用户名: 密码: 验证码:
低温胁迫下福建山樱花的生理响应与抗寒基因的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
福建山樱花(Prunus campanulata Maxim.)每年春节前后开花,花期长、花色艳丽,花型独特,观赏价值极高,而且适应性广、抗逆性强,为园林绿地中不可多得的优良乡土观赏植物。但从原产地向北引种到长江流域或以北地区后,受到冬季低温的影响,会引起开花稀少甚至遭受冻害。低温作为最常见的制约植物生长发育的环境因素之一,也是影响福建山樱花向更高纬度应用的主要限制因子。
     本研究对1年生福建山樱花幼苗进行低温胁迫处理,测定叶片的各项生理生化指标,找出胁迫的临界温度、临界时间,从生理角度探讨福建山樱花防御低温伤害的机制;在此基础上,以临界温度临界时间处理的福建山樱花叶片为实验材料,采用SMART法构建福建山樱花低温胁迫全长cDNA文库,对得到的部分EST片段进行测序和生物信息学分析,并在此基础上筛选受低温胁迫影响的基因;通过实时荧光定量PCR检测分析了不同温度梯度处理下各基因的表达变化,详细分析不同基因在不同时期的表达规律,将生理测定的结果与分子生物学的结果结合起来,以期进一步为福建山樱花耐寒品种选育奠定理论依据。具体研究结果如下:
     1、对福建山樱花的叶绿素含量与叶绿素荧光动力学参数进行测定,福建山樱花在6℃和1℃处理叶绿素含量均呈现出下降的趋势,温度越低下降趋势更明显,1℃处理胁迫第5d时,与对照差异达到极显著水平(P<0.01)。与对照相比,随温度下降,福建山樱花的初始荧光(F0)不断上升,叶绿素含量、PS Ⅱ最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)不断下降;10℃处理的实际光化学效率(Yield)和光合电子传递速率(ETR)明显高于对照,而6℃和1℃处理则随胁迫时间不断下降;非光化学猝灭系数(qN)10℃和6℃处理呈上升趋势而1℃处理则不断下降。1℃处理的低温胁迫参数的变化最为显著,表明低温对福建山樱花幼苗产生了显著的光抑制,进一步表明福建山樱花只有在一定温度和时间范围内通过对PS Ⅱ活性和电子传递的调节来提高其耐冷性,保护光合机构免受伤害。
     2、不同温度梯度处理下福建山樱花各生理指标测定结果与对照相比,差异性显著;各温度下相对电导率和MDA含量随胁迫时间呈不断上升趋势,其余指标变化规律相似,随胁迫时间延长在10℃处理时呈缓慢上升趋势,在6℃和1℃处理下呈先升后降趋势,最高值基本都出现在1℃处理第3d。低温胁迫初期福建山樱花能通过自身调节机制适应胁迫,减轻低温引起的伤害,随着胁迫时间的延长,抗氧化酶和渗透调节物质对膜系统的保护作用及调节机制超过一定限度,就会造成代谢失调,引起不可逆的损伤。
     3、对福建山樱花幼苗叶片中的内源激素进行测定,10℃处理赤霉素(GA3)、生长素(IAA)、脱落酸(ABA)含量与对照相比无显著差异;6℃和1℃处理GA3、IAA含量显著低于对照,ABA含量、ABA/GA3比值显著高于对照。随胁迫时间延长,10℃处理三种激素无明显变化;6℃和1℃处理GA3、IAA含量随时间呈下降趋势,ABA含量、ABA/GA3比值基本呈先上升后下降的趋势。低温条件下,福建山樱花能提高ABA类生长抑制物质,降低GA、IAA等生长促进类物质,通过调节植物体内内源激素平衡来应对低温。
     4、应用因子分析法对所测的19个生理生化指标进行分析,福建山樱花各生理生化因子综合效率最高的温度与时间处理的结合点为1℃胁迫3d,超过这个结点,福建山樱花幼苗的生长就会受到抑制。
     5、以福建山樱花1℃3d处理的幼叶为材料,利用SMART法成功构建了福建山樱花叶片低温全长cDNA文库。经鉴定该文库滴度为1.2×106cfu/mL,插入片段的平均长度为1.5kb,蓝白斑检测重组率为94%,而菌液PCR检测得到的重组率达100%。利用该文库获得了834条有效表达序列标签(EST),对834条有效序列进行拼接和聚类,共得到667条单一序列,其中含有574个单基因和93个片段重叠群,文库冗余度为20.02%。对具有已知或推定功能蛋白的475条单一序列在blast2G0进行功能分类,发现涵盖的功能较齐全,且能反应特定时期细胞表达信息(低温胁迫),其中参与对刺激的反应的有84个。获得的ESTs编码的氨基酸序列与过氧化氢酶(CAT)、丙二烯氧化酶(OsAOC)、捕光叶绿素a/b结合蛋白(CAB)、热激蛋白(HSP)、脂肪氧合酶(LOX)、脱水响应相关蛋白(DRP)、锌指蛋白、钙依赖性蛋白激酶MYB转录因子等防御反应相关蛋白有较高同源性。将比对上具有已知或推定功能蛋白的475条unigenes在blast2GO进行功能分类,结果共获得1597个GO terms,这些GO terms归为3类:生物学过程、细胞组件、分子功能。其中生物学过程所占的GO terms最多,占46.93%,其次是细胞组件和分子功能,分别占38.80%和14.27%。
     6、在ESTs分析基础上,选取具有代表性的12个推定的与低温胁迫相关基因,应用qRT-PCR定量分析这些基因在各温度处理下表达的差异。其中8个基因受低温胁迫的诱导而上调表达,这些基因所编码的蛋白(酶)分别是脱水应答蛋白(DRP)、MYB转录因子(MYB)、热激蛋白(HSP)、DEAD-box解旋酶(DRH56)、谷胱甘肽过氧化物酶(GPX)、GA20氧化酶(GA20-ox)、捕光叶绿素a/b结合蛋白(CAB)和脂加氧酶(LOX);受低温胁迫抑制表达的基因有3个,所编码的有丙二烯氧化物环化酶(AOC)、温度诱导脂质蛋白(TIL)、钙依赖性蛋白激酶(CDPK):编码过氧化氢酶的CAT基因只在特定温度下上调表达。福建山樱花低温胁迫下表达的基因参与了信号传导、活性氧清除、转录、胁迫和防御等多个过程,验证了低温对植物的光合作用、水分、离子转运、能量传递等过程有不同的影响,同时也说明植物的抗寒性是一种积累性的数量性状,是由多种特异的数量性抗寒基因调控的。
The Prunus campanulata Maxim.(P. campanulata), which belongs to the Rosaceae family, blooms early, around the Chinese Spring Festival; its flowering period can be as long as50d, the bright colour of the particular campanulate flowers confers an extremely high ornamental value on P. campanulata, and its strong resistance and wide adaptability also contribute to it being an excellent native ornamental plant. This species originated in Fujian, Zhejiang, Guangdong, Guangxi, Taiwan in subtropical regions in which the threat of low-temperature damage is not present. However, this species will suffer frost damage if introduced from origination area to the Yangtze River basin and northern areas. Low temperature is one of the most important abiotic factors limiting the growth, development and distribution of plants. Low temperature is also one of the most important limiting factors affecting P. campanulata when it is planted at higher latitudes.
     After exposing the one-year-old P. campanulata seedling to low temperature stress, physiological and biochemical indexes were measured in leaves to detect the boundary temperature and time of stress. From the physiological and biochemical point of view, the mechanism of P. campanulata response to low temperature stress is clarified, based on physiological and biochemical tests, A full-length cDNA library is established using the young leaf of P. campanulata treated with1℃3d and sequencing a large number of ESTs. Cold-related genes were screened through ESTs sequencing and bioinformatic analysis and analyzed by real-time quantitative PCR. The main purpose of this study is to investigate the cold-resistance mechanisms and lay a foundation for resistance breeding of P. campanulata. The specific findings are as follows.
     1. The relative chlorophyll content and chlorophyll fluorescence parameters were measured in leaves to detect the influence of temperature on the photosynthetic activity. Compared to the control, P. campanulata exhibited a continuous increase in initial fluorescence (Fo) and decrease in chlorophyll content, maximum photochemical efficiency (Fv/Fm) and photochemical quenching coefficient (qP) with decreases in temperature. The actual photochemical quantum (yield) and electron transfer rate (ETR) in the15℃treatment were significantly higher than those in the control, while they declined under the6℃and1℃ treatment over time. The non-photochemical quenching coefficient (qN) increased under the15℃and6℃treatments and decreased under the1℃treatment. The most significant changes in the parameters occurred under the1℃treatment, indicating that P. campanulata exhibited low-temperature photoinhibition. The results indicated that P. campanulata could protect the photosynthetic apparatus through the increased dissipation of excess light only within a certain range of temperature and stress time.
     2. After Exposuring of P. campanulata seedlings to different temperature, electrical conductivity, the activities of superoxide dismutase (SOD), peroxidase(POD), catalase(CAT), the content of malondialdehyde (MDA), soluble protein, soluble sugar and free proline were measured in leaves to detect the influence of temperatures on the physiological and biochemical characteristics. The results showed that the content of eight indexes have a signifcant difference with control. Electrical conductivity and the content of MDA exhibited a upward trend under different temperature over time; other indexes sustained a slight increase under the10℃treatment and firstly rose then went down under the6℃and1℃treatment over treatment time. The highest values of SOD, soluble protein, soluble sugar and free proline occurred on day3of1℃treatment. At the beginning of the stress, P.campanulata could reduce the harm through self-regulation mechanism, however, it will cause metabolic disorders and irreversible damage if the protection of antioxidant enzymes and osmolytes protective on membrane systems and regulatory mechanisms exceed a certain limit.
     3. The content of GA3(Gibberellic acid), IAA (indoleacetic acid), ABA (Abseisic acid) were measured in leaves to detect the influence of temperatures on the endogenous hormones. Compared to the control, P. campanulata exhibited higher contents in GA3、IAA and no significant difference in ABA in the10℃treatment, while GA3、IAA content were lower and ABA、ABA/GA3were higher significantly than control under the6℃and1℃treatment. GA3、IAA content exhibited a continuous decrease and ABA、ABA/GA3firstly rose then went down over treatment time under the6℃and1℃treatment. Under low temperature, P. campanulata can adjust the balance of endogenous hormones in plants to cope with low temperatures.
     4.19physiological and biochemical indexes were analyzed by factor analysis, as a result, comprehensive maximum efficiency of P. campanulata was the treatment of1℃for3days according to composite score, the growth of P. campanulata seedlings would be inhibited over this node.
     5. Based on SMART(switching mechanism at5end of RNA transcript) technology, a full-length cDNA library was constructed form the tissue of young leaves of Prunus campanulata Maxim, treated with1℃3d. The results showed:the titer of the cDNA library was1.2×106cfu·mL-1, the average size of inserted cDNA fragment was1.3kb, the recombination rate was94%using blue-white screening, however, it was100%detecting by PCR. To evaluate EST information,834clones were single-pass sequenced and667valid sequences were generated, in which574singlets and93contigs were obtained after initial assembly with SeqMan program. Based on the results of Blast analysis,475unigenes were found to significantly match the proteins with known and putative function. With Blast2GO annotation,475unigenes were found to cover most of the biological functions and express a specific period information (low temperature stress). On the basis of similarity search and GO annotation,84unigenes were found responsive to biotic and abiotic stresses. Homology blast results show that the ESTs encoded amino acid sequence of catalase (CAT), allene oxide cyclase (OsAOC), heat shock protein (HSP), dehydration response proteins (DRP), lipoxygenase (LOX), zinc finger protein, calcium-dependent protein kinase, MYB transcription factor and other defence responses related proteins have a more high homology.475unigenes with known and putative function were distributed into functional categories with Blast2GO and generated1597GO terms (3categories)."Biological Process" was the major functional category, containing750GO terms (46.93). Second larger functional category was "Cellular Component", constituted by620GO terms (38.8%),227GO terms (14.27%) were classified into the "Molecular Function" category.
     6. Based on the ESTs analysis,12putative cold-related genes of P. campanulata were chosen to measure the expression pattern by qRT-PCR with gene specific primers designed with primer premier software (version5), the following is the results. Compared to the control, the expression levels of DRP, MYB, HSP, DRH56, GPX, GA20-ox, CAB, LOX were obviously induced by treatment temperature, while the transcript level of AOC, TIL, CDPK were lower in the treatment group than in the control group, the expression of CAT gene was induced only in6℃treatment. On one hand, the results indicated that cold related genes of P.campanulata involved in signal transduction, active oxygen scavenging process, transcription, stress and defense process, while plant photosynthesis, water, ion transport, energy transfer processes were verified to be effected by low temperature; on the other hand, these cold related genes may play different roles in low temperature stress.
引文
[1]Alden J, Hermann R. Aspects of the cold-hardiness mechanism in plants[J]. The Botanical Review, 1971,37(1):37-142.
    [2]Campana R. Noninfectious tree diseases, part Ⅰ. Effect of cold injury and freezing[J]. Weed & Turf, 1964,3(8):10-11.
    [3]康国章,孙谷畴,王正询.植物冷害机理及冷驯化的生理与分子学基础[J].生命科学研究,2002,6(1):49-55.
    [4]Ali A, Yang E M, Lee S Y, et al. Evaluation of Chloroplast Genotypes of Korean Cucumber Cultivars (Cucumis sativus L.) Using sdCAPS Markers Related to Chilling Tolerance[J]. (?),2013, 31(2):219-223.
    [5]Rodeo A J D, Esguerra E B. Low temperature conditioning alleviates chilling injury in mango (Mangifera indica L. cv. Carabao) fruit[J]. Philippine Journal of Crop Science,2013,38(1):24-32.
    [6]Singh S P, Singh Z. Dynamics of enzymatic and non-enzymatic antioxidants in Japanese plums during storage at safe and lethal temperatures[J]. LWT-Food Science and Technology,2013,50(2):562-568.
    [7]Wang X, Fang G, Li Y, et al. Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice[J]. Plant Cell, Tissue and Organ Culture (PCTOC),2013:1-9.
    [8]曹慧明,史作民,周晓波,等.植物对低温环境的响应及其抗寒性研究综述[J].中国农业气象,2010,(002):310-314.
    [9]Lyons J M. Chilling injury in plants[J]. Annual Review of Plant Physiology,1973,24(1):445-466.
    [10]王利,丰震,张东宁.国内林木抗寒性研究的进展及展望[J].山东林业科技,2002,138(2):48-49.
    [11]刘祖祺,张石城,农业科学.植物抗性生理学[M].中国农业出版社,1994.
    [12]张德舜,刘红权,陈玉梅.八种常绿阔叶树种抗寒性的研究[J].园艺学报,1994,21(3):283-287.
    [13]申亚梅,马进,黄玉英,等.低温胁迫对5种园林常绿灌木膜透性的影响[J].浙江林业科技,2008,28(6):28-31.
    [14]邓化冰,史建成,肖应辉,等.开花期低温胁迫对水稻剑叶保护酶活性和膜透性的影响[J].湖南农业大学学报:自然科学版,2012,37(6):581-585.
    [15]李远发,王凌晖,唐春红,等.不同种源麻风树幼苗对低温胁迫的生理响应[J].西北林学院学报,2011,26(5):35-40.
    [16]司剑华,卢素锦.低温胁迫对5种柽柳抗寒性生理指标的影响[J].中南林业科技大学学报:自然科学版,2010,30(008):78-81.
    [17]刘文化,刘晓东,何淼.低温胁迫对三种园林植物的生理指标的影响[J].内蒙古林业调查设计,2009,32(5):80-83.
    [18]宋尚伟,李靖,闫锋,等.4个桃品种抗寒性研究初报[J].中国农学通报,2007,23(1):225-227.
    [19]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [20]Campos P S, Nunes M A. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants[J]. Journal of Plant Physiology,2003,160(3):283-292.
    [21]孙昌祖,刘家琪.低温胁迫对青杨叶片O—2, MDA,膜透性,叶水势及保护酶的影响[J].内蒙古林学院学报,1998,20(3):32-36.
    [22]郑国华,张贺英.低温胁迫对枇杷幼果细胞超微结构及膜透性和保护酶活性的影响[J].热带作物学报,2008,29(6):730-737.
    [23]Hernandez J A, Ferrer M A, Jimenez A, et al. Antioxidant Systems and O2.-/H2O2 Production in the Apoplast of Pea Leaves. Its Relation with Salt-Induced Necrotic Lesions in Minor Veins[J]. Plant Physiology,2001,127(3):817-831.
    [24]Lee D H, Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays[J]. plant science,2000,159(1):75-85.
    [25]Kocsy G, Brunner M, Ruegsegger A, et al. Glutathione synthesis in maize genotypes with different sensitivities to chilling[J]. Planta,1996,198(3):365-370.
    [26]Hodges D M, Andrews C J, Johnson D A, et al. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines[J]. Journal of experimental botany,1997,48(5):1105-1113.
    [27]Bruggemann W, Beyel V, Brodka M, et al. Antioxidants and antioxidative enzymes in wild-type and transgenic Lycopersicon genotypes of different chilling tolerance[J]. Plant Science,1999,140(2):145-154.
    [28]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control[J]. Annual review of plant biology,1998,49(1):249-279.
    [29]Santini J, Giannettini J, Pailly O, et al. Comparison of photosynthesis and antioxidant performance of several Citrus and Fortunella species (Rutaceae) under natural chilling stress[J]. Trees,2013,27(1):71-83.
    [30]Mai J, Herbette S, Vandame M, et al. Effect of chilling on photosynthesis and antioxidant enzymes in Hevea brasiliensis Muell. Arg[J]. Trees,2009,23(4):863-874.
    [31]Li Z-G, Yuan L-X, Wang Q-L, et al. Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings[J]. Acta Physiologiae Plantarum, 2013,35(7):2127-2136.
    [32]Tajvar Y, Ghazvini R F, Hamidoghli Y, et al. Antioxidant changes of Thomson navel orange (Citrus sinensis) on three rootstocks under low temperature stress[J]. Horticulture, Environment, and Biotechnology,2011,52(6):576-580.
    [33]陈双林,李迎春.低温胁迫对Guadua amplexfolia抗寒性生理指标的影响[J].林业科学研究,2008,21(2):235-238.
    [34]郁万文,曹福亮,汪贵斌.低温胁迫下银杏活性氧代谢与膜伤害的关系[J].东北林业大学学报,2010,38(007):46-48.
    [35]王宁,吴军,夏鹏云,等.大叶冬青对低温胁迫的生理响应及抗寒性分析[J].华南农业大学学报,2011,32(3):82-86.
    [36]王会良,何华平,龚林忠,等.植物抗寒性研究进展[J].湖北农业科学,2011,50(6):1091-1094.
    [37]陈杰忠,徐春香.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3): 54-58.
    [38]Faw W F, Shih S C, Jung G A. Extractant influence on the relationship between extractable proteins and cold tolerance of alfalfa[J]. Plant Physiology,1976,57(5):720-723.
    [39]张摇玮,黄树燕,吴继林.低温胁迫对麻竹叶片和根系抗性生理指标的影响[J].生态学杂志,2012,31(3):513-519.
    [40]陈星,李俊全.低温下棕榈某些生理变化及低温锻炼对棕榈耐寒性的影响[J].北京师范大学学报:自然科学版,1999,35(2):257-260.
    [41]沙伟,刘焕婷,谭大海,等.低温胁迫对扎龙芦苇SOD, POD活性和可溶性蛋白含量的影响[J].齐齐哈尔大学学报:自然科学版,2008,24(2):1-4.
    [42]朱政,蒋家月,江昌俊,等.低温胁迫对茶树叶片SOD,可溶性蛋白和可溶性糖含量的影响[J].安徽农业大学学报,2011,38(1):24-26.
    [43]Dorffling K, Dorffling H, Luck E. Improved frost tolerance and winter hardiness in proline overaccumulating winter wheat mutants obtained by in vitro-selection is associated with increased carbohydrate, soluble protein and abscisic acid (ABA) levels[J]. Euphytica,2009,165(3):545-556.
    [44]江锡兵,宋跃朋,马开峰,等.低温胁迫下美洲黑杨与大青杨杂种无性系若干生理指标变化研究[J].北京林业大学学报,2012,34(1):58-63.
    [45]王孝宣,李树德.番茄品种耐寒性与ABA和可溶性糖含量的关系[J].园艺学报,1998,25(1):56-60.
    [46]林艳,郭伟珍,徐振华,等.大叶女贞抗寒性及冬季叶片丙二醛和可溶性糖含量的变化[J].中国农学通报,2012,28(25):68-72.
    [47]张文娇,王小德.低温胁迫对5个不同梅花品种生理特性的影响[J].江苏农业科学,2011,39(3):203-205.
    [48]王小华,庄南生.脯氨酸与植物抗寒性的研究进展[J].中国农学通报,2008,24(11):398-402.
    [49]Molinari H B C, Marur C J, Kobayashi A K, et al. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. X Poncirus trifoliata L. Raf.) overproducing proline[J]. Plant Science,2004,167(6):1375-1381.
    [50]薛立,任向荣,曹鹤,等.低温胁迫对六种苗木生理特性的影响[J].生态学杂志,2008,27(4):524-531.
    [51]何开跃,李晓储,黄利斌,等.福建柏低温胁迫下一些生理指标的变化[J].植物资源与环境学报,
    2000,9(4):19-22.
    [52]Atici, Demir Y, Kocacaliskan I. Effects of low temperature on winter wheat and cabbage leaves[J]. Biologia plantarum,2003,46(4):603-606.
    [53]Walker D, Romero P, Correal E. Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa[J]. Biologia Plantarum,2010,54(2):293-298.
    [54]罗丹,张喜春,田硕.低温胁迫对番茄幼苗脯氨酸积累及其代谢关键酶活性的影响[J].中国农学通报,2013,29(16):90-95.
    [55]Klima M, Vitamvas P, Zelenkova S, et al. Dehydrin and proline content in Brassica napus and B. carinata under cold stress at two irradiances[J]. Biologia Plantarum,2012,56(1):157-161.
    [56]Ruiz J M, Sanchez E, GarciA P C, et al. Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock[J]. Phytochemistry,2002,59(5):473-478.
    [57]颉建明,郁继华,颉敏华,等.低温弱光下辣椒3种渗透调节物质含量变化及其与品种耐性的关系[J].西北植物学报,2009,29(1):105-110.
    [58]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    [59]乌凤章,王柏臣,刘桂丰,等.低温胁迫对白桦幼苗生长和生理的影响[J].东北林业大学学报,2008,36(9):8-10.
    [60]Li-Gang H, Wen-Fu C, Guo-Chen Z, et al. Effects of Phosphate Fertilizer on Cold Tolerance and Its Related Physiological Parameters in Rice Under Low Temperature Stress[J]. Journal of Northeast Agricultural University (English Edition),2012,19(4):1-10.
    [61]应叶青,魏建芬,解楠楠,等.自然低温胁迫对毛竹生理生化特性的影响[J].南京林业大学学报:自然科学版,2011,35(3):133-136.
    [62]刘鹏,孟庆伟,赵世杰.冷敏感植物的低温光抑制及其生化保护机制[J].植物生理学通讯,2001,37(1):76-82.
    [63]Gray G R, Hope B J, Qin X, et al. The characterization of photoinhibition and recovery during cold acclimation in Arabidopsis thaliana using chlorophyll fluorescence imaging[J]. Physiologia Plantarum, 2003,119(3):365-375.
    [64]Degl'innocenti E, Guidi L, Stevanovic B, et al. CO2 fixation and chlorophyll a fluorescence in leaves of Ramonda serbica during a dehydration-rehydration cycle[J]. Journal of plant physiology,2008,165(7): 723-733.
    [65]李和平,师生波,刘玉萍,等.青海薄荷的光合及热能耗散特性研究[J].西北植物学报,2008,28(2):348-354.
    [66]Hu W H, Zhou Y H, Du Y S, et al. Differential response of photosynthesis in greenhouse-and field-ecotypes of tomato to long-term chilling under low light[J]. Journal of plant physiology,2006, 163(12):1238-1246.
    [67]Mehta P, Jajoo A, Mathur S, et al. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem Ⅱ in wheat leaves[J]. Plant Physiology and Biochemistry,2010,48(1):16-20.
    [68]Komura M, Yamagishi A, Shibata Y, et al. Mechanism of strong quenching of photosystem Ⅱ chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2010,1797(3): 331-338.
    [69]Mathur S, Allakhverdiev S I, Jajoo A. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem Ⅱ in wheat leaves (Triticum aestivum)[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2011,1807(1):22-29.
    [70]Ding S, Lei M, Lu Q, et al. Enhanced sensitivity and characterization of photosystem Ⅱ in transgenic tobacco plants with decreased chloroplast glutathione reductase under chilling stress[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2012.
    [71]钱永强,周晓星,韩蕾,等.3种柳树叶片PSⅡ叶绿素荧光参数对Cd2+胁迫的光响应[J].北京林业大学学报,2011,33(6):8-14.
    [72]Fracheboud Y, Haldimann P, Leipner J, et al. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize(Zea mays L.)[J]. Journal of experimental botany,1999,50(338): 1533-1540.
    [73]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [74]Lazar D. Chlorophyll a fluorescence induction[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1999,1412(1):1-28.
    [75]Strasser B, Strasser R. Measuring fast fluorescence transients to address environmental questions:the JIP test[J]. Photosynthesis:from light to biosphere,1995,5:977-980.
    [76]Schreiber U, Neubauer C. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination:2. Partial control by the photosystem 2 donor side and possible ways of interpretation [Spinacia oleracea][J]. Zeitschrift fuer Naturforschung, Section C, Biosciences,1987,42.
    [77]Krause G, Weis E. Chlorophyll fluorescence and photosynthesis:the basics[J]. Annual review of plant biology,1991,42(1):313-349.
    [78]周建,杨立峰,郝峰鸽,等.低温胁迫对广玉兰幼苗光合及叶绿素荧光特性的影响[J].西北植物学报,2009,29(1):136-142.
    [79]吴雪霞,陈建林,查丁石.低温胁迫对茄子幼苗叶片叶绿素荧光特性和能量耗散的影响[J].植物营养与肥料学报,2009,15(1):164-169.
    [80]胡文海,黄黎锋,肖宜安,等.夜间低温对2种光强下榕树叶绿素荧光的影响[J].浙江林学院学报,2005,22(1):20-23.
    [81]王国莉,郭振飞.低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响[J].中国水稻科学,2005,19(4):381-383.
    [82]Meir S, Ronen R, Lurie S, et al. Assessment of chilling injury during storage:chlorophyll fluorescence characteristics of chilling-susceptible and triazole-induced chilling tolerant basil leaves[J]. Postharvest Biology and Technology,1997,10(3):213-220.
    [83]Robert-Seilaniantz A, Navarro L, Bari R, et al. Pathological hormone imbalances[J]. Current opinion in plant biology,2007,10(4):372-379.
    [84]Weyers J D B, Paterson N W. Plant hormones and the control of physiological processes[J]. New Phytologist,2002,152(3):375-407.
    [85]Baier M, Hartung W. Cytoplasmic pH and abscisic acid transport across guard cell membranes[J]. Zeitschrift fur Naturforschung. Section C, Biosciences,1991,46(1-2):106-110.
    [86]陈娟,潘开文,辜彬.逆境胁迫下植物体内脱落酸的生理功能和作用机制[J].植物生理学通讯,2006,42(6):1176-1182.
    [87]李静,崔继哲,弭晓菊.生长素与植物逆境胁迫关系的研究进展[J].生物技术通报,2012(6):13-17.
    [88]Pociecha E, Plazek A, Janowiak F, et al. ABA level, proline and phenolic concentration, and PAL activity induced during cold acclimation in androgenic Festulolium forms with contrasting resistance to frost and pink snow mould (Microdochium nivale)[J]. Physiological and Molecular Plant Pathology,2008, 73(6):126-132.
    [89]任华中,黄伟,张福墁.低温弱光对温室番茄生理特性的影响[J].中国农业大学学报,2002,7(1):95-101.
    [90]赵春江,康书江.植物内源激素与不同基因型小麦抗寒性关系的研究[J].华北农学报,2000,15(3):51-54.
    [91]沈漫.常春藤质膜透性和内源激素与抗寒性关系初探[J].园艺学报,2005,32(1):141-144.
    [92]刘学庆,孙纪霞,丁朋松,等.低温胁迫对蝴蝶兰内源激素的影响[J].江西农业大学学报,2012,34(3):464-469.
    [93]杨佳明,司龙亭,闫世江,等.黄瓜叶片内源激素含量与耐低温性的关系研究[J].安徽农业科学,2009,37(11):4940-4941.
    [94]Kosova K, Prasil I T, Vitamvas P, et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra[J]. Journal of plant physiology,2012,169(6):567-576.
    [95]Prasil I, Prasilova P, Marik P. Comparative study of direct and indirect evaluations of frost tolerance in barley[J]. Field crops research,2007,102(1):1-8.
    [96]Daie J, Campbell W F. Response of tomato plants to stressful temperatures increase in abscisic acid concentrations[J]. Plant Physiology,1981,67(1):26-29.
    [97]杨章旗,颜培栋,舒文波.内源激素动态变化与马尾松优良种源抗寒性的关系[J].广西科学,2009,16(1):87-91.
    [98]曲凌慧,林志强,车永梅,等.三个葡萄品种叶片中激素变化与抗寒性关系的研究[J].北方园艺,2009,6:003.
    [99]Waldman M, Rikin A, Dovrat A, et al. Hormonal Regulation of Morphogenesis and Cold-resistance II. EFFECT OF COLD-ACCLIMATION AND OF EXOGENOUS ABSCISIC ACID ON GIBBERELLIC ACID AND ABSCISIC ACID ACTIVITIES IN ALFALFA (Medicago sativa L. SEEDLINGS [J]. Journal of Experimental Botany,1975,26(6):853-859.
    [100]罗立津,徐福乐,翁华钦,等.脱落酸对甜椒幼苗抗寒性的诱导效应及其机理研究[J].西北植物学报,2011,31(001):94-100.
    [101]王宇,王晶英.脱落酸对低温胁迫下水曲柳幼苗叶片抗寒生理指标的影响[J].森林工程,2010,26(004):32-36.
    [102]Yao G, Gao P, Wang Y, et al. Abscisic acid improves chilling-induced oxidative stress in Trichosanth.es kirilowii Maxim seedlings[J]. Journal of Agricultural Science and Technology,2013,15(3): 583-592.
    [103]Chen H-H, Li P H, Brenner M L. Involvement of abscisic acid in potato cold acclimation[J]. Plant Physiology,1983,71(2):362-365.
    [104]Iba K. Acclimative response to temperature stress in higher plants:approaches of gene engineering for temperature tolerance[J]. Annual Review of Plant Biology,2002,53(1):225-245.
    [105]Williams J P, Khan M U, Wong D. Low temperature-induced fatty acid desaturation in Brassica napus:thermal deactivation and reactivation of the process[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1992,1128(2):275-279.
    [106]Vigh L, Los D A, Horvath I, et al. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803[J]. Proceedings of the National Academy of Sciences,1993,90(19):9090-9094.
    [107]高岩,郭东林,郭长虹.三烯脂肪酸在高等植物逆境胁迫应答中的作用[J].分子植物育种,2010,8(2):365-369.
    [108]Routaboul J-M, Fischer S F. Trienoic fatty acids are required to maintain chloroplast function at low temperatures[J]. Plant Physiology,2000,124(4):1697-1705.
    [109]Liu X, Teng Y, Li B, et al. Enhancement of low-temperature tolerance in transgenic tomato plants overexpressing Lefad7 through regulation of trienoic fatty acids[J]. Photosynthetica,2013:1-7.
    [110]Berberich T, Harada M, Sugawara K, et al. Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature[J]. Plant molecular biology,1998,36(2):297-306.
    [111]Kodama H, Hamada T, Horiguchi G, et al. Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco[J]. Plant Physiology,1994, 105(2):601-605.
    [112]Sui N, Li M, Zhao S-J, et al. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato[J]. Planta,2007,226(5):1097-1108.
    [113]Yokoi S, Higashi S-I, Kishitani S, et al. Introduction of the cDNA for shape Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice[J]. Molecular Breeding,1998,4(3):269-275.
    [114]Murata N. Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants[J]. Plant and Cell Physiology,1983,24(1):81-86.
    [115]De Palma M, Grillo S, Massarelli I, et al. Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants[J]. Molecular Breeding,2008,21(1): 15-26.
    [116]李新国,张建霞,孙中海.植物抗寒基因工程研究进展(综述)[J].亚热带植物科学,2004,33(4):69-73.
    [117]Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas[J]. J Biol Chem,1989, 264(14):7761-7764.
    [118]Trolinder N, Allen R. Expression of chloroplast localized Mn SOD in transgenic cotton[C]. JOURNAL OF CELLULAR BIOCHEMISTRY,1994:97-97.
    [119]Mckersie B D, Murnaghan J, Jones K S, et al. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance[J]. Plant Physiology,2000,122(4):1427-1438.
    [120]Kayihan C, Eyidogan F, Afsar N, et al. Cu/Zn superoxide dismutase activity and respective gene expression during cold acclimation and freezing stress in barley cultivars[J]. Biologia Plantarum,2012, 56(4):693-698.
    [121]Willekens H, Langebartels C, Tire C, et al. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.)[J]. Proceedings of the National Academy of Sciences,1994,91(22):10450-10454.
    [122]Prasad T K, Anderson M D, Martin B A, et al. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide[J]. The Plant Cell Online,1994,6(1):65-74.
    [123]Mohamed E A, Iwaki T, Munir I, et al. Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photo-oxidative stress tolerance[J]. Plant, Cell & Environment,2003,26(12): 2037-2046.
    [124]Llorente F, Lopez-Cobollo R M, Catala R, et al. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance[J]. The Plant Journal,2002, 32(1):13-24.
    [125]Sun W-H, Duan M, Li F, et al. Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress[J]. Biologia Plantarum,2010,54(4):614-620.
    [126]Wang H-S, Yu C, Zhu Z-J, et al. Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity[J]. Plant cell reports, 2011,30(6):1029-1040.
    [127]王凭青,吴明生,王远亮,等.植物抗寒基因工程研究最新进展[J].重庆大学学报:自然科学版,2003,26(7):81-85.
    [128]Yoshiba Y, Kiyosue T, Katagiri T, et al. Correlation between the induction of a gene for△1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress[J]. The Plant Journal,1995,7(5):751-760.
    [129]Chen J-B, Wang S-M, Jing R-L, et al. Cloning the PvP5CS gene from common bean(Phaseolus vulgaris) and its expression patterns under abiotic stresses[J]. Journal of plant physiology,2009,166(1): 12-19.
    [130]Hayashi H, Chen T, Murata N. Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth[J]. Plant, Cell & Environment,1998,21(2): 232-239.
    [131]Zhang K, Wang J, Lian L, et al. Increased chilling tolerance following transfer of a betA gene enhancing glycinebetaine synthesis in cotton(Gossypium hirsutum L.)[J]. Plant Molecular Biology Reporter,2012,30(5):1158-1171.
    [132]Sakamoto A, Valverde R, Chen T H, et al. Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants[J]. The Plant Journal,2000,22(5):449-453.
    [133]Tarczynski M C, Jensen R G, Bohnert H J. Stress protection of transgenic tobacco by production of the osmolyte mannitol[J]. Science,1993,259(5094):508-510.
    [134]王关林,李铁松,方宏筠,等.番茄转果聚糖台酶基因获得抗寒植株[J].中国农业科学,2004,37(8):1193-1197.
    [135]Dure Iii L, Greenway S C, Galau G A. Developmental biochemistry of cottonseed embryogenesis and germination:changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis[J]. Biochemistry,1981,20(14):4162-4168.
    [136]Dure Iii L. Structural motifs in Lea proteins[J]. Current topics in plant physiology,1993,10.
    [137]Battaglia M, Olvera-Carrillo Y, Garciarrubio A, et al. The enigmatic LEA proteins and other hydrophilins[J]. Plant Physiology,2008,148(1):6-24.
    [138]刘洋,邢鑫,李德全.LEA蛋白的分类与功能研究进展[J].生物技术通报,2011(8):36-42.
    [139]Ohno R, Takumi S, Nakamura C. Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA D-11 dehydrin in response to low temperature[J]. Journal of plant physiology,2003,160(2):193-200.
    [140]师静,刘美芹,史军娜,等.沙冬青胚胎晚期发生丰富蛋白基因序列及表达特性分析[J].北京林业大学学报,2012,34(4):114-119.
    [141]Si J, Wang J-H, Zhang L-J, et al. CbCOR15, a cold-regulated gene from alpine Chorispora bungeana, confers cold tolerance in transgenic tobacco[J]. Journal of Plant Biology,2009,52(6):593-601.
    [142]Yin Z, Rorat T, Szabala B M, et al. Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings[J]. Plant Science,2006,170(6):1164-1172.
    [143]林士杰,李俊涛,姜静,等.转柽柳晚期胚胎富集蛋白基因烟草的耐低温性分析[J].生物技术通讯,2006,17(4):563-566.
    [144]张丽丽,李景富,王傲雪.转录激活因子CBF基因在植物抗冷分子机制中的作用[J].园艺学报,2008,35(5):765-771.
    [145]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. The Plant Cell Online,2002,14(8):1675-1690.
    [146]Thomashow M F. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annual review of plant biology,1999,50(1):571-599.
    [147]Maria Mastrangelo A, Baldi P, Mare C, et al. The cold dependent accumulation of COR TMC-AP3 in cereals with contrasting, frost tolerance is regulated by different mRNA expression and protein turnover[J]. Plant Science,2000,156(1):47-54.
    [148]Giorni E, Crosatti C, Baldi P, et al. Cold-regulated gene expression during winter in frost tolerant and frost susceptible barley cultivars grown under field conditions[J]. Euphytica,1999,106(2):149-157.
    [149]关涛,李卓夫,王晓楠,等.冷驯化和冷冻条件下不同抗寒性冬小麦品种三个COR基因表达差异的实时荧光定量分析[J].麦类作物学报,2013,33(2):230-235.
    [150]乔娜,汪虹,陈明杰.草菇冷诱导基因Corl在低温下表达变化的研究[J].菌物学报,2009,28(2):213-219.
    [151]乔娜,汪虹,陈明杰.草菇冷诱导基因Cor4在低温下表达变化的研究[J].上海农业学报,2009,25(1):14-17.
    [152]Boothe J G, De Beus M D, Johnson-Flanagan A M. Expression of a low-temperature-induced protein in Brassica napus[J]. Plant physiology,1995,108(2):795-803.
    [153]Fowler D, Chauvin L, Limin A, et al. The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye[J]. Theoretical and Applied Genetics,1996,93(4): 554-559.
    [154]杨玉珍,雷志华,彭方仁.低温诱导蛋白及其与植物的耐寒性研究进展[J].西北植物学报,2007,27(2):421-428.
    [155]Griffith M, Ala P, Yang D S, et al. Antifreeze protein produced endogenously in winter rye leaves[J]. Plant physiology,1992,100(2):593-596.
    [156]魏令波,江勇,舒念红,等.沙冬青叶片热稳定抗冻蛋白特性分析[J].植物学报,1999,41(8):837-841.
    [157]Wisniewski M, Webb R, Balsamo R, et al. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60:a dehydrin from peach (Prunus persica)[J]. Physiologia Plantarum,1999, 105(4):600-608.
    [158]Sidebottom C, Buckley S, Pudney P, et al. Phytochemistry:heat-stable antifreeze protein from grass[J]. Nature,2000,406(6793):256-256.
    [159]Yeh S, Moffatt B A, Griffith M, et al. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals[J]. Plant Physiology,2000,124(3):1251-1264.
    [160]Worrall D, Elias L, Ashford D, et al. A carrot leucine-rich-repeat protein that inhibits ice recrystallization[J]. Science,1998,282(5386):115-117.
    [161]Kumar S R, Kiruba R, Balamurugan S, et al. Carrot antifreeze protein enhances chilling tolerance in transgenic tomato[J]. Acta Physiologiae Plantarum,2014,36(1):21-27.
    [162]Wang Y, Qiu L, Dai C, et al. Expression of insect(Microdera puntipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco[J]. Plant cell reports,2008,27(8): 1349-1358.
    [163]Zhu B, Xiong A-S, Peng R-H, et al. Over-expression of Thpl from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis[J]. Molecular biology reports,2010,37(2):961-966.
    [164]Close T J. Dehydrins:a commonalty in the response of plants to dehydration and low temperature[J]. Physiologia Plantarum,1997,100(2):291-296.
    [165]Russouw P S, Farrant J, Brandt W, et al. The most prevalent protein in a heat-treated extract of pea (Pisum sativum) embryos is an LEA group I protein; its conformation is not affected by exposure to high temperature[J]. Seed Science Research,1997,7(2):117-124.
    [166]王君晖,刘峰.植物细胞的抗脱水反应及其重要蛋白产物[J].细胞生物学杂志,1999,21(4):153-156.
    [167]Choi D-W, Zhu B, Close T. The barley (Hordeum vulgare L.) dehydrin multigene family:sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv DicktoofJ]. Theoretical and Applied Genetics,1999,98(8):1234-1247.
    [168]Choi D-W, Close T. A newly identified barley gene, Dhn12, encoding a YSK2 DHN, is located on chromosome 6H and has embryo-specific expression[J]. Theoretical and Applied Genetics, 2000,100(8): 1274-1278.
    [169]Rodriguez E, Svensson J, Malatrasi M, et al. Barley Dhn 13 encodes a KS-type dehydrin with constitutive and stress responsive expression[J]. Theoretical and Applied Genetics,2005,110(5):852-858.
    [170]Zhu B, Choi D-W, Fenton R, et al. Expression of the barley dehydrin multigene family and the development of freezing tolerance[J]. Molecular and General Genetics MGG,2000,264(1-2):145-153.
    [171]Fernandez M, guila S V, Arora R, et al. Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus[J]. Tree Genetics & Genomes,2012,8(1): 149-162.
    [172]Puhakainen T, Hess M W, Makela P, et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis[J]. Plant molecular biology,2004,54(5):743-753.
    [173]邱德有.植物的热激蛋白[J].植物生理学通讯,1994,30(2):139-142.
    [174]Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in plant science,2004,9(5):244-252.
    [175]Collins G G, Nie X, Saltveit M E. Heat shock proteins and chilling sensitivity of mung bean hypocotyls[J]. Journal of experimental botany,1995,46(7):795-802.
    [176]Singla S L, Pareek A, Grover A. Yeast HSP104 homologue rice HSP110 is developmentally-and stress-regulated[J]. Plant Science,1997,125(2):211-219.
    [177]Krishna P, Sacco M, Cherutti J F, et al. Cold-induced accumulation of hsp90 transcripts in Brassica napus[J]. Plant physiology,1995,107(3):915-923.
    [178]李慧聪,郭秀林,王冬梅,等.玉米热激蛋白70基因对温度胁迫的响应[J].河北农业大学学报,2010,33(6):12-15.
    [179]Kadyrzhanova D K, Vlachonasios K E, Ververidis P, et al. Molecular cloning of a novel heat induced/chilling tolerance related cDNAl in tomato fruit by use of mRNA differential display2[J]. Plant molecular biology,1998,36(6):885-895.
    [180]杨娟,戴伟民,强胜.紫茎泽兰细胞质小热激蛋白HSP17.7基因的cDNA克隆与表达[J].北京林业大学学报,2009,31(1):1062-2112.
    [181]郭鹏,隋娜,于超,等.转入甜椒热激蛋白基因CaHSP18提高番茄的耐冷性[J].植物生理学通讯,2008,44(3):409-412.
    [182]Gubler U, Hoffman B J. A simple and very efficient method for generating cDNA libraries[J]. Gene, 1983,25(2):263-269.
    [183]Edery I, Chu L L, Sonenberg N, et al. An efficient strategy to isolate full-length cDNAs based on an mRNA cap retention procedure (CAPture)[J]. Molecular and cellular biology,1995,15(6):3363-3371.
    [184]Kazuo M, Sumio S. Oligo-capping:a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides[J]. Gene,1994,138(1):171-174.
    [185]Zhu Y, Machleder E, Chenchik A, et al. Reverse transcriptase template switching:A SMARTTM approach for full-length cDNA library construction[J]. Biotechniques,2001,30(4):892-897.
    [186]Schmidt W M, Mueller M W. CapSelect:a highly sensitive method for 5'CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs[J]. Nucleic acids research,1999, 27(21):e31-i-e31-iv.
    [187]Carninci P, Kvam C, Kitamura A, et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper[J]. Genomics,1996,37(3):327-336.
    [188]Kato S, Ohtoko K, Ohtake H, et al. Vector-capping:a simple method for preparing a high-quality full-length cDNA library[J]. DNA research,2005,12(1):53-62.
    [189]Sugahara Y, Carninci P, Itoh M, et al. Comparative evaluation of 5'-end-sequence quality of clones in CAP trapper and other full-length-cDNA libraries[J]. Gene,2001,263(1):93-102.
    [190]Chen G, Wang H, Gai J-Y, et al. Construction and characterization of a full-length cDNA library and identification of genes involved in salinity stress in wild eggplant (Solanum torvum Swartz)[J]. Horticulture, Environment, and Biotechnology,2012,53(2):158-166.
    [191]Zheng T, Qiu W, Fan G, et al. Construction and characterization of a cDNA library from floral organs and fruitlets of Citrus reticulata[J]. Biologia Plantarum,2011,55(3):431-436.
    [192]Futamura N, Totoki Y, Toyoda A, et al. Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili[J]. BMC genomics,2008,9(1): 383.
    [193]骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展[J].生物化学与生物物理进展,2001,28(4):494-497.
    [194]Hong S-T, Chung J-E, An G, et al. Analysis of 176 expressed sequence tags generated from cDNA clones of hot pepper by single-pass sequencing[J]. Journal of Plant Biology,1998,41(2):116-124.
    [195]Wang L-N, Wu D, Yu S-X, et al. Construction of a Full-Length cDNA Library of Gossypium hirsutum L. and Identification of Two MADS-Box Genes[J]. Agricultural Sciences in China,2011,10(1): 28-40.
    [196]Singh R K, Singh S, Pandey P, et al. Construction of cold induced subtracted cDNA library from Cicer microphyllum and transcript characterization of identified novel wound induced gene[J]. Protoplasma, 2013,250(2):459-69.
    [197]Wang Z-L, Li P-H, Fredricksen M, et al. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance[J]. Plant science,2004,166(3):609-616.
    [198]Vecchietti A, Lazzari B, Ortugno C, et al. Comparative analysis of expressed sequence tags from tissues in ripening stages of peach (Prunus persica L. Batsch)[J]. Tree genetics & genomes,2009,5(3): 377-391.
    [199]Hertzberg M, Aspeborg H, Schrader J, et al. A transcriptional roadmap to wood formation[J]. Proceedings of the National Academy of Sciences,2001,98(25):14732-14737.
    [200]Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population[J]. Genetics,1998,148(1):479-494.
    [201]李小白,崔海瑞,张明龙.EST分子标记开发及在比较基因组学中的应用[J].生物多样性,2006,14(6):541-547.
    [202]于凤池.EST技术及其应用综述[J].中国农学通报,2005,21(2):54-58.
    [203]王贤荣,黄国富.中国樱花类植物资源及其开发利用[J].林业科技开发,2001,15(6):3-5.
    [204]陈心启,Bouffordl D,玉簪属.中国植物志.北京:科学出版社,1980:999.
    [205]陈璋,吕月良,吴文心.福建山樱花观赏特征与开花生物学特性的初步研究[J].福建热作科技,2011,36(3):1-5.
    [206]陈正洪,肖玫,陈璇.樱花花期变化特征及其与冬季气温变化的关系[J].生态学报,2008,28(11):5209-5217.
    [207]吕月良,陈樟,施季森.福建山樱花研究现状,开发前景与育种策略[J].南京林业大学学报:自然科学版,2006,30(1):115-118.
    [208]Cheong E J. Biotechnological approaches for improvement and conservation of Prunus species[J]. Plant Biotechnology Reports,2012,6(1):17-28.
    [209]Jung H A, Kim A R, Chung H Y, et al. In vitro antioxidant activity of some selectedPrunus species in Korea[J]. Archives of pharmacal research,2002,25(6):865-872.
    [210]Imanishi J, Nakayama A, Suzuki Y, et al. Nondestructive determination of leaf chlorophyll content in two flowering cherries using reflectance and absorptance spectra[J]. Landscape and Ecological Engineering, 2010,6(2):219-234.
    [211]李和平,师生波,刘玉萍,等.青海薄荷的光合及热能耗散特性研究[J].2008,28(2):348-354.
    [212]Mehta P, Jajoo A, Mathur S, et al. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves[J]. Plant Physiology and Biochemistry,2010,48(1):16-20.
    [213]Komura M, Yamagishi A, Shibata Y, et al. Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2010,1797(3): 331-338.
    [214]Strasser B, Strasser R. Measuring fast fluorescence transients to address environmental questions:the JIP-test[J]. Photosynthesis:from light to biosphere,1995,5:977-980.
    [215]Li P-M, Gao H-Y, Strasser R. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study] [J]. Zhi wu sheng li yu fen zi sheng wu xue xue bao= Journal of plant physiology and molecular biology,2005,31(6):559.
    [216]Ranjbarfordoei A, Samson R, Van Damme P. Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl[J], Photosynthetica,2006, 44(4):513-522.
    [217]Roh M S, Cheong E J, Choi I-Y, et al. Characterization of wild Prunus yedoensi analyzed by inter-simple sequence repeat and chloroplast DNA[J]. Scientia Horticulturae,2007,114(2):121-128.
    [218]王闯,李中勇,刘敏,等.不同浓度的硝酸盐对淹水条件下甜樱桃叶绿素荧光的影响[J].中国农学通报,2009,25(19):142-146.
    [219]Turan, Ekmekci Y. Activities of photosystem Ⅱ and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures[J]. Acta Physiologiae Plantarum,2011,33(1): 67-78.
    [220]徐康,夏宜平,徐碧玉,等.以电导法配合Logistic方程确定茶梅‘小玫瑰’的抗寒性[J].园艺学报,2005,32(1):148-150.
    [221]陈旭微,杨玲,章艺,等.10℃低温对绿豆和豌豆下胚轴细胞一些抗氧化酶活性和超微结构的影响[J].植物生理与分子生物学学报,2005,31(5):539-544.
    [222]王燕凌,廖康,刘君,等.越冬前低温锻炼期间不同品种葡萄枝条中渗透性物质和保护酶活性的变化[J].果树学报,2006,23(3):375-378.
    [223]Robert-Seilaniantz A, Navarro L, Bari R, et al. Pathological hormone imbalances[J]. Current opinion in plant biology,2007,10(4):372-379.
    [224]Weyers J D, Paterson N W. Plant hormones and the control of physiological processes[J]. New Phytologist,2001,152(3):375-407.
    [225]李合生.植物生理生化实验原理和技术[M].高等教育出版社,2000.
    [226]孔祥生,易现峰.植物生理学实验技术[M].中国农业出版社,2008.
    [227]陈凌艳,徐芬,郑宇,等.西洋杜鹃快繁增殖培养技术[J].福建林学院学报,2010,30(3):252-255.
    [228]贾小容,陈春苑.不同绿化植物叶绿素SPAD值对环境的响应[J].江苏农业科学,2011,39(4):206-208.
    [229]Hawkins T S, Gardiner E S, Comer G S. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research[J]. Journal for Nature Conservation,2009, 17(2):123-127.
    [230]Genty B, Briantais J-M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1989,990(1):87-92.
    [231]Razinger J, Dermastia M, Drinovec L, et al. Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure[J]. Environmental Science and Pollution Research-International,2007,14(3): 194-201.
    [232]Vopel K, Hawes I. Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica[J]. Limnol Oceanogr,2006,51:1801-1812.
    [233]陈贻竹.B.帕特森.低温对植物叶片中超氧物歧化酶,过氧化氢酶和过氧化氢水平的影响[J].植物生理与分子生物学学报,1988,14(4):323-328.
    [234]Holappa L D, Walker-Simmons M. The wheat abscisic acid-responsive protein kinase mRNA, PKABA1, is up-regulated by dehydration, cold temperature, and osmotic stress[J]. Plant Physiology,1995, 108(3):1203-1210.
    [235]Gusta L, Trischuk R, Weiser C. Plant cold acclimation:the role of abscisic acid[J]. Journal of Plant Growth Regulation,2005,24(4):308-318.
    [236]Kimball S L, Salisbury F B. Ultrastructural changes of plants exposed to low temperatures[J]. American journal of botany,1973:1028-1033.
    [237]Jung S, Steffen K L, Jae Lee H. Comparative photoinhibition of a high and a low altitude ecotype of tomato (Lycopersicon hirsutum) to chilling stress under high and low light conditions[J]. Plant science, 1998,134(1):69-77.
    [238]Araus J, Amaro T, Voltas J, et al. Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions[J]. Field Crops Research,1998,55(3):209-223.
    [239]Yamamoto A, Shim I-S, Fujihara S. Chilling-stress responses by rice seedlings grown with different ammonium concentrations and its relationship to leaf spermidine content[J]. Journal of Plant Biology,2012, 55(3):191-197.
    [240]Georgieva K, Lichtenthaler H K. Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence[J]. Journal of plant physiology,1999,155(3):416-423.
    [241]Bilger W, Bjorkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis[J]. Photosynthesis Research,1990,25(3):173-185.
    [242]杨华庚,林位夫.低温胁迫对油棕幼苗光合作用及叶绿素荧光特性的影响[J].中国农学通报,2009,25(24):506-509.
    [243]郭子武,李宪利,高东升,等.植物低温胁迫响应的生化与分子生物学机制研究进展[J].Chinese Journal of Eco—Agriculture,2004,12(2):59-62.
    [244]Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of experimental botany,2002,53(372):1331-1341.
    [245]马兰涛,陈双林,李迎春.低温胁迫对Guadua amplexfolia抗寒性生理指标的影响[J].林业科学研究,2008,21(2):235-238.
    [246]徐传保,戴庆敏.低温胁迫对竹子3种渗透调节物质的影响[J].河南农业科学,2011,40(1):127-130.
    [247]罗正荣.植物激素与抗寒力的关系[J].植物生理学通讯,1989,3(34):1-5.
    [248]Guo B, Stiles A R, Liu C-Z. Changes in endogenous hormones and oxidative burst as the biochemical basis for enhanced shoot organogenesis in cold-treated Saussurea involucrata explants[J]. Acta Physiologiae Plantarum,2013,35(1):283-287.
    [249]欧阳琳,洪亚辉,黄丽华,等.不同逆境胁迫信号对超级稻幼苗生理生化影响及植物激素变化的初步研究[J].农业现代化研究,2007,28(1):104-106.
    [250]Markhart A H. Amelioration of chilling-induced water stress by abscisic acid-induced changes in root hydraulic conductance[J]. Plant physiology,1984,74(1):81-83.
    [251]郭确,潘瑞炽.ABA对水稻幼苗抗冷性的影响[J].植物生理学报,1984,10(4):295-302.
    [252]岳丹,王有科.杏树内源激素含量与抗寒性关系研究[J].安徽农业科学,2008,36(23):9951-9952.
    [253]Garbero M, Pedranzani H, Zirulnik F, et al. Short-term cold stress in two cultivars of Digitaria eriantha:effects on stress-related hormones and antioxidant defense system[J]. Acta physiologiae plantarum, 2011,33(2):497-507.
    [254]Zhang F, Wan X Q, Zhang H Q, et al. The effect of cold stress on endogenous hormones and CBF 1 homolog in four contrasting bamboo species[J]. Journal of forest research,2012,17(1):72-78.
    [255]黄涛,陈大洲.抗冷与不抗冷水稻在低温期间叶片ABA与GA1水平变化的差异[J].华北农学报,1998,13(4):56-60.
    [256]Wilkie S E, Roper J M, Smith A G, et al. Isolation, characterisation and expression of a cDNA clone encoding plastid aspartate aminotransferase from Arabidopsis thaliana[J]. Plant molecular biology,1995, 27(6):1227-1233.
    [257]Kikuchi S, Satoh K, Nagata T, et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice[J]. Science,2003,301(5631):376-379.
    [258]Ainsworth C, Tarvis M, Clark J. Isolation and analysis of a cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat[J]. Plant molecular biology,1993,23(1):23-33.
    [259]Kruse E, Mock H-P, Grimm B. Isolation and characterisation of tobacco (Nicotiana tabacum) cDNA clones encoding proteins involved in magnesium chelation into protoporphyrin IX[J]. Plant molecular biology,1997,35(6):1053-1056.
    [260]Nanjo T, Sakurai T, Totoki Y, et al. Functional annotation of 19,841 Populus nigra full-length enriched cDNA clones[J]. BMC genomics,2007,8(1):448.
    [261]Natarajan P, Kanagasabapathy D, Gunadayalan G, et al. Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds[J]. BMC genomics,2010,11(1):606.
    [262]Liu M, Shi J, Lu C. Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold-and drought-stressed seedlings[J]. BMC plant biology,2013,13(1):88.
    [263]De Los Reyes B, Morsy M, Gibbons J, et al. A snapshot of the low temperature stress transcriptome of developing riee seedlings (Oryza sativa L.) via ESTs from subtracted cDNA library[J]. Theoretical and Applied Genetics,2003,107(6):1071-1082.
    [264]Zhang Y, Fu J, Gu R, et al. Isolation and analysis of cold stress inducible genes in Zea mays by suppression subtractive hybridization and cDNA macroarray[J]. Plant Molecular Biology Reporter,2009, 27(1):38-49.
    [265]Anderson I, Brass A. Searching DNA databases for similarities to DNA sequences:when is a match significant?[J]. Bioinformatics,1998,14(4):349-356.
    [266]果实,提取,李晓颖,等.杏叶片与果实总RNA提取方法研究[J].中国农学通报2010,26(2):152-156.
    [267]魏鑫,李明莹,关尔鑫.甜高粱总RNA提取方法的比较研究[J].江苏农业科学,2011(3):45-47.
    [268]Kiefer E, Heller W, Ernst D. A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites[J]. Plant Molecular Biology Reporter,2000,18(1):33-39.
    [269]Tattersall E A, Ergul A, Alkayal F, et al. Comparison of methods for isolating high-quality RNA from leaves of grapevine[J]. American Journal of Enology and Viticulture,2005,56(4):400-406.
    [270]王宇,李玲,王慧,等.两种桃芽总RNA提取方法的比较研究[J].山东农业大学学报:自然科学版,2011,42(3):388-391.
    [271]Wang X, Tian W, Li Y. Development of an efficient protocol of RNA isolation from recalcitrant tree tissues[J]. Molecular biotechnology,2008,38(1):57-64.
    [272]Wang T, Zhang N, Du L. Isolation of RNA of high quality and yield from Ginkgo biloba leaves[J]. Biotechnology Letters,2005,27(9):629-633.
    [273]葛晓萍,石琰璟.一种适合富含多糖,多酚植物的RNA提取方法[J].青岛科技大学学报,2007,28(1):6-8.
    [274]Gasic K, Hernandez A, Korban S S. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction[J]. Plant Molecular Biology Reporter,2004,22(4): 437-438.
    [275]Tong Z, Qu S, Zhang J, et al. A modified protocol for RNA extraction from different peach tissues suitable for gene isolation and real-time PCR analysis[J]. Molecular biotechnology,2012,50(3):229-236.
    [276]史宝胜,卓丽环.紫叶李叶片总RNA提取方法的改进与比较[J].分子植物育种,2006,4(5):721-725.
    [277]张燕梅,周文钊,李俊峰.剑麻不同组织RNA提取方法比较分析[J].分子植物育种,2010,8(1):201-208.
    [278]Li T-W, Xiang J-H, Liu R-Y. Construction of cDNA library of shrimp Penaeus chinensis (Crustacea, Decapoda)[J]. ACTA ZOOLOGICA SINICA,1998,44:237-238.
    [279]Wei H, Dhanaraj A L, Rowland L J, et al. Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx[J]. Planta,2005,221(3): 406-416.
    [280]杨贵春,刘海龙,王世发,等.大豆干旱和低温cDNA文库的构建与检测[J].黑龙江农业科学,2009(2):1-3.
    [281]Chen L, Zhong H, Ren F, et al. A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress[J]. Plant cell reports,2011,30(4):463-471.
    [282]王国莉,郭振飞.植物耐冷性分子机理的研究进展[J].植物学通报,2003,20(6):671-679.
    [283]Koo S C, Choi M S, Chun H J, et al. The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice[J]. Molecules and cells,2009,27(5):563-570.
    [284]郭惠红,高述民,李凤兰,等.植物抗冻蛋白和抗寒基因表达的调控[J].植物生理学通讯,2003,39(6):555-560.
    [285]林善枝,蔡世英,陈晓敏.低温锻炼对香蕉幼苗钙调蛋白含量及其可能调节酶类活性的影响[J].热带作物学报,2001,22(4):29-35.
    [286]Groenendyk J, Lynch J, Michalak M. Calreticulin, Ca2+, and calcineurin-signaling from the endoplasmic reticulum[J]. Mol Cells,2004,17(3):383-389.
    [287]Yang T, Chaudhuri S, Yang L, et al. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants[J]. Journal of Biological Chemistry,2010,285(10): 7119-7126.
    [288]胡茂龙,浦惠明,龙卫华,等.甘蓝型油菜谷胱甘肽过氧化物酶基因的克隆及表达分析[J].江苏农业学报,2011,27(5):950-956.
    [289]张丽丽,徐碧玉,刘菊华,等.香蕉谷胱甘肽过氧化物酶基因MaGPX的克隆和表达分析[J].园艺学报,2012,39(8):1471-1481.
    [290]Dai X, Xu Y, Ma Q, et al. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis[J]. Plant physiology,2007,143(4): 1739-1751.
    [291]侯学文,郭勇.泛肽与植物逆境响应[J].植物生理学通讯,1998,34(6):474-478.
    [292]Maestrini P, Cavallini A, Rizzo M, et al. Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba)[3]. Journal of plant physiology,2009,166(14): 1544-1556.
    [293]Nogueira F T, De Rosa V E, Menossi M, et al. RNA expression profiles and data mining of sugarcane response to low temperature[J]. Plant Physiology,2003,132(4):1811-1824.
    [294]Vashisht A A, Pradhan A, Tuteja R, et al. Cold-and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C[J]. The Plant Journal,2005,44(1):76-87.
    [295]Sanchez-Venegas J R, Dinamarca J, Moraga A G, et al. Molecular characterization of a cDNA encoding Cu/Zn superoxide dismutase from Deschampsia antarctica and its expression regulated by cold and UV stresses[J]. BMC research notes,2009,2(1):198.
    [296]Robbins A, Louzada E. Expression analysis of a cold responsive transcript from trifoliate orange by real-time PCR and RT-PCR[J]. Plant cell reports,2005,24(10):612-618.
    [297]Charron J-B F, Ouellet F, Pelletier M, et al. Identification, expression, and evolutionary analyses of plant lipocalins[J]. Plant physiology,2005,139(4):2017-2028.
    [298]Desgagne-Penix I, Sponsel V M. Expression of gibberellin 20-oxidasel (AtGA20oxl) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels[J]. Journal of experimental botany,2008, 59(8):2057-2070.
    [299]孙钦秒,冷静.高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新进展[J].植物学通报,2000,17(4):289-301.
    [300]蔡宝宏,王俊丽,廖祥儒,等.植物的脂加氧酶[J].生命的化学,2003,23(2):146-148.
    [301]Maucher H, Stenzel I, Miersch O, et al. The allene oxide cyclase of barley(Hordeum vulgare L.)—cloning and organ-specific expression[J]. Phytochemistry,2004,65(7):801-811.
    [302]Tsai T-M, Chen Y-R, Kao T-W, et al. PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis, is induced by cold, wounding, and pathogen challenge[J]. Plant cell reports,2007,26(10):1899-1908.
    [303]Frenette Charron J-B, Breton G, Badawi M, et al. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis [J]. FEBS letters,2002,517(1): 129-132.
    [304]Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana[J]. Molecular and General Genetics MGG,1993,238(1-2):17-25.
    [305]Chen B-J, Wang Y, Hu Y-L, et al. Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia [J]. Plant science,2005,168(2):493-500.
    [306]白慕群.高山离子芥低温诱导蛋白的鉴定和功能研究[D].兰州大学,2012.
    [307]Kang S-G, Jeong H K, Suh H S. Characterization of a new member of the glutathione peroxidase gene family in Oryza sativa[J]. Molecules & Cells,2004,17(1):23-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700