用户名: 密码: 验证码:
复杂岩体边坡损伤断裂破坏机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂岩体边坡是指含多组结构面,结构破碎,力学性能较差,稳定性由各种结构面决定的岩体边坡。我国是一个多山的国家,山地丘陵占国土面积的2/3以上,所以岩体边坡失稳灾害是我国最常见的地质灾害之一,因此,岩体边坡失稳破坏常给人民的生命和财产带来了巨大的损失。本文依托两项国家自然科学基金项目“危岩破坏机理研究”(50678182)和“危岩破坏突变机制与激振效应研究”(11272185),以复杂缓倾角岩体边坡为研究对象,基于断裂力学、损伤力学、弹性力学和有限元等方法,研究了单体危岩的损伤断裂机制、岩腔后退机制、复杂岩体边坡平面和三维破坏机制,本文取得的创新性成果主要有以下几点:
     (1)基于断裂力学理论和可靠度基本原理建立了危岩稳定可靠度的优化求解方法;分析了危岩可靠指标和失稳概率随危岩主控结构面深度、主控结构面倾角、主控结构面深度标准差、断裂韧度和断裂韧度标准差之间的变化规律;基于断裂力学、传热学和弹性力学建立了危岩体温度场和考虑温度-应力耦合作用下的危岩稳定性计算方法;揭示了温度与主控结构面深度联合作用下的危岩稳定系数的变化规律。
     (2)基于弹性力学、损伤力学和传热学,建立了岩腔内软质岩体的损伤因子计算方法;分析了软质岩体的疲劳破坏机制;揭示了软质岩体内温度场分布规律和温度疲劳作用时泥岩应变的变化规律;建立了岩腔后退过程任意时刻时的危岩稳定系数和主控结构面损伤因子的计算方法。
     (3)分别将复杂缓倾角岩体边坡视为平面问题和三维问题,基于断裂力学和材料力学基本原理,根据各岩层不同的接触关系,以岩层挠度为中间变量,计算出岩层间层间压力和摩擦力,进而建立了各岩块平面稳定性计算方法;以岩层挠度和转角为中间变量,计算出岩层间层间压力、摩擦力和转角,并在此基础上建立了各岩块三维稳定性计的算方法;最后利用数值模拟方法验证了本文建立的复杂缓倾角岩体边坡中各岩块稳定系数计算方法的可靠性;并分析了不同岩腔深度下复杂缓倾角岩体边坡的破坏机制。
     本文以上研究成果可以用于复杂岩体边坡的防治工程中,为复杂岩体边坡安全性的预警和防治工程的布设提供了理论依据,增强了防治工程的针对性和有效性。
Complex rock slope refers to the rock slope, which contains multi-group fissure,has poor mechanical properties and the stability determined by the fissure. China is amountainous country, with mountainous areas taking up2/3of the national total area.The rock slope failure is one of the familiar geological hazards, thus, the rock slopefailure usually renders a serious risk to human life and property loss. This papersupported by two National Natural Science Foundations: study on perilous rock failuremechanism (50678182) and study on the mutation mechanism and excitation effect ofperilous rock failure (11272185). Taking the complex gentle incline rock slope as theresearch object and basing on fracture mechanics, damage mechanics, elasticity andfinite element, this paper has studied on the damage and fracture mechanism of perilousrock, recession mechanism of rock cell and plane&3D failure mechanism of complexrock slope. The innovation achievements are obtained as follows:
     (1) Based on fracture mechanics and reliability basic principle, it establishedoptimization solution method of perilous rock reliability. With the change of depth andobliquity, standard deviation of depth and fracture toughness, it analyzed the variationlaw of the reliability index and unstable probability for perilous rock. According to thefracture mechanics, heat transfer theory and elastic mechanics, it established thecalculation method for the temperature field and stability of perilous rock, whichstability considered the coupling effect between the temperature and stress. Moreover, itrevealed the variation law of perilous rock’s stability under the combined effect oftemperature and the depth of perilous rock.
     (2) Basing on elastic mechanics, damage mechanics and heat transfer theory, itestablished the calculation method for damage factors of soft rock, analyzed the failuremechanism of soft rock; revealed the distributing law of temperature field for soft rockand established the calculation method for stability of perilous rock and the damagefactor for dominate fissure in the process of rock cell recession.
     (3) To respectively regard Complex rock slope as a plane problem andthree-dimensional problem, based on fracture mechanics and material mechanics,according to the contact relationship of rock layers, it calculated the pressure andfriction between the rock layers with the intermediate variable of rock layers’ deflection.And then it established the calculation method for block’s plane stability coefficient,calculated the pressure, friction and rotation angle between the rock layers with the intermediate variable of rock layers’ deflection and rotation angle and founded thecalculation method for block’s three-dimensional stability coefficient. At last, throughthe numerical simulation, it verified the effectiveness of the calculation method for thestability coefficient of block which was established in this paper and analyzed failuremechanism of complex rock slope under various depth of rock cell.
     The achievements can be used in the prevention and control of complex rock slope.It provides theoretical basis for the early warning of complex rock mass slope and thelayout of prevention and control engineering. Moreover, it enhances the pertinence andeffectiveness for prevention and control engineering.
引文
[1]陈洪凯,鲜学福,唐红梅.危岩稳定性断裂力学计算方法[J].重庆大学学报,2009,32(4):434-437.
    [2]B,K,阿特进森.岩石断裂力学[M].北京:地震出版社,1992.
    [3]M.J.Iqbal,B.Mohanty. Experimental Calibration of ISRM Suggested Fracture ToughnessMeasurement Techniques in Selected Brittle Rocks[J]. Rock Mech. Rock Engng.,2007,40(5),453–475.
    [4]饶秋华,孙宗颀,LI Chun-lin.剪切盒加载下岩石剪切(Ⅱ型)断裂韧度KⅡC的测定[J].中南工业大学学报,2001,32(6),563-567.
    [5]楼一珊,陈勉,史明义.岩石I、Ⅱ型断裂韧性的测试及其影响因素分析[J].中国石油大学学报(自然科学版),2007,31(4),85-89.
    [6]黎立云,宁海龙,许凤光等.III型裂纹断裂韧性测试及数值分析[J].岩石力学与工程学报,2006,25(12),2523-2528.
    [7]M. J. Iqbal, B. Mohanty. Experimental calibration of ISRM suggested fracture toughnessmeasurement techniques in selected brittle rocks[J]. Rock Mech. Rock Engng,2007,40(5):453–475.
    [8]M. H. B. NASSERI, B. MOHANTY,and R. P. YOUNG. Fracture Toughness Measurements andAcoustic Emission Activity in Brittle Rocks[J]. Pure appl. geophys.2006,(163):917–945.
    [9]BEZALEL HAIMSON. True Triaxial Stresses and the Brittle Fracture of Rock[J].Pure appl.geophys.2006,(163):1101–1130.
    [10]EMMANUELLE KLEIN, HIERRY REUSCHLE. A Model for the Mechanical Behaviour ofBentheim Sandstone in the Brittle Regime[J]. Pure appl. geophys.2003(160):833–849.
    [11]BERNARD FEDELICH. A stochastic theory for the problem of multiple surface crackcoalescence[J]. International Journal of Fracture,1998,91:23–45,.
    [12]K.V. Mardia,V.B. Nyirongo,A.N.Walder,et al. Markov Chain Monte Carlo Implementation ofRock Fracture Modelling[J].. Math Geol,2007,39:355–381.
    [13]M.K. RAHMAN, M.M. HOSSAIN and S.S. RAHMAN. An analytical method for mixed-modepropagation of pressurized fractures in remotely compressed rocks[J]. International Journal ofFracture,2000,103:243–258.
    [14]OMER MUGHIEDA, IYAD KARASNEH. Coalescence of offset rock joints under biaxialloading[J]. Geotechnical and Geological Engineering,2006(24):985–999
    [15]OMER MUGHIEDA, ABDEL KAREEM ALZO’UBI. Fracture mechanisms of offset rockjoints-A laboratory investigation[J].Geotechnical and Geological Engineering,2004,22:545–562.
    [16]ANTONIO BOBET,HERBERT H. EINSTEIN. Numerical modeling of fracture coalescence inamodel rock material [J]. International Journal of Fracture,1998,92:221–252.
    [17] MARK KACHANOV. On the problems of crack interactions and crack coalescence[J].International Journal of Fracture,2003,120:537–543.
    [18]P.N.B. ANONGBA, V. VITEK. Significance of the deviations of the crack front into the planeperpendicular to the crack propagation direction[J].International Journal of Fracture,2003,(124):1–15.
    [19]Omer Mughieda,Maher T. Omar. Stress Analysis for Rock Mass Failure with Offset Joints[J].Geotech Geol Eng,2008,11:1-10.
    [20]P. ISAKSSON, P. ST HLE. Prediction of shear crack growth direction under compressiveloading and plane strain conditions [J]. International Journal of Fracture,2002,113:175–194.
    [21]K. GOLOS,B. WASILUK. Role of plastic zone in crack growth direction criterion under mixedmode loading [J]. International Journal of Fracture,2000,102:341–353.
    [22]J. Kemeny. The Time-Dependent Reduction of Sliding Cohesion due to Rock Bridges AlongDiscontinuities: A Fracture Mechanics Approach[J]. Rock Mech. Rock Engng,2003,36(1),27–38.
    [23]Peter A. Dowd,Chaoshui Xu,Kanti V. Mardia,et al. A Comparison of Methods for the StochasticSimulation of Rock Fractures[J]. Math Geol,2007,39:697–714.
    [24]M.H.B. Nasseria, B. Mohantya,P.Y.F.Robin. Characterization of microstructures and fracturetoughness in five granitic rocks[J].International Journal of Rock Mechanics&Mining Sciences,2005,42:450–460
    [25]Naser A. Al-Shayea. Crack propagation trajectories for rocks under mixed mode I–II fracture[J].Engineering Geology,2005,81:84–97.
    [26]John Kemeny,Randy Post. Estimating three-dimensional rockdiscontinuity orientation fromdigital images of fracture traces[J]. Computers&Geosciences,2003,29:65–77.
    [27]D.M. Doolin,M. Mauldon. Fracture permeability normal to bedding in layered rock masses[J].International Journal of Rock Mechanics&Mining Sciences.2001(38):199–210.
    [28]Kachanov,L.M.Time of the RuPture Process under Creep Condition[J].Iiv.Akad.Nauk,S.S.R,Otd Tekb.Naul,No.81958.
    [29]Lemaitre,J.,Chaboehe,J.L. Aspect Phenomenologique de la Rupture Par Endonunagement[J].J.de Mec.Appl.1978,2,(3).
    [30]Kemeny JM, Cook NGW. Crack models for the failure of rocks in compression. In: Desai,Krempl, Kiousis, Kundu editors. Constitutive laws for engineering materials: theory andapplications,1987,2:879–87.
    [31]Chaboehe,J.L. Life time Predictions and cumulative Damage under High TemperatureConditions.Int.sump.On Low Cycle Fatigue and Life Predietion [J].Firming.Franee, ASTM STP1980,(770):256-261.
    [32] Kraieinovic,D.Continuum Damage Mechanies[J].APPI.Meeh.Reviews,1984,(37):1.
    [33]Tapponier P, Brace WF. Development of stress induced microcracks in Westerly granite. Int JRock Mech Min Sci Geomech Abstracts.1976,13:103–12.
    [34]Klaicinovie,D., Silva,M.A.G. Statistical Aspects of the Continous Damage Theory[J]. Int J.Solids Struetures,1982,(18):7.
    [35]Chaboehe,J.L..Continuous Damage Meehanies:A tool to Desscribe Phenomena Before CrackInitiation[J]. Nuclear Engineeringand Design,1981,(64):233-247.
    [36]Krajcinovic, D., Constitutive equations for damaging materials[J].J. Appl.Mech.,1983,50(7),355-360.
    [37]Dougil J W, Lau J C,Burt N J. Toward a theoretical model for progressive failure and softeningin rock, einerete,and similar materials[J]. Mech.InEngng., ASCE,1976,335-335.
    [38]Dragon Z, Mroz A.Continum model for Plastie-brittle behavior and conerete[J].Int.Engng.Sci,1979,17:121-137.
    [39]Curtin W.A., Seher H.. Britle fraeture in disordered materials: a Spring networkmodel[J].J.Mater.Res.,1990,5:535-550.
    [40] C.Y. Zhou, F.X.Zhu. An elasto-plastic damage constitutive model with double yield surfacesfor saturated soft rock[J]. International Journal of Rock Mechanics&Mining Sciences,2010,(47):385–395.
    [41]Hamed O.Ghaffari,Mostafa Sharifzadeh, MamadouFall. Analysis of aperture evolution in a rockjoint using a complex network approach[J]. International Journal of Rock Mechanics&MiningSciences,2010,(47):17–29.
    [42]朱维申,周奎,余大军等.脆性裂隙围岩的损伤力学分析及现场监测研究[J].岩石力学与工程学报,2010,29(10):1963-1969.
    [43]周绍青,郭少华,李显方.T应力对岩石断裂韧度及扩展路径的影响[J].中南大学学报(自然科学版),2009,40(3):197-802.
    [44]王成.层状岩体边坡锚固的断裂力学原理[J].岩石力学与工程学报,2005,24(1):1900-1904.
    [45]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学性质-本构模型[J].岩土力学,1993,14(4):108-119.
    [46]李广平,陶震宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报.1995,17(l):24-31.
    [47]周家文,杨兴国,符文熹等.脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J].岩石力学与工程学报,2010,29(6):1172-1183.
    [48]周小平.卸荷岩体本构理论及其应用[M].北京:科学出版社,2007.
    [49]李新平,朱瑞赓,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报.1995,14(3):236-245.
    [50]朱珍德,徐卫亚,张爱军.脆性岩石损伤断裂机理分析与试验研究[J].岩石力学与工程学报,2003,22(9):1411-1416.
    [51]冯峰,王启智.大理岩I—II复合型动态断裂的实验研究[J].岩石力学与工程学报,2009,28(8):1579-1586.
    [52]王国艳,李树忱,杨磊.单裂隙岩石损伤断裂过程的试验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(4):581-584.
    [53]曾祥国,王清远,姚洁.含裂纹岩石巴西圆盘试件在冲击载荷下断裂参数的有限元计算[J].岩石力学与工程学报,2007,26(增1):2779-2785.
    [54]衣永亮,曹平,蒲成志.静载下预制裂隙类岩石材料断裂实验与分析[J].湖南科技大学学报(自然科学版),2010,25(1):67-71.
    [55]张盛,王启智,梁亚磊.裂缝长度对岩石动态断裂韧度测试值影响的研究[J].岩石力学与工程学报,2009,28(8):1692-1696.
    [56]何满潮,胡江春,王红芳.砂岩断裂及其亚临界断裂的力学行为和细观机制[J].岩土力学,2006,27(11):1959-1962.
    [57]李术才,王刚,王书刚等.加锚断续节理岩体断裂损伤模型在硐室开挖与支护中的应用[J].岩石力学与工程学报,2006,25(8):1582-1590.
    [58]孙卫军,周维垣.节理岩体的弹塑性损伤本构模型[J].岩石力学与工程学报,1990,9(2):108-119.
    [59]杨延毅.节理裂隙岩体损伤一断裂力学模型及其在岩体工程中的应用[D].清华大学,1990.
    [60]唐立强。麻文军,孙秋华.泥岩层滑动的断裂力学模型[J].哈尔滨工程大学学报,2005,26(2):197-201.
    [61]谢和平.大理岩微观断裂的分形模型研究[J].科学通报.1989,34:(5).
    [62]谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报.1991,10(1):l-9.
    [63]谢和平,D.J.Sanderson,D.C.P.Peacock.雁行断裂分形模型和能量耗散[J].岩土工程学报.1994,16(l):1-7.
    [64]凌建明.节理岩体损伤力学及时效损伤特征的研究[D].同济大学,1992.
    [65]叶黔元.岩石的内时损伤本构模型[J].第四届全国岩土力学数值方法与解析方法会议论文集,武汉:武汉测绘技术科技大学出版社,1991,5-90.
    [66]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(l):各向异性损伤本构模型[J].岩土力学,2005,26(5):779-783.
    [67]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(II):各向异性渗透系数张量及算例[J].岩土力学,2005,26(12):1996-2000.
    [68]韦立德,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(I):理论模型[J].岩土力学,2006,27(3):425-434.
    [69]CHEN H K, TANG H M, YE S Q. Damage model of control fissure in perilous rock [J].Applied Mathematics and Mechanics (English Edition),2006,27(7):967-974.
    [70]叶四桥.危岩损伤—断裂联合机理研究[D].重庆:重庆交通大学,2004.
    [71]陈洪凯,唐红梅,鲜学福.缓倾角层状岩体边坡链式演化规律[J].兰州大学学报(自然科学版),2009,45(1):20-25.
    [72]陈洪凯,鲜学福,唐红梅,等.三峡库区危岩群发性机理与防治[J].重庆大学学报(自然科学版),2008,31(10):1178-1184.
    [73]陈洪凯.三峡库区危岩链式规律的地貌学解译[J].重庆交通大学学报(自然科学版),2008,27(1),92-95.
    [74]姜克春.缓倾角层状岩体边坡破坏规律的力学机理研究[D].重庆:重庆交通大学,2008.
    [75]王林峰,陈洪凯.危岩链式规律的力学演绎[J].重庆建筑大学学报,2008,30(2):94-97.
    [76]陈洪凯,唐红梅,王林峰,等.缓倾角岩质陡坡后退演化的力学机制[J].岩土工程学报,2010,32(3):468-473.
    [77]唐红梅,王林峰,陈洪凯,等.软弱基座陡崖上危岩崩落序列[J].岩土工程学报,2010,32(2):205-210.
    [78]CHEN H K, TANG H M. Method to calculation fatigue fracture life of control fissure[J].Applied Mathematics and Mechanics,2007,28(5):643-649.
    [79]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1981.
    [80]陈祖煜,汪小刚,杨健,等.岩体边坡稳定分析:原理方法程序[M].北京:中国水利水电出版社,2005.
    [81]姚环,郑振,简文彬,等.公路岩质高边坡稳定性的综合评价研究[J].岩土工程学报,2006,28(5):558-563.
    [82]Morteza A, Majid E. A New Approach to Plane Failure of Rock Slope Stability Based on WaterFlow Velocity in Discontinuities for the Latian Dam Reservoir Landslide[J]. Journal of MountainScience,2011,(8):124-130.
    [83]S. K. Shukla,S. Khandelwal, V. N. Verma, et al. Effect of Surcharge on the Stability ofAnchored Rock Slope with Water Filled Tension Crack under Seismic Loading Condition[J].Geotech Geol Eng,2009,(27):529–538.
    [84]D. P. Adhikary, A. V. Dyskin, R. J. Jewell,et al. A Study of the Mechanism of Flexural TopplingFailure of Rock Slopes[J]. Rock Mech. Rock Engng,1997,30(2),75-93.
    [85]Vladimir Greif,Kyoji Sassa,Hiroshi Fukuoka. Failure mechanism in an extremely slow rockslide at Bitchu-Matsuyama castle site (Japan)[J]. Landslides,2006,3:22-38.
    [86] D. P. Adhikary, A. V. Dyskin. Modelling of Progressive and Instantaneous Failures of FoliatedRock Slopes[J]. Rock Mech. Rock Engng,2007,40(4):349-362.
    [87] Susan L. Nichol, Oldrich Hungr, and S.G. Evans. Large-scale brittle and ductile toppling ofrock slopes[J]. Can. Geotech. J.2002,39:773–788.
    [88] O. Aydan, Y. Shimizu, and Y. Ichikawa. The Effective Failure Modes and Stability of Slopes inRock Mass with Two Discontinuity Sets[J].Rock Mechanics and Rock Engineering,1989,22:163-188.
    [89]C.H. Liu, M.B.Jaksa,A.G.Meyers. Toppling mechanisms of rock slopes considering stabilizationfrom the underlying rock mass[J].International Journal of Rock Mechanics&MiningSciences,2010,47:348–354.
    [90]艾畅,冯春,李世海等.地震作用下顺层岩质边坡动力响应的试验研究[J].岩石力学与工程学报,2010,29(9):1825-1832.
    [91]卢海峰,陈从新,袁从华等.巴东组红层软岩缓倾顺层边坡破坏机制分析[J].岩石力学与工程学报.2010,29(增2):3569-3577.
    [92]谢桂华.岩土参数随机性分析与边坡稳定可靠度研究[D].湖南:中南大学,2009.
    [93] A.J. Li,R.S. Merifield,A.V. Lyamin. Effect of rock mass disturbance on the stability of rockslopes using the Hoek–Brown failure criterion[J]. Computers and Geotechnics,2011,38:546-558.
    [94] Vidar Kveldsvik,AmirM.Kaynia, FarrokhNadim,et al. Dynamic distinct-element analysis of the800m high Aknes rock slope[J]. International Journal of Rock Mechanics&Mining Sciences2009,46:686–698.
    [95] A.J. Li,A.V. Lyamin, R.S. Merifield. Seismic rock slope stability charts based on limit analysismethods[J]. Computers and Geotechnics,20093,6:135-148.
    [96]Sanjay KumarShukla,Md.MonirHossain. Stability analysis of multi-directional anchored rockslope subjected to surcharge and seismic loads[J]. Soil Dynamics and Earthquake Engineering,2011,31:841–844.
    [97]Gali Madhavi Latha,Arunakumari Garaga. Seismic Stability Analysis of a Himalayan RockSlope[J]. Rock Mech Rock Eng,2010,43::831–843.
    [98]Crosta GB, Hungs O, Sosio R, Frattini P. Dynamic analysis of the Thurwieser rock avalanche,Italian Alps. Geophys Res Abstr,2007,9:1–2.
    [99]Hyuck-Jin Parka, Terry R. West, Ik Woo. Probabilistic analysis of rock slope stability andrandom properties of discontinuity parameters, Interstate Highway40,Western North Carolina,USA[J]. Engineering Geology,2005,(79):230–250
    [100]许湘华,曲广绣,方理刚.基于节理几何参数不确定性的边坡可靠度分析[J].中南大学学报(自然科学版),2010,41(3):1139-1145.
    [101]苏永华,伍文国,李志勇等.极限平衡模式下的边坡稳定概率小样本最优拟合算法[J].岩石力学与工程学报,2009,28(1):173-180.
    [102]苏永华,张月英,赵明华等.含弱面块状结构岩质边坡稳定概率计算[J].岩石力学与工程学报,2008,29(4):871-875.
    [103]徐奴文.高陡岩质边坡微震监测与稳定性分析研究[D].辽宁:大连理工大学,2011.
    [104]张国新,李海枫,黄涛.三维不连续变形分析理论及其在岩质边坡工程中的应用[J].岩石力学与工程学报,2010,29(10):2116-2126.
    [105]李宁,钱七虎.岩质高边坡稳定性分析与评价中的四个准则[J].岩石力学与工程学报,2010,29(9):1754-1759.
    [106]邬爱清,丁秀丽,卢波. DDA方法块体稳定性验证及其在岩质边坡稳定性分析中的应用[J].岩石力学与工程学报,2008,27(4):664-672.
    [107]文畅平,杨果林.基于属性数学理论的岩土边坡地震稳定性评价[J].中国铁道科学,2010,31(5):8-14.
    [108]何铮,徐卫亚,石崇等.顺层岩质高边坡地震变形破坏机制三维数值反演研究[J].2009,30(11):3512-3518.
    [109]范磊,陶连金,魏云杰等.汶川地震灾区某工程开挖边坡变形三维稳定性分析[J].2010,21(2):32-36.
    [110杜晓丽,戴俊,魏京胜.岩质边坡稳定性分析中地震波理论的应用研究[J].2009,32(2):55-58.
    [111]Martin Grenon,John Hadjigeorgiou. A design methodology for rock slopes susceptible towedge failure using fracture system modelling[J]. Engineering Geology,2008,96:78–93.
    [112]冯夏庭,周辉,李邵军等.复杂条件下岩石工程安全性的智能分析评估和时空预测系统[J].岩石力学与工程学报,2008,27(9):1741-1756.
    [113]Vladimir Greif,Kyoji Sassa,Hiroshi Fukuoka. Failure mechanismin an extremely slow rockslide at Bitchu-Matsuyama castle site (Japan)[J]. Landslides,2006,3:22–38.
    [114]D. Stead, J. S. Coggan, and E. Eberhardt. Realistic simulation of rock slope failuremechanisms:the need to incorporate principles of fracture mechanics[J]. Int. J. Rock Mech. Min.Sci,2004,41(3):1-6.
    [115] A. Segalini,G. P. Giani. Numerical Model for the Analysis of the Evolution Mechanisms of theGrossgufer Rock Slide[J]. Rock Mech. Rock Engng.,2004,37(2):151–168.
    [116] O.Aydan,Y.Shimizu,Y.Ichikawa. The Effective Failure Modes and Stability of Slopes in RockMass with Two Discontinuity Sets[J]. Rock Mechanics and Rock Engineering,1989,22:163-188.
    [117]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2011.
    [118]徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
    [119]邓宗伟,冷伍明,李志勇等.喷混凝土边坡温度场与应力场耦合的有限元时效分析[J].岩土力学,2009,30(4):1153-1158.
    [120]邵保平,赵阳升,赵金昌等.层状盐岩温度应力耦合作用蠕变特性研究[J].岩石力学与工程学报,2008,27(1):90-96.
    [121]谭贤君,陈卫忠,贾善坡等.含相变低温岩体水热耦合模型研究[J].岩石力学与工程学报,2008,27(7):1455-1461.
    [122]康健,赵明鹏,梁冰.随机固-热耦合模型与岩石热破裂数值试验研究[J].岩石力学与工程学报,2005,26(1):135-139.
    [123]白冰.循环温度荷载作用下饱和多孔介质热-水-力耦合响应[J].工程力学,2007,24(5):87-92.
    [124]薛强,赵颖,刘磊等.垃圾填埋场灾变过程的温度-渗流-应力-化学耦合效应研究[J].岩石力学与工程学报,2011,30(10):1970-1988.
    [125]张学富,喻文兵,刘志强.寒区隧道渗流场和温度场耦合问题的三维非线性分析[J].岩土工程学报,2006,28(9):1095-1100.
    [126]黄宏伟,车平.泥岩遇水软化微观机理研究[J].同济大学学报(自然科学版),2007,35(7):866-870.
    [127]Qi Shengwen,Yue Zhongqi, Wu Faquana, er al. Deep weathering of a group of thickargillaceous limestone rocks near Three Gorges Reservoir, Central China[J]. International Journal ofRock Mechanics&Mining Sciences,2009,(46):929–939.
    [128] S. Ceryan, K. Zorlu, C. Gokceoglu, et al. The use of cation packing index for characterizingthe weathering degree of granitic rocks[J]. Engineering Geology,2008,(98):60–74.
    [129] E.A.G. Marques, E.V. Barroso, A.P. Menezes Filho, et al. Weathering zones on metamorphicrocks from Rio de Janeiro—Physical, mineralogical and geomechanical characterization[J].Engineering Geology,2010,(111):1–18.
    [130]Gulseren Dagdelenler,Ebru Akcapinar Sezer,Candan Gokceoglu. Some non-linear models topredict the weathering degrees of a granitic rock from physical and mechanical parameters[J]. ExpertSystems with Applications,2011,(38):7476–7485.
    [131]Fumitake Takahashi, Takayuki Shimaoka. The weathering of municipal solid wasteincineration bottom ash evaluated by some weathering indices for natural rock[J]. WasteManagement,2012,(12):1-12.
    [132]I. tyriaková, I. tyriak,H. Oberh nsli.Rock weathering by indigenous heterotrophic bacteriaof Bacillus spp.at different temperature:a laboratory experiment[J].Miner Petrol,2012,(105):135–144.
    [133]Sener Ceryan,S. Tudes,N. Ceryan. A new quantitative weathering classification for igneousrocks[J]. Environ Geol,2008,(55):1319–1336.
    [134]P. Renforth. The potential of enhanced weathering in the UK[J]. International Journal ofGreenhouse Gas Control,2012(10):229–243.
    [135] Zeynal Abiddin Erguler. Field-based experimental determination of the weathering rates of theCappadocian tuffs[J]. Engineering Geology,2009(105):186–199.
    [136]陈洪凯,王全才,唐红梅.岩腔内泥岩压裂风化特性研究[J].人民长江,2011,41(21):51-54.
    [137]Ollier, C.D. Causes of spheroidal weathering[J]. Earth-Science Reviews,1971,(7):127–141.
    [138]Neil F G, Adrian M H. Calculating Quaternary glacial erosion rates in northeast Scotland.Geomorphology,1997,(20):59-48.
    [139]陈旭,许模,康小兵,等.玄武岩风化程度化学指标及微观特征研究[J].人民长江,2008,39(16):32-34.
    [140]Reiche P. Graphic representation of chemical weathering. Journal of SedimentaryPetrology,1984,(13):56-68.
    [141]Ruxtion B F. Measures of the degree of chemical weathering of rock. Journal of Geology,1968,70:518-527.
    [142]大见美智人,本田彰义,青柳省吾,等.风化安山岩の化学的、物理的性质の关系について[J].应用地质,1975,16(4):169-177.
    [143]刘春,白世伟.岩体风化程度两级模糊综合评判研究[J].岩石力学与工程学报,2005,24(2):252-256.
    [144]C. Gokceoglu, K. Zorlu, S. Ceryan, et al. A comparative study on indirect determination ofdegree of weathering of granites from some physical and strength parameters by two soft computingtechniques[J]. Materials Characterization,2009,60(11):1317-1327.
    [145]Gulseren Dagdelenler, Ebru Akcapinar Sezer, Candan Gokceoglu. Some non-linear models topredict the weathering degrees of a granitic rock from physical and mechanical parameters[J]. ExpertSystems with Applications,2011,38(6):7476-7485.
    [146]龚匡周,王浩,方雪晶,等.复杂岩质边坡的破坏类型及稳定性分析[J].中国地质灾害与防治学报,2012,23(1):22-27.
    [147]C.-H. Chen, C.-S. Chen, J.-H. Wu. Fracture toughness analysis on cracked ring disks ofanisotropic rock[J]. Rock Mech Rock Engng,2008,41(4):539–562.
    [148] M. R. M. Aliha, M. R. Ayatollahi.J. Akbardoost. Typical Upper Bound–Lower Bound MixedMode Fracture Resistance Envelopes for Rock Material[J]. Rock Mechanics and Rock Engineering,2012,45(1):65-74.
    [149]Q. Z. Wang, H. Fan, X. P. Gou,et al. Recalibration and Clarification of the Formula Applied tothe ISRM-Suggested CCNBD Specimens for Testing Rock Fracture Toughness[J]. Rock Mechanicsand Rock Engineering,2012,26(7):1-11.
    [150]Ching H K, Batra R C. Determination of crack tip fields in linear elastostatics by the meshlesslocal Petrov-Galerkin (MLPG) method[J]. Computer Modeling in Engineering and Sciences.2001,2(2):273-289.
    [151]吴海艳.山区高速公路挖方高边坡稳定可靠性及其控制技术研究[D].河北:河北工业大学,2010.
    [152]李明.悬锚式挡土墙可靠度计算研究[D].陕西:长安大学,2011.
    [153]王玉莲.基于可靠度的结构优化设计方法研究[D].广东:华南理工大学,2011.
    [154]Ping Yi, Gengdong Cheng, Lei Jiang. A sequential approximate programming strategy forperformance-measure-based probabilistic structural design optimization[J]. Structural Safety,2008,30(2):91-109.
    [155]Zhan Kang, Yangjun Luo, Alex Li. On non-probabilistic reliability-based design optimizationof structures with uncertain-but-bounded parameters[J]. Structural Safety,2011,33(3):196-205
    [156]左建平,周宏伟,谢和平.不同温度影响下砂岩的断裂特性研究[J].工程力学,2008,25(5),124-130.
    [157]黄润秋,王贤能,唐胜传.热应力的交变作用对边坡危岩体形成的影响[J].自然科学进展,1999,9(8):716-722.
    [158]周翠英,朱凤贤,张磊.软岩饱水试验与软化临界现象研究[J].岩土力学,2010,31(6):1709-1715.
    [159]Qingli Dai, Kenny Ng, Jun Zhou, et al. Damage investigation of single-edge notched beamtests with normal strength concrete and ultra high performance concrete specimens using acousticemission techniques[J]. Construction and Building Materials,2012,31:231-242.
    [160]Jian Deng, Desheng Gu. On a statistical damage constitutive model for rock materials[J].Computers&Geosciences,2011,37(2):Pages122-128.
    [161]Rashid K,Abu Al-Rub,Sun-Myung Kim. Computational applications of a coupledplasticity-damage constitutive model for simulating plain concrete fracture[J]. Engineering FractureMechanics,2010,77:1577–1603.
    [162] V. Dattoma, S. Giancane, R. Nobile, et al. Fatigue life prediction under variable loading basedon a new non-linear continuum damage mechanics model[J]. International Journal of Fatigue,2006,28:89–95.
    [163]候芳.均布荷载作用下温克勒弹性地基梁解析解及其在盾构隧道纵向计算中的应用[D].山东:青岛理工大学,2009.
    [164]张荣.弹性地基梁计算模型研究[D].北京:北京交通大学,2007.
    [165]李成波, Adnan Aydin,施行觉,等.岩石蠕变模型的比较和修正[J].实验力学,2008,23(1):9-16.
    [166]王志俭,殷坤龙,简文星等.三峡库区万州红层砂岩流变特性试验研究[J].岩石力学与工程学
    报,2008,27(4):840-847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700