用户名: 密码: 验证码:
核电工程结构抗震性能计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电作为一种清洁能源,技术日渐完善,已成为我国能源电力战略的重要组成部分。然而2011年3月11日日本大地震导致了世界最大核电站福岛核电站的泄漏事故,提醒我们核电的安全性尤其是核电工程结构的抗震安全性仍有很多关键问题急需解决。在核电工程结构设计和安全评价中,要求对整体结构进行全面的地震反应分析,采取科学合理的工程措施,确保核电结构的抗震安全。
     核电工程结构都是体量巨大的建筑物或构筑物,要想精确分析在地震作用下这些结构的动态反应,需要对结构进行精细的有限元计算。运用通用商业软件进行分析时,存在着计算效率低、需二次开发(边界条件、接触条件等)等不足之处。为了缩短核电工程结构地震动态反应分析的时间,提高分析效率,充分利用我国并行计算硬件(并行计算机)领先的优势,本文开发了基于MPI的包含接触问题和粘弹性边界条件的核电工程结构地震动态反应有限元并行计算程序,主要进行了以下研究工作:
     1.总结了地基—结构相互作用时,边界条件的处理方法,并且对各种方法进行了分析,指出人工粘弹性边界条件应用于工程结构地震反应分析的优越性。
     2.提出了包含动接触条件和粘弹性边界条件的弹性力学问题积分弱解形式,统一了其数学表达式,揭示了动接触条件和粘弹性边界条件的数学实质。同时,研究了动接触条件和粘弹性边界的程序实现方法,采用点对点的接触模型实现了对动态接触问题的模拟。
     3.基于MPI(消息传递接口)环境,开发了包含接触问题和粘弹性边界条件的核电工程结构地震动态反应有限元并行计算程序。利用MPI提供的6类基本库函数,基于区域分解理论采用FORTRAN语言编制了并行分析源代码程序,并经解析算例考核,验证了其正确性。该程序包含土压力、冰荷载、静水压力、动水压力、渗流压力、接触问题地震荷载等核电工程计算中需要的比较全面的荷载条件。
     4.利用开发的动态反应有限元并行计算程序分析了某核电站取水结构在地震作用下的结构位移和应力反应,并对其计算时间和应力结果与商业有限元软件ANSYS计算的结果进行了对比分析,证明了并行计算的可靠性与高效性。同时,研究了结构内力提取的方法,分析了静、动力工况下结构的内力反应,为结构设计和校核提供了理论依据。
     5.利用强度折减系数法和开发的动态反应有限元并行计算程序对含有动接触问题的某核电边坡工程进行了地震稳定性分析,并对其计算结果与商业有限元软件ANSYS计算的结果进行比较,进一步证明了并行计算的优势所在。
As a clean energy for nuclear power, its technology is gradually improved, and it hasbecome an important part of the strategy of China's energy and electricity. The majorearthquake occurred in Japan on March11,2011, however, led to the world's largest nuclearpower plant in Fukushima nuclear power plant accident. It remind us that the safety of nuclearpower, especially the seismic safety of nuclear power engineering structures still have a lot ofkey issues need to be resolved. Therefore, in the structure design and safety assessment ofnuclear power engineering, a comprehensive earthquake response analysis for the overallstructure is required, and scientific and rational engineering measures are adopted in order toensure the seismic safety of nuclear structure.
     The structure or building of nuclear power engineering has enormous volume. In order toaccurately analyze the dynamic response of these structures in the earthquake, the finer finiteelement calculation for these structures must be made. However if the general commercialsoftware is used for analysis, there are lower computational efficiency, the secondarydevelopment (boundary conditions, the contact conditions, etc.) and other inadequacies. Forshortening the time of dynamic response analysis of nuclear power engineering structuresearthquake, improving the efficiency of the analysis and taking full advantage of our parallelcomputing hardware (parallel computer), a parallel finite element program which containscontact problems and viscoelastic boundary conditions of earthquake dynamic response of thenuclear power engineering structure is developed based on MPI (Message Passing Interface)in this paper. Some work is made as following:
     1. The boundary conditions are researched by considering the foundation structureinteraction. The various methods are analyzed. And the superiority that the artificial viscousboundary conditions are applied to the seismic response analysis of engineering structures isindicated.
     2. The weak integral solutions for dynamic elasticity contact conditions andviscoelasticity of boundary conditions are presented. Its mathematical expressions are unified.And the mathematical essence for dynamic contact conditions and viscoelastic boundaryconditions is also revealed. Simultaneously the procedure realization method of dynamiccontact conditions and viscoelastic boundary is studied. By suing the point-to-point contactmodel, the dynamic contact problems are simulated.
     3.Based on MPI environment, the earthquake response dynamic finite element parallelcomputation program for nuclear power engineering structure is developed with the contactand viscoelastic boundary conditions. By using six MPI basic library functions, the parallelsource codes are written based on the domain decomposition theory by adopted FORTRANlanguage. And its correctness is verified with the resolve example. The program containssome load conditions required in nuclear power engineering calculations, such as soil pressure, ice load, hydrostatic pressure, hydrodynamic pressure, seepage pressure, contact problems,earthquake load and so on.
     4.The structural displacement and stress response of an intake structure of nuclearpower plant is analyzed by using our dynamic response parallel finite element program underthe earthquake. And the commercial finite element software (ANSYS) and our software havebeen compared on the computation time and stress precision. It proves the reliability andefficiency of our parallel program. At the same time, the structural internal-force-extractionmethod has been studied and the structural internal-force response has also been analyzed.These efforts could provide the theoretical basis for the structural design and verification.
     5. The seismic stability of nuclear power slope engineering with dynamic contactcondition is calculated by using strength reduction method and the dynamic response parallelfinite element program. And the calculated result is compared to the result of commercialfinite element software (ANSYS). It further proves the advantages of our parallel program.
引文
[1]中华人民共和国国务院.国家中长期科学与技术发展规划纲要(2006-2020年).北京,2006
    [2]高子倩,李先柏.核电的优势及我国发展核电的政策.法制与经济.2010,233:94-95页
    [3]叶奇蓁.中国核电发展战略研究.电网与清洁能源.2010,26(1):3-8页
    [4]邹树梁,刘兵,陈甲华等.中国核电发展的现状与展望.南华大学报(社会科学版).2004,5(4):36-40页
    [5] GB50267-97核电厂抗震设计规范.北京:中国计划出版社.1997
    [6]戚承志,钱七虎.核电站抗震研究综述.地震工程与工程振动.2000,20(3):70-86页
    [7]林皋.核电工程结构抗震设计研究综述(Ⅰ).人民长江.2011,42(19):1-6页
    [8]林皋.核电工程结构抗震设计研究综述(Ⅱ).人民长江.2011,42(21):1-6页
    [9]李英民,刘立平.工程结构的设计地震动.北京:科学出版社,2011
    [10] Bernreuter B. L., Savy J. B., Mensing R. W. Seimic hazard of eastern US. comparativeevaluation of the LLNL and EPRI studies. USNRC report NUREC/CR-4885.1987
    [11] Krugmann J., Yvom M. EPR design against internal and external hazards. Nuclearpower plant safety standard towards international harmonization Bury St. Edmunds.1993
    [12] Jaeob K. Quantifying seismic hazard and providing realistic ground motion forengineering application primarily in the eastern US. Research1986-1994accomplishments. NCEER.1995
    [13]胡聿贤.地震工程学.北京:地震出版社.2006
    [14]胡聿贤.关于我国现行建筑抗震设计规范GBJ11-89的几点讨论.建筑结构学报.1993,14(3):2-9页
    [15]李英民.工程地震动的模型化研究.重庆:重庆建筑大学学位论文.2000
    [16]徐鸿.人工地震加速度时程及其可接受判据.核动力工程.1996:17(1):51-55页
    [17]束磊,吕令毅,徐勃等.三门核电站60年基准期下的地震危险性分析.工程建设与设计.2008,10:55-58页
    [18] Veletsos A. S., Newmark N. M., Chepalati C. V. Deformation spectra for elastic andelastoplastic systems subjected to ground shock and earthquake motion. Proc.3rdWorld Conf. on Earthq. Engrg. Wellington, New Zealand.1965,663-682P
    [19]林家浩.(平稳)随机地震响应的确定性算法.地震工程与工程振动.1985,5(1):89-93页
    [20]林家浩.非平稳随机地震响应的精确高效算法.地震工程与工程振动.1993,13(1):l24-29页
    [21]梁爱虎,杜修力,陈厚群.基于非平稳随机地震动场的拱坝随机地震反应分析方法.水利学报.1999,6:21-25页
    [22]绍龙潭,唐洪祥,孔宪京等.随机地震作用下土石坝边坡的稳定性分析.水利学报.1999,11:66-71页
    [23]刘汉龙,陆兆漆,钱家欢.土石坝非线性随机反应及动力可靠性分析.河海大学学报.1996,24(3):105-109.页
    [24]刘汉龙,钱家欢.随机地震作用下土石坝永久变形预估.河海大学学报.1996,24(2):86-91页
    [25]陈国兴,谢君斐,张克绪.土坝地震性能的二维随机分析方法.地震工程与工程振动.1994,14(3):81-90页
    [26]夏祖讽,戴秋云.秦山核电厂主厂房的抗震分析.核动力工程.1988,9(4):7-13页
    [27]张征明,吴鸿麟.核反应堆厂房的非线性抗震分析.清华大学学报(自然科学版).2002,42(10):1324-1327页
    [28]潘宇,吕令毅,束磊.三门核电站弹塑性时程分析.工程建设与设计.2010,2:21-24页
    [29]石岩峰,卫宏,许东翰等.某核电站安全壳的地震反应分析.工业建筑.2011,41(6):84-87页
    [30]王桂萱,李世慧,赵杰.某核电站常规岛抗震分析.防灾减灾学报.2011,27(1):29-34页
    [31]钱稼茹,赵作周,段安等. CNP1000核电厂安全壳1:10模型拟动力试验.土木工程学报.2007,40(6):7-13页
    [32] Krawinkler H., Seneviratna G. D. P. K. Pros and Cons of a pushover analysis ofseismic performance evaluation. Engineering Structure.1998,20:452-464P
    [33] Fajfar P., Fischinger M. N2-a method for nonlinear seismic analysis of regularstructures. Proceedings of9th World Conference of Earthquake Engineering. Tokyo-Kyoto, Japan.1988,111-116P
    [34]叶燎原,潘文.结构静力弹塑性分析(Push-over)的原理和计算实例.建筑结构学报.2000,21(1):37-43页
    [35]杨溥,李英民,王亚勇等.结构静力弹塑性分析(Push-over)方法的改进.建筑结构学报.2000,21(1):44-50页
    [36] Sasaki K. K., Freeman S. A., Paret T. F. Multimode pushover procedure (MMP)-amethod to identify the effects of higher modes in a pushover analysis. Proceedings ofthe6th U. S. National Conference on Earthquake Engineering. Seattle, Washington.1998,121-128P
    [37] Bracci J., Reinhorn A. M., Mander J. B. Seismic resistance of reinforced concreteframe structures designed for gravity loads: performance of structural system. ACIStructure.1995,92(5):597-609P
    [38] Gupta B., Kunnath S. K. Adaptive spectra-based pushover procedure for seismicevaluation of structures. Earthquake Spectra.2000,16(2):36-39P
    [39]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动.2004,24(3):89-97P
    [40] Gupta B., Kunnath S. K. Adaptive spectra-based pushover procedure for seismicevaluation of structures. Earthquake Spectra.2000,16(2):367-391P
    [41] Chopra A. K., Goel.A. K., A modal pushover analysis procedure to estimate seismicdemands for buildings: theory and preliminary evaluation. Report No. Peer-2001/03,Pacific Earthquake Engineering Research Center, University of California, Berkeley,1999,15-20P
    [42]林少波,徐勍,周建章等. Pushover分析在核电常规岛抗震设计中的应用.结构工程师.2010,26(2):126-130页
    [43] Bertero V. V. Major issues and future directions in earthquake-resistant design.Proceeding of10th World Conference on Earthquake Engineering.Madrid.1994,6407-6444P
    [44] GB50011-2010建筑结构抗震设计规范.北京:中国建筑工业出版社.2010
    [45] Priestley. M. J. N. Direct displacement-based design of precast prestressed concreteBuildings. Pci. Journal.2002,47(6):66-79P
    [46] Kowalsky M. J. A displacement-based approach for the seismic design of continuousconcrete bridges. Earthquake Engineering&Structural Dynamics.2002,31(3):719-747P
    [47] Panagiotakos T. B., Fardis M. N. Deformation-controlled earthquake-resistant designof RC buildings. Journal of Earthquake Engineering.1999,3(4):498-518P
    [48] Lin Y. Y., Chang K. C., Tsai M. H., et al. Displacement-based seismic design forbuildings. Journal of the Chinese Institute of Engineers.2002,25(1):89-98P
    [49] Borzi B., Calvi G. M., Elnashai A. S., et al. Inelastic spectra for displacement-basedseismic design. Soil Dynamics and Earthquake Engineering.2001,21(1):47-61P
    [50] Saatcioglu M., Razvi S. R. Displacement-based design of reinforced concrete columnsfor confinement. ACI Structural Journal.2002,99(1):3-11P
    [51] Applied Technology Council. Seismic evaluation and retrofit of concrete buildings(ATC-40). California: ATC.1996
    [52] Applied Technology Council.(FEMA273,274,356).NEHRP Commentary on theguidelines for the seismic rehabilitation of buildings. Washington, D. C.: ATC.1997
    [53] Building Seismic Safety Council. FEMA-450. NEHRP Recommended provisions andcomentary for seismic regulations for new buildings and other structures. Washington,D. C.: BSSC.2004
    [54]张琴,张扬,周向群等.核电厂常规岛厂房结构基于性能抗震设计的方法.工业建筑.2010,40(4):51-54页
    [55]周玉,周雷靖,彭雪平.岭澳核电二期常规岛主厂房抗震设计.武汉大学学报(工学版).2007,40:138-142页
    [56]刘琳,赵杰,刘震等.基于性能抗震分析的核电常规岛主厂房设计.辽宁工程技术大学学报(自然科学版).2011,30(3):365-368页
    [57] Teran-Gilmore A., Avila E., Rangel G. On the use of plastic energy to establishstrength requirements in ductile structures. Engineering Structures.2003,25(7):965-980P
    [58]欧进萍,何政,吴斌等.钢筋混凝土结构基于地震损伤性能的设计.地震工程与工程振动.1999,19(1):21-30页
    [59] Manfredi G. Evaluation of seismic energy demand. Earthquake Engineering&Structural Dynamics.2001,30(4):485-499P
    [60] Fajfar P., Vidic T. Consistent inelastic design spectra: strength and displacement.Earthquake Engineering&Structural Dynamics.1994,23(5):507-521P
    [61] Sucuoglu H., Nurtug A. Earthquake ground motion characteristics and seismic energy-dissipation. Earthquake Engineering&Structural Dynamics.1995,24(9):1195-1213P
    [62] Fajfar P., Vidic T., Fischinger M. A measure of earthquake motion capacity todamage medium-period structures. Soil Dynamics and Earthquake Engineering.1990,9(5):236-242P
    [63] Nurtug A., Sucuoglu H. Prediction of seismic energy-dissipation in SDOF systems.Earthquake Engineering&Structural Dynamics.1995,24(9):1215-1223P
    [64]王燕.隔震技术及其在核电站中的应用.河北建筑工程学院学报.2004,22(1):38-41页
    [65]谢礼立,翟长海.核电工程应用隔震技术的可行性探讨.地震工程与工程振动.2012,32(1):1-10页
    [66]曾奔,周福霖,徐忠根等.基于功率谱密度函数法的核电厂房增加隔震措施后的楼层反应谱分析.核动力工程.2009,30(3):14-16页
    [67]侯钢领,陈树华,李冬梅.核电厂安全壳隔震减振分析.核动力工程.2011,32:38-41页
    [68]宰金珉,庄海洋.结构动力相互作用研究若干问题的思考.徐州工程学院学报.2005,20(1):1-6页
    [69]方志,陆浩亮,王龙.土-结构动力相互作用研究综述.世界地震工程.2006,22(1):57-63页
    [70]房营光.岩土介质与结构动力相互作用理论与应用.北京:科学出版社.2005
    [71] Lamb H. On the propagation of tremor over the surface of an elastic solid. Philo. Trans.Roy Soe. Ser. A.1904,203:1-42P
    [72] Reissner E. Stationare ax IA lsymm etrische durch eine schuttelndemassee rtregteschwinguugen eines homogenen elastischen halbraumes. Inge-nieur-Arch.1936,7(6):381-396P
    [73]蒋建国,周绪红,邹银生等.土-结构动力相互作用研究的发展历程及展望.岩土工程界.2001,4(6):47-48页
    [74]张楚汉.结构-地基动力相互作用问题.南京:河海大学出版社.1993
    [75] Fukuta K. et al. Analysis of saturated dense sand-structure system and comparison withresults from shaking table test. Earthquake Engineering&Structural Dynamics.1990,19(7):977-992P
    [76] Konagai K., Nogami T. Analog circuit to simulate dynamic soil-structure interaction inshaking table test. Soil Dynamic and Earthquake Engineering.1998,17:279-287P
    [77]陈跃庆,吕西林,李培振等.分层土-基础-高层框架结构相互作用体系振动台模型试验研究.地震工程与工程振动.2001,21(3):104-112页
    [78]陈跃庆,吕西林,侯建国等.有建筑物存在的软土地基液化模拟地震振动台试验研究.武汉大学学报(工学版).2003,36(1):59-63页
    [79]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展.地震工程与工程振动.2002,22(4):53-59页
    [80]杨林德,杨超,季倩倩等.地铁车站的振动台试验与地震响应的计算方法.同济大学学报.2003,31(10):1135-1140P
    [81]宋二祥,武思宇,王宗纲.地基-结构系统振动台模型试验中相似比的实现问题探讨.土木工程学报.2008,41(10):88-92页
    [82]朱建栋,杜守继,付功义.地道桥结构与土相互作用的有限元分析.岩土力学.2007,26:305-309页
    [83]职洪涛,俞载道,曹国敖.基础提离、滑移对多层房屋地震反应影响分析.同济大学学报.1998,26(4):367-371页
    [84]钱德玲,宋传中,王东坡等.地基—结构动力相互作用体系中数值仿真的研究.岩石力学与工程学报.2008,27:2953-2959页
    [85]曹国敖,李峰.核电站辅助厂房结构-地基土相互作用体系的地震响应.核动力工程.1993,14(4):374-380页
    [86]俞洁勤,沈小白,杨明学.核电厂安全壳在三向六自由度地震激励下的动力响应.同济大学学报.1994,22(4):535-539页
    [87]应稼年,王荣昌,俞载道.地基土—桩基础-核电站辅助厂房结构相互作用体系的地霍响应分析.地震工程与工程振动.1995,15(1):44-52页
    [88]汪嘉春,傅激扬,才来中.试验堆主厂房楼板谱计算与比较.核动力工程.2001,22(1):308-312页
    [89]王天运,任辉启,刘国强等.考虑土—结构相互作用的核电站动力分析方法.岩石力学与工程学报.2004,23(22):3840-3845页
    [90]李忠献,李忠诚,沈望霞.核反应堆厂房结构楼层反应谱的敏感性分析.核动力工程.2005,26(1):45-49页
    [91]李忠诚,李忠献.大亚湾核电厂反应堆厂房地震响应分析评估.核动力工程.2005.,26(6):614-617页
    [92]侯春林,李小军,潘蓉.核电厂结构地基阻抗函数不同规范采用的计算方法比较分析.核动力工程.2009,30(3):7-11页
    [93]朱秀云,李建波,林皋等.基于谐响应的核电厂地基动阻抗数值求解算法.建筑科学与工程学报.2009,26(3):66-70页
    [94]丁锦铭,李建波,钟红.基础埋置对核电厂房地震响应的影响.水电能源科学.2010,28(10):70-73页
    [95]吕涛,杨球玉,耿学勇等.岩石坚硬程度对核电厂地基—基础地震响应特征的影响分析.岩土力学.2010,3(14):1319-1325页
    [96]逢俊杰,李建波,钟红.成层地基对核电厂楼层反应谱的影响分析.水电能源科学.2010,28(10):67-69页
    [97]杨春雨.海洋土地基核电厂盾构排水隧洞地震响应研究.河北建筑工程学报.2011,29(11):103-106页
    [98]何佳,王海涛.核电厂电气厂房地震响应敏感性分析.核动力工程.2012,33(1):9-12页
    [99] Wolf J. P., Darve G. P. Nonlinear soil-structure interaction analysis based on boundaryelement method in time domain with application to embedded foundation. Journal ofEarthquake Engineering and Sturetural Dynamics.1986,14:385-400P
    [100] Karabalis D. L., Beskos D. F. Dynamis response of3-D rigid embedded foundation bythe BEM, Comp. Methods in Appl. Mech. and Eng.1986,(56):91-119P
    [101] Karabalis D. L., Beskos D. E. Dynamic response of3-D rigid surface foundations bytime domain boundary element method. Earthquake Engrg and Sturct. Dynamic.1984,12(1):79P-93P
    [102] Spyrakos C. C., Beskos D. E. Dynamic response of flexible strip foundations byboundary and finite element. Sooil Dynamic and Earthquake Engrg.1986,5(1):84-96P
    [103] Banerjee, P., Sen. R. Dynamic behavior of axially and laterally loaded single Piles andPile goruPs. Dynamic Behavior of Foundations and Buried Strueu\te\ures.1987,3:95-115P
    [104] Karabalis D. L., Beskos D. E. Dynamic analysis of3-D flexible foundation by the timedomain FEM-BE. Soil dynamic and earthquakes engineering.1985,(4):91-101P
    [105] Gamtanaros A. P., Karabalis D. L. Ilamic rEsponse of3-D flexible foundation byfrequency dornain FEM-BEM. Earthquakese engineering and strueture dynamic.1988,16:653-674P
    [106] Abscal R., Dominguez J. Vibration of footings on viscoelastic soil [J]. EngineeringMechanical, ASCE.1985,11(2):123-141P
    [107]姜忻良,郑刚,刘宝祥.圆板—弹性层状地基下样条有限元-无限元耦合分析法.岩土工程学报.1997,19(5):80-87页
    [108] Kelly D. W., Mustoe G. G. W. Zienkiewiez. Cou Pling of boundary element methodswith other numerical methods. In Banenjce PK. Batterfield R,editors. Development inBoundary Element Methods-London: Applied Science Publishers.1979,251-258P
    [109] J. P. Wolf,Chongmin song. Dynamic-stiffness matrix in time domain of unboundmedium by infinitesimal finite element cell method. Earthquakes engineering andstructure dynamic.1994,23(10):1235-1249P
    [110]匡志平,俞载道,曹国赦.核电站辅助厂房结构体系的随机临界地震响应.同济大学学报.1994,22(4):427-432页
    [111]李忠献,陈岩,梁万顺.核电厂结构的楼层反应谱分析.福州大学学报(自然科学版).2005,33:63-67页
    [112]李忠献,李忠诚,梁万顺.考虑地基岩土参数不确定性的核电厂结构随机地震反应分析.核动力工程.2006,27(2):30-35页
    [113]韩建刚,陈奕柏,杜治光.非均质基础与结构共同作用的随机动力反应分析[J].岩土力学.2007,28:766-768页
    [114]徐政.直流输电系统离散模型拓扑分块法数字仿真.电网技术.1994,18(2):1-5页
    [115]吕全义,叶天麒.在MIMD型机上求解板的临界载荷的一种并行算法.航空学报.1994,15(8):975-979页
    [116]顾军华,沈雪勤,颜威利.基于逐元(EBE)技术的三维电磁场并行计算,中国电机工程学报.1994,14(1):14-19页
    [117]李卫东,柳焯,郭玉红等.基于电力系统运行模式及人工神经网络的潮流并行算法.电力系统自动化.1997,21(5):13-17页
    [118]王世山,胡长玲.消雷器静态电场分布及其并行计算.微机发展.1998,1:3-6页
    [119]唐纪晔,钟万勰.对流扩散方程的精细积分并行算法.1999,39(1):17-21页
    [120]徐林,杨中海,莫元龙.面向对象技术在行波管CAD中的应用.电子科技大学学报.1999,28(2):162-165页
    [121]毛承雄,吴增华.电力系统并行仿真计算的一种新方法.华东电力.1999,3:21-23页
    [122]舒继武,归丽忠,周维四等.区域分解法解黑油数值模拟问题的并行计算[J].南京大学学报(自然科学版).1999,35(1):51-57页
    [123]徐娟,汪懋华.用于图象处理的小波变换并行算法.小型微型计算机系统.1999,20(1):29-32页
    [124]汪芳宗.基于高度并行松弛牛顿方法的暂态稳定性实时分析计算的并行算法.1999,19(11):14-17页
    [125]王希诚,葛增杰,李飞宇.土体固结分析的异步并行计算.2000,40(5):593-596页
    [126]莫则尧,张景琳.二维分子动力学程序(MDP)的并行与优化.计算物理.2000,17(1、2):193-197页
    [127]蔡大用,陈玉荣.用重叠分块牛顿法计算潮流问题.电力系统自动化.2001,10:1-3页
    [128]章勤,李品,苗晶.一种等值线图绘制算法及其并行实现.华中科技大学学报.2001,29(9):4-6页
    [129]王宏琳,高绘生.地震并行处理模式与应用框架.计算机学报.2001,24(2):202-208页
    [130]董科军,刘让苏,郑采星等.液态金属原子大系统凝固过程模拟的并行算法研究[J].自然科学进展.2001,11(12):187-193页
    [131]解以扬,庞璐,孟冬梅.数值天气预报与并行计算.天津师范大学学报(自然科学版).2001,21(12):65-69页
    [132]苏新民,毛承雄,陆继明.对角块加边模型的并行潮流计算.电网技术.2002,26(1):22-25页
    [133]曹建文,潘峰,姚继锋等.并行油藏模拟软件的实现及在国产高性能计算机上的应用[J].计算机研究与发展.2002,39(8):973-980页
    [134]王宏琳.计算机集群地震交互成像软件技术——概念、系统结构、设计模式及Internet交互处理.勘探地球物理进展.2002,25(4):3-10页
    [135]郑永红,游亚戈,沈永明等.缓坡地形上非线性波浪变形的并行计算.水科学进展.2003,14(5):328-332页
    [136]张伟林.网络并行计算及在计算力学中的应用.安徽建筑工业学院学报(自然科学版).2003,11(1):23-27页
    [137]刘青昆,舒继武,归丽忠等.多层油藏模拟并行计算与负载平衡.计算机研究与发展.2004,41(2):306-310页
    [138]王文睿,陈国良,孙广中. GROMOS96分子动力学模拟的并行优化算法.中国科学技术大学学报.2004,34(2):76-82页
    [139]江春波,安晓谧.二维非恒定渗流的有限元并行计算.水科学进展.2004,15(7):454-457页
    [140]谢能刚,王璐,邱晗.强夯动接触力的碰撞分析与并行优化求解.岩石力学与工程学报.2004,23(13):2172-2176页
    [141]茹忠亮,冯夏庭,张友良等.地下工程锚固岩体有限元分析的并行计算.岩石力学与工程学报.2005,24(1):13-17页
    [142]王浩然,朱国荣,江思珉等.基于区域分解法的地下水有限元并行数值模拟.南京大学学报(自然科学版).2005,41(5):28-35页
    [143]李渊印,金先龙,李丽君等.有限元分析软件并行化移植和开发方法的研究.船舶力学.2005,9(8):71-78页
    [144]刘耀儒,周维垣,杨强等.三维有限元并行计算及其工程应用.岩石力学与工程学报.2005,24(7):2434-2438页
    [145]尹九阳,方滨兴,王小伟等.并行计算构件技术在过程模拟中的应用.计算机与应用化学.2005,22(8):24-26页
    [146]叶旭东,邢涛.时域有限差分算法的并行实现.计算机与数字工程.2006,34(5):93-97页
    [147]王成山,杨建林,张家安等.一种暂态稳定并行仿真的改进算法及其加速比分析.电力自动化设备.2006,26(5):1-4页
    [148]陈林,秦忠国.基于Linux机群的大型结构并行有限元系统研究.水利与建筑工程学报.2006,4(3):77-79页
    [149]王文睿,陈国良,邢利荣等.一种分布式网格计算框架以及在大规模分子动力学模拟中的应用.小型微型计算机系统.2006,27(7):1326-1330页
    [150]王雷章,张爱武,刘晓萌.三维建模中平面分割并行算法的设计与实现.系统仿真学报.2006,18(Supp2):239-245页
    [151]付立东,赵永刚.基于划分方法的浅水波方程并行求解的实现.西安科技大学学报.2006,26(4):524-528页
    [152]李海江.基于集群的并行有限元分析研究.计算力学学报.2007,24(1):117-123页
    [153]李云贵.工程结构中的高性能计算.建筑结构学报.2010,31(6):89-95页
    [154]廖振鹏.工程波动理论导论(第二版).北京:科学出版社.2002
    [155]高峰,赵冯兵.地下结构静-动力分析中的人工边界转换方法研究.振动与冲击.2011,30(11):165-170页
    [156] Dasgupta G. A Finite element formulation for unbounded homogeneous continua.Journal of Applied Mechanics. ASME,1982,49:136-140P
    [157]张海.波函数展开法在弹性波散射中的应用.天津:天津大学博士学位论文.2007
    [158] Medina F., Tailao R. Finite element technical for problems of unbounded domains. Int.Jume Methods in Engi.1983,19(4):1209-1226P
    [159] Dominguez J. Boundary elements in dynamics. Southampton: ComputationalMechanics Publications.1993
    [160]蒋通,宋晓星.用薄层法分析层状地基中条形基础的阻抗函数.力学季刊.2009,30(1):62-70页
    [161] Ungless RF. An infinite element MASc. Thesis. University of British Columbia.1973
    [162] Davis TG, Bu S. Infinite boundary elements for the analysis of half-space problems.Computers&Geotechnics.1996,19:137-151P
    [163] Gao XW, Davies TG.3-D infinite boundary elements for half-space problems. Eng.Analysis with Boundary Elements.1998,21:207-213P
    [164] Wolf J P and C Song. Finete-element modelling of ubounded media. JOHN WILEY,SONS, Chichester.1996
    [165] Clayton R., B. Engquist. Absorbing boundary conditions for wave-equation Migration.Geophysics.1980,45:895-904P
    [166] Higdon R L. Absorbing boundary conditions for acoustic and elastic waves in stratifiedmedia [J]. Comp. Phys.1992,101:386-418P
    [167] Lysmer J, Kulemeyer R L. Finite dynamic model for in finite media [J]. Engng MechDiv. ASCE.1969,95(EM4):859-877P
    [168] Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries [J].Journal of Engineering Mechanics. ASCE.1994,120,(1):25-42P
    [169]刘晶波,王振宇,杜修力等.波动问题中的三维时域粘弹性人工边界.工程力学.2005,22(6):46-51页
    [170]李斌,刘晶波.粘弹性人工边界在MARC中的实现.第14届全国结构工程学术会议论文集(第一册).2005,289-293页
    [171]张燎军,张慧星,王大胜等.粘弹性人工边界在ADINA中的应用.世界地震工程.2008,24(1):12-16页
    [172]苑举卫,杜成斌,陈灯红.基于ABAQUS的三维粘弹性边界单元及地震动的输入方法研究.三峡大学学报(自然科学版).2010,32(3):9-13页
    [173]王朝令,刘争平.粘弹性边界条件在ANSYS有限元波场模拟中的实现.大地测量与地球动力学.2012,32(2):28-31页
    [174]唐菊珍.基于FEPG的组合网格法与接触问题的Lagrange乘子法.桂林:桂林电子科技大学硕士论文.2006
    [175]刘书,刘晶波,方鄂华.动接触问题及其数值模拟的研究进展.工程力学.1999(6):14-28.页
    [176] Flynn M J. Very high-speed computing systems. Proceeding of the IEEE.1996,54(12):901-909P
    [177]张丽君等.电子计算机并行算法的设计与分析.长沙:湖南科学技术出版社.1984
    [178]王嘉漠等.并行计算方法.北京:国防工业出版社.1987
    [179]钱少先.关于并行计算的若干问题.安庆师范学院学报(自然科学版).2001,7(2):44-45页
    [180]都志辉. MPI并行程序设计.北京:清华大学出版社.2001
    [181]刘晶波,李彬.三维粘弹性静-动力统一人工边界.中国科学(E辑).2005,35(9):966-980页
    [182] DL5073-2000水工建筑物抗震设计规范.北京:中国电力出版社.2001
    [183] SL191-2008水工混凝土结构设计规范.北京:中国水利水电出版社.2009
    [184] SL203-97.水工建筑物抗震设计规范.北京:中国水利水电出版社.1997
    [185] JTJ213-98海港水文规范.北京:人民交通出版社.1998
    [186] JTJ215—98港口工程荷载规范.北京:人民交通出版社.1998
    [187] Zienkiewicz O. C, Humpheson C, Lewis R. W. Associated and non-associated visco-elasticity and plasticity in soilmechanics [J]. Geotechnique.1975,25(4):671-689P
    [188] Griffith D. V., Lane P. A. Slope stability analysis by finite elements. Geotechnique.1999,49(3):387-403P
    [189] Dawson E. M., Roth W. H., Drescher A. Slope stability analysis by strength reduction.Geotechnique.1998,49(6):835-840P
    [190]张敏江,郑欣桐.基于极限平衡理论的边坡动力稳定性数值分析.沈阳建筑大学学报(自然科学版).2011,27(3):490-494P.
    [191]姜海西,沈明荣,陈建峰等.升降水作用下岩质边坡模型试验研究.沈阳建筑大学学报(自然科学版).2008,24(6):963-969P
    [192]李东升,朱正伟,刘东燕.基于风险评价的边坡防灾决策分析.沈阳建筑大学学报(自然科学版).2006,22(6):907-910P
    [193] Ausilio E., Conte E., Dente G. Seismic stability analysis of reinforced slopes. SoilDynamics and Earthquake Engineering.2000,19(3):159-172P
    [194] Biondi G., Cascone E., Maugri M. Flow and deformation of sandy slopes. SoilDynamics and Earthquake Engineering.2002,22(12):1103-1114P
    [195] Siad L., Seismic stability analysis of fractured rock slopes by yield design theory. SoilDynamics and Earthquake Engineering.2003,23(3):203-212P
    [196] Wang C., Tannant D. D., Lilly P. A. Numerical analysis of the stability of heavilyjointed rock slopes using PFC2D. International Journal of Rock Mechanics and MiningSciences.2003,40(3):415-424P
    [197] Li X. Finite element analysis of slope stability using A nonlinear failure criterion.Computers and Geotechnics.2007,34(3):127-136P
    [198]兰雁,李日运,樊敬亮等.田湾核电站引水隧洞边坡稳定性综合评价.岩石力学与工程学报.2004,23(22):3818-3823页
    [199]李同录,范文,李萍.田湾核电厂人工高边坡的三维数值模拟.岩石力学与工程学报.2004,23(supp1):4493-4497页
    [200]陈建峰,孙立川,石振明等.浙江三门核电厂人工高边坡稳定性评价.岩土力学.2005,26(supp):33-35页
    [201]孙瑛琳,韩少伟,韩绍英等.三门核电工程边坡稳定性分析.东北水利水电.2007,25(281):54-55页
    [202]聂文波,骆建宇,叶静风等.核电站高挖方边坡稳定性评价与设计.土工基础.2011,25(5):57-59页
    [203]陈立伟,吕涛,杨球玉等.基于FLAC强度折减法的江苏田湾核电站岩质高边坡稳定性分析.地质通报.2009,8(28):1103-1107页
    [204]郑文棠,程小久,李焯芬等.核电厂边坡地震动力响应研究.岩石力学与工程学报.2011,30(supp2):3514-3521页
    [205]薛雷,孙强,秦四清等.非均质边坡强度折减法折减范围研究.岩土工程学报.2011,33(2):275-280页
    [206]陈华,房锐,赵有明等.基于有限元强度折减法的岩石高边坡稳定性分析.公路.2009(10):83-86页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700