal spread of squamous cell carcinoma of the oral cavity detected with PET-tyrosine, MRI and CT. J Nucl Med. 1996; 37: 897-901.
    57. Kole AC, Plaat BE, Hoekstra HJ, et al. FDG and L-[1-~(11)c]-tyrosine imaging of soft-tissue tumors before and after therapy. J Nucl Med. 1999; 40:381-386.
    58. Plaat B, Kole A, Mastik M, et al. Protein synthesis rate measured with L-[1-~(11)C]tyrosine positron emission tomography correlates with mitotic activity and MIB-1 antibody-detected proliferation in human soft tissue sarcomas. Eur J Nucl Med. 1999; 26: 328-332.59. Kole AC, Hoekstra HJ, Slejifer DT, et al. L-[1-carbon-11]tyrosine imaging of metastatic testicular nonseminoma germ-cell tumors. J Nucl Med. 1998; 39:1027-1029.
    60. Kole AC, Nieweg OE, pruim J, et al. Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-~(11)C]tyrosine. J Nucl Med. 1997; 38: 692-696.
    61. Coenen HH. Kling P, Stocklin G. Cerebral metabolism of L-[2-~(18)F] fluorotyrsine: a new PET tracer of protein synthesis. J Nucl Med. 1989; 30: 1367-1372.
    62. Coenen HH, Wutz W, Stocklin G, et al. Pharmacokinetics and metabolism of L-[2-~(18)F] fluorotyrosine in brain and periphery of mice. J Nucl Med. 1990; 31: 716(Abstract).
    63. Heiss WD, Coenen HH, Wienhard K, et al. L-[2-~(18)F]fluorotyrosine uptake in gliomas studied by dynamic PET. J Nucl Med. 1990; 31:799.
    64. Wienhard K, Herholz K, Coenen HH, et al. Increased amino acid transport into brain tumors measured by PET of L-[2-~(18)F]fluorotyrosine. J Nucl Med. 1991; 32:1338-1346.
    65. Inoue T, Tomiyoshi K, Higuichi T, et al. Biodistribution studies on L-3-[fluorine-18] fluoro-α-methyltyrosine: a potential tumor detecting agent. J Nucl Med. 1998; 39: 663-667.
    66. Inoue T, Shibasaki T, Oriachi N,et al. ~(18)F-α-methyltyrosine PET studies in patients with brain tumors. J Nucl Med. 1999; 40: 399-405.
    67. Watanabe H, Inoue T, Shinozaki T, et al. PET imaging of musculoskeletal tumors with fluorine-18 alpha-methyltyrosine: comparison with fluorine-18 fluorodeoxy- glucose PET. Eur J Nucl Med. 2000; 27: 1509-1517.
    68. Inoue T, Koyama K, Oriuchi N, et al. Detection of malignant tumors: whole-body PET with fluorine 18 alpha-methyl tyrosine versus FDG — preliminary study. Radiology. 2001; 220: 54-62.
    69. Heiss P, Mayer S, Herz M, et al. Investigation of transport mechanism and uptake kinetics of O-(2-[~(18)F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med. 1999; 40:1367-1373.
    70. Weber WA, Wester HJ, Grosu AL, et al. O-(2-[~(18)F]fluoroethyl)-L-tyrosine and L-[methyl-~(11)C]-methionine uptake in brain tumours: initial results of a comparative??study. Eur J Nucl Med. 2000; 27:542-549.
    71. Langen KJ, Coenen HH, Roosen N, et al. SPECT studies of brain tumors with L-3-[~(123)I]iodo-alpha-methyl tyrosine: comparison with PET, ~(124)IMT and first clinical results. J Nucl Med. 1990; 31: 281-286.
    72. Jager PL, Franssen EJ, Kool W, et al. Feasibility of tumor imaging using L-3-[~(123)I] iodo-alpha-methyl-tyrosine in extracranial tumors. J Nucl Med. 1998; 39:1736-1743.
    73. Langen KJ, Roosen N, Coenen HH, et al. Brain and brain tumor uptake of L-3-[~(123)I] iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J Nucl Med. 1991; 32: 1225-1229.
    74. Biersack HJ, Coenen HH, Stocklin G, et al. Imaging of brain tumors with L-3-[~(123)I] iodo-alpha-methyl tyrosine and SPECT. J Nucl Med. 1989; 30:110-112.
    75. Kuwert T, Morgenroth C, Woesler B, et al. Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med. 1996; 23:1345-1353.
    76. Guth-Tougelidis B, Muller S, Mehdom MM, et al. Uptake of DL-3-~(123)I-iodo alpha-methyltyrosine in recurrent brain tumors. Nuklearmedizin. 1995; 34: 71-75. (Abstract)
    77. Jager PL, Plaat BE, Vries de EG, et al. Imaging of soft-tissue using L-3-[iodine-123] alpha-methyl-tyrosine SPECT: comparison with proliferative and mitotic activity, cellularity and vascularity. Clin Cancer Res. 2000; 6: 2252-2259.
    78. Boni R, Steinert H, Huch Boni RA, et al. Radioiodine-labelled alpha-methyl-tyrosine in malignant melanoma: cell culture studies and results in patients. Br J Dermatol. 1997; 137: 96-100.
    79. Jager PL, Groen HJ, van der Leest A, et al. L-3-[~(123)I]iodo-alpha-methyl-tyrosine SPECT in non-small cell lung cancer: preliminary observations. J Nucl Med. 2001; 42: 579-585.
    80. Sterling WR, Henderson JF, Mandel HG, et al. The metabolism of L-aminocyclo pentane-1-carboxylic acid in normal and neoplastic tissues. Biochem Pharmacol. 1962; 11: 135.
    81. Oxender DL. Stereospecificity of amino acid transport for Ehrlich tumour cells. J Biol Chem. 1965; 240: 2976.82. Conti PS, Sordillo EM, Sordillo PP, et al. Tumor localization of alpha-aminoisobutyric acid (AIB) in human melanoma heterotransplants. Eur J Nucl Med. 1985; 10: 45-47.
    
    83. Bigler RE, Zanzonico PB, Schmall B, et al. Evaluation of [1-11C]-a-amino-isobutyric acid for tumor detection and amino acid transport measurement: spontaneous canine tumor studies. Eur J Nucl Med. 1985: 10: 48-55.
    
    84. Conti PS, Sordillo PP, Schmall B, et al. Tumor imaging with carbon-11 labeled alpha-aminoisobutyric acid (AIB) in a patient with advanced malignant melanoma. Eur J Nucl Med. 1986; 12: 353-356.
    
    85. Sordillo PP, Piresta E, Conti PS, et al. Tumor imaging with carbon-11 labeled alpha-aminoisobutyric acid (AIB) in patients with malignant melanoma. Am J Physiol Imaging. 1991; 6:172-175.
    
    86. Schwarzbach M, Willeke F, Dimitrakopoulou-Strauss A. Functional imaging and detection of local recurrence in soft tissue sarcomas by positron emission tomography. Anticancer Res. 1999; 19(2B): 1343-9.
    
    87. Shiba K, Mori H, Hisada K. Analogues of α-aminoisobutyric acid with various alkyl groups as potential tumour imaging agents; effects of chain length on tumor and normal tissue specificity. Nucl Med Commu. 1989; 10: 751-758.
    
    88. Berlinguet L, Begin N, Babineau LM. Autoradiographic studies of the distribution of 1-aminocyclopentane carboxylic acid in normal and cancerous mice. Can J Biochem Physiol. 1962; 40: 1111-1114.
    
    89. Hayer RL, Washburn LC, Wieland BW, et al. Carboxyl-labelled 11C-1-amino-cyclopentane carboxylic acid, a potential agent for cancer detection. J Nucl Med. 1976; 17:748-757.
    
    90. Kubato K, Yamada K, Fukada H, et al. Tumor detection with carbon-11-labelled amino acids. Eur J Nucl Med. 1984; 9: 136-140.
    
    91. Hubner KF, Krauss S, Washburn LC, et al. Tumor detection with 1-aminocyclopentane and 1-aminocyclobutane C-11-carboxylic acid using positron emission computerized tomography. Clin Nucl Med. 1981; 6: 249-252.
    
    92. Arnstein HRV, Richmond MH. Utilization of p-fluorophenylalanine for protein
    synthesis by the phenylalanine-incorporation system from rabbit reticulocytes. Biochem J. 1984; 1:340-346.
    
    93. Bodsch W.Coenen HH. Stocklin G, et al. Biochemical and autoradiographic study of cerebral protein synthesis with [18F]- and [14C]-fluorophenylalanine. J Neurochem. 1988; 50: 979-983.
    
    94. Westhead EW, Boyer PD. The incorporation of p-fluorophenylalanine into some rabbit enzymes and other proteins. Biochem Biophys Acta. 1961; 54: 145-156.
    
    95. Coenen HH, Bodsch W, Takahashi K. et al. Synthesis, autoradiography and biochemistry of L-[18F]fluorophenylalanine for probing protein synthesis. Nuklearmedizin. 1986; 22 (suppl): 600.
    
    96. .Coenen HH, Stocklin G. Evaluation of radiohalogenated amino acid analogues as potential tracers for PET and SPECT studies of protein synthesis. Radioisot Klinik of Forschung. 1988; 18: 402-440.
    
    97. Coenen HH, Franken K, Kling P, et al. Direct electrophilic radiofluorination of phenylalanine, tyrosine and dopa. Appl Radiat Isot. 1988; 39: 1243-1250.
    
    98. Bolster JM, Vaalburg W, VanDijk TH, et al. Syntheses of carbon-11 labeled ornithine and lysine: preliminary accumulation studies in rats with Walker 256 carainosarcoma. Int J Appl Radiat Isot. 1985; 36: 263-267. (Abstract)
    
    99. Bolster JM, Hoeve WT, Vaalburg W, et al. The preparation of carbon-11 labelled proline for positron emission tomography: preliminary distribution studies in rats with Walker 256 carainosarcoma. Int J Appl Radia Isot. 1985; 36: 339-343.
    
    100.Hubner KF, Purvis JT, Mahalcy SM, et al. Brain tumor imaging by positron emission computed tomography using 11C-labelled amino acids. J Comput Assist Tomogr. 1982; 6: 544-550.
    101.Gelbard AC, Benua RS, Langhlin JS, et al. Quantitative scanning of osteogenic sarcoma with nitrogen-13 labelled L-glutamate. J Nucl Med. 1979; 20: 782-784.
    102.Reiman RE, Benua RS, Gelbard AS, et al. Imaging of brain tumors after administration of L-(N-13)-glutamate: concise communication. J Nucl Med. 1982; 23: 682-687.
    103.Ishiwata K, Kubota K, Murakami M, et al. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J NuclMed. 1993; 34: 1936-1943.
    104. Daemen BJ, Elsinga PH, Ishiwata K, et al. A comparative PET study using different ~(11)C-labelled amino acids in Walker 256 carcinosarcoma-bearing rats. Int J Rad Appl Instru B. 1991; 18: 197-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700