用户名: 密码: 验证码:
高含硫裂缝性气藏储层综合伤害数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高含硫裂缝性气藏流体渗流是天然气、H2S气体以及元素硫的混合物在多孔介质中的复杂流动过程。该类气藏在开采过程中,随着气体的产出,地层压力不断下降,同时由于焦耳-汤姆逊效应,近井地带温度亦有不同程度的降低,热力学条件的改变致使硫微粒在气相中的溶解度逐渐减小,在达到临界饱和态后从气相中析出,并在储层孔隙喉道中运移、沉积,导致地层孔隙度和渗透率降低。另一方面,由于储层的应力敏感性,地层压力的降低致使裂缝逐渐趋于闭合,也会导致地层孔隙度和渗透率的降低。传统意义上经典的渗流理论不再适应高含硫裂缝性气藏。
     该论文属于国家高技术研究发展计划(863计划)项目“酸性气田安全开采关键技术(项目编号:2007AA062209)”部分研究内容,主要开展高含硫裂缝性气藏储层综合伤害模型研究。
     本文在硫沉积热力学机理研究基础上,针对高含硫裂缝性气藏复杂渗流特征,突破传统意义上经典的渗流理论,基于空气动力学气固理论描述硫微粒在多孔介质中的运移和沉积,建立了能够描述该类气藏开采过程中压力和近井地带温度变化引起的硫微粒的析出、运移、沉积、堵塞以及储层应力敏感性特征的高含硫裂缝性气藏储层综合伤害数学模型。取得的主要成果有:
     (1)通过多学科综合研究,引入化学反应平衡理论,建立了由多硫化氢分解生成元素硫的地层含硫饱和度计算方法。在此基础上,通过实例分析得出物理沉积是高含硫气藏开采过程中硫沉积的主要方式,进一步认清了硫沉积热力学机理。
     (2)基于焦耳-汤姆逊效应原理与地层压力分布公式,建立了高含硫裂缝性气藏气井开采过程中近井地带温度变化数学模型,该模型可以预测井筒与地层边界处以及近井区域温度变化,能够更加准确描述开采过程中硫微粒在酸气中溶解度的变化。
     (3)在分析高含硫裂缝性气藏开采过程中储层应力敏感性导致裂缝闭合基础上,建立了能够综合考虑储层应力敏感性以及由于压力和近井区域温度变化引起硫沉积影响的高含硫裂缝性气藏储层物性参数变化数学模型。
     (4)考虑储层应力敏感性特征以及由于焦耳-汤姆逊效应引起近井地带温度变化的影响,建立了高含硫裂缝性气藏储层综合伤害数学模型,并对模型进行了数值求解、编制了计算程序。利用所建模型进行了开采机理分析,研究结果表明,所建模型能够描述高含硫裂缝性气藏开发过程。该部分研究成果已经在普光气田单井配产以及105亿方产能建设中得到初步应用。
Flow of fluid, mixture of natural gas. H2S and elemental sulfur, in porous media in fractured gas reservoirs with high H2S content is a complex process. During the course of production of fractured gas reservoirs with high H2S content, formation pressure falls continually and temperature drops near the wellbore due to Joule-Thomson effect to a certain extent. On the one hand, change of the thermodynamic conditions leads to decline of solubility of sulfur particles in gas phase, and sulfur particles will precipitate from gas phase after running up to saturation state and transport and deposit at pore space and throat, 'sequentially resulting in formation porosity and permeability reduction. In addition, the size of sulfur particle deposited in the pores has effect on the permeability. On the other hand, fracture will close continually due to decrease of formation pressure, which will also result in descending of porosity and permeability. Productivity and economic benefits are severely impaired by combined effects of both sulfur deposition and fracture close and gas well production may halts when sulfur deposition and fracture closure become severe. Classical percolation theory cannot meet the fractured gas reservoirs with high H2S content.
     This thesis'comes from the National High Technology Research and Development Program (863 Program) project "key technology for safe exploitation of sour gas reservoirs (No.2007AA06Z209)", and the main content includes establishment and application of mathematical model of formation damage.
     According to characteristics of complex flow through porous media in fractured gas reservoir with high H2S content, breaking through classical filtration theory, based on aerodynamics theory used to build a mathematical model for describing transportation and precipitation of sulfur particles in fractured gas reservoir with high H2S content, a new comprehensive formation damage model in fractured gas reservoir with high H2S content, accounting for sulfur deposition, fracture closure, temperature drop near the wellbore, has been proposed.
     The main contents of the works are as follows:
     (1) On the basis of analyzing H2S content change law in the process of developing the gas in the gas reservoirs with H2S content, the chemical reaction equilibrium theory of inorganic chemistry is introduced to establish formation sulfur saturation calculation method, and X gas field was taken as a case of application. Results indicate that, in the process of the development of the reservoirs with high H2S content, under the condition of minor sulfide content change, the sulfur content precipitated from polysulfide takes very low proportion of total precipitated amount. Therefore, physical deposition is the main way of sulfur deposition, so as the deposition theory of element sulfur is further recognized.
     (2) based on Joule-Thomson effect theory and formation pressure distribution formula, a mathematical model of temperature change in vicinity of wellbore was proposed for gas well with high H2S.content, which can forecast temperature change in vicinity of wellbore and make predicting of solubility of sulfur in sour gas more precise.
     (3) On basis of analyzing fracture closure due to reservoir stress sensibility for gas reservoirs with high H2S content, porosity and permeability change mathematical model which can comprehensively consider sulfur deposition resulting from drop of formation pressure, temperature change near wellbore and reservoir stress sensibility was proposed.
     (4) A new mathematical model of formation damage for fractured gas reservoirs with high H2S content, considering fracture closure resulting from reservoir stress sensibility and temperature change near wellbore and reservoir, was proposed. Some well with high H2S content was taken as a case of analyses of production mechanism. Results indicate this mathematical model of formation damage can describe the process of development of fractured gas reservoirs with high H2S content, and have been preliminarily applied in reasonable allocation of production rate and construction of productive capacity in PG gas field.
引文
[1]H. Mei, M. Zhang, and X. Yang. The Effect of Sulfur Deposition on Gas Deliverability[C]. SPE 99700, 2006.
    [2]郭肖,杜志敏,陈小凡等.高含硫裂缝性气藏流体渗流规律研究进展[J].天然气工业,2006,26(1):30-33.
    [3]杜志敏.国外高含硫气藏开发经验与启示[J].天然气工业,2006,26(12):35-37.
    [4]岑芳,赖枫鹏,姜辉等.改进定容含硫气藏储量计算方法[J].石油与天然气地质,2007,28(3):320-323.
    [5]杨学锋,黄先平,杜志敏等.考虑非平衡过程元素硫沉积对高含硫气藏储层伤害研究[J].大庆石油地质与开发,2007,26(6):67-70.
    [6]国外六类气藏开发模式及工艺技术[M].北京:石油工出版社.1995,43.
    [7]叶慧平,王晶玫.酸性气藏开发面临的技术挑战及相关对策[J].石油科技论坛,2009(4):63-65.
    [8]罗音宇,江田汉,邓云峰等.含硫气井硫化氢扩散危险水平分级方法[J].石油学报,2008,29(3):447-450.
    [9]中国第一个天然气工业基地-四川气田[M].北京:石油工业出版社.2003,29.
    [10]朱光有,张水昌等.中国含硫化氢天然气的形成及其分布[J].天然气地球科学,2004,31(3):18-21.
    [11]戴金星.中国含硫化氢的天然气分布特、征分类及其成因探讨[J].沉积学报,1985,3(4):109-120.
    [12]中国石油天然气行业标准SY/T6168-1995.3.
    [13]王鸣华.气藏工程[M].北京:石油工业出版社,1997.
    [14]陈红军.含硫化氢气井酸化中的控硫控铁及酸化压裂技术研究[D].四川成都:西南石油学院博士学位,2004,5.
    [15]Jamal H. Abou-Kassem. Experimental and numerical modelling of sulfur plugging in carbonate reservoirs. Journal of Petroleum Science and Engineering 26 (2000):91-103.
    [16]Kennedy, HT. and Wieland, DR. "Equilibrium in the Methane-Carbon Dioxide-Hydrogen Sulfide-Sulfur System," JPT (July 1960) 219.
    [17]Roof, J.G. "Solubility of Sulfur in Hydrogen Sulfide and in Carbon Disulfide at Elevated Temperature and Pressure," Sot. Pet Err,q.J, (Sept.1971) 272.
    [18]S.C. Swift, F.C. Manning, R.E. Thompson. Sulfur bearing capacity of hydrogen sulfide gas, SPEJ, 1976 (16):57-64.
    [19]Brunner. E, Woll W. Solubility of sulfur in hydrogen sulfide and sour gases [C], SPE 8778,1980.
    [20]Brunner. E, Place Jr, M.C, and Well. W.H.:"Sulfur Volubility in Sour Gas," JPT (Dec 1988) 1587.
    [21]P.M.Davis, C.S.C Lau, J. B. Hyne. Data on the solubility of sulfur in sour gases [J]. ASRL QQ Vol. XXIX. No 2,3 & 4 (1992-1993).
    [22]谷明星,里群.固体硫在超临界/近临界酸性流体中的溶解度(Ⅰ)实验研究[J].化工学报,1993(3):315-319.
    [23]C.-Y. Sun, G. J. Chen. Experimental and modeling studies on sulfur solubility in sour gas[J]. Fluid Phase Equilibrium,2003,21 (4):187-195.
    [24]Hyne,J.B. "Study Aids Prediction of Sulfur Deposition in Sour-Gas Wells".Oil and Gas J.(No.25,1968) 107.
    [25]Hyne, J.B, Derdall. Sulfur Deposition in Reservoirs and Production Equipment:Sources and Solutions, paper presented at the Annual Gas Conditioning Conference, University of Oklahoma, Norman, Oklahoma, March 3-5,1980.
    [26]Hyne, J.H. Controlling Sulfur Deposition in Sour Gas Wells[J]. World Oil (Aug.1983)35.
    [27]Chrastil, J. "Solubility of Solids and Liquids in Supercritical Gases," [J]. Phys. Chem. (1982) 86, 3016.
    [28]Roberts B E. The effect of sulfur deposition on gas well inflow performance [C], SPE 36707,1996.
    [29]Kunal Karan, et al. Sulfur Solubility in Sour Gas:Predictions with an Equation of State Model[J]. Ind. Eng. Chem. Res.1998,37,1679-1684.
    [30]Tomcej R A, Kalra H. Hunter B E. Prediction of sulfur solubility in sour gas mixture[C],39th Ann. Tech.Mtg of CIM Calgary, Alberta, June,1988:12-16.
    [31]Heidemann R A, Phoenix A V etal. A chemical equilibrium equation of state model for elemental sulfur and sulfur-containing fluids, Ind. Eng. Chem. Res,40,2001:2160-2167.
    [32]杨学锋.高含硫气藏特殊流体相态及硫沉积对气藏储层伤害研究[D].四川成都:西南石油大学博士学位,2006,4.
    [33]乔海波,欧成华,刘小旭.含硫气体元素硫溶解度预测模型研究[J].钻采工艺,2006,29(5):91-93.
    [34]Kuo, C.H, On the Production of Hydrogen Sulfide-Sulfur Mixtures from Deep Formations, Sept,1972, 1142.
    [35]Adin, A. Prediction of Granular Water Filter Performance for Optimum Design, Filtration and Separation, Vol.15, No.1,1978,55-60.
    [36]Arshad, S.A. A Study of Surfactant Precipitation in Porous Media with Applications in Surfactant-Assisted Enhanced Oil Recovery Processes, Ph.D. University of Oklahoma,1991.285.
    [37]Gruesbeck. C, and Collins, R.E. Entrainment and Deposition of Fine Particles in Porous Media, SPEJ, December 1982,847-856.
    [38]Al-awadhy, F., Kocabas, I., Abou-Kassem, J.H., and Islam, M.R., Experimental and numerical modeling of sulfur plugging in carbonate oil reservoirs[C]. SPE 49498,1998.
    [39]Shedid A. Shedid, Abdulrazag Y.Zekri, Ai-Ain, P.O. Formation Damage Due to Sulfur Deposition in Porous Media[C]. SPE 73721,2002.
    [40]Shedid A. Shedid, Abdulrazag Y. Zekri. Formation Damage Due To Simultaneous Sulfur and Asphaltene Deposition[C]. SPE 86553,2004..
    [41]Shedid A. Shedid. A Novel Technique for the Determination of Microscopic Pore Size Distribution of Heterogeneous-Reservoir Rocks[C]. SPE 107750,2007.
    [42]Reyadh Almehaideb, Al-Ain City, Shedid a. Shedid et al. Laboratory Study Of Miscible Carbon Dioxide Flooding Of UAE Carbonate Oil Reservoirs[R]. SPE 117118,2008.
    [43]Abdulrazag Y. Zekri, Shedid A. Shedid, Reyadh A. Almehaideb. Sulfur And Asphaltene Deposition During CO2 Flooding of Carbonate Reservoirs[R].SPE 118825,2009.
    [44]Shedid A. Shedid, Abdulrazag Y. Zekri, Reyadh A. Almehaideb. Induced Sulfur Deposition During Carbon Dioxide Miscible Flooding in Carbonate Reservoirs[R].SPE 119999,2009.
    [45]T.V.Tran, F.Civan, I.Robb.correlating flowing time and condition for plugging of rectangular opening, natural fractures, and slotted liners by suspended particles [C].SPE 126310,2010.
    [46]C.H.Kuo and P.J.Closmann. Theoretical study of fluid flow accompanied by solid precipitation in porous media, AIChE J,1966, (12),995.
    [47]Nicholas Hands, Bora Oz, Bruce Roberts, Paul Davis, Advances in the Prediction and Management of Elemental Sulfur Deposition Associated with Sour Gas Production from Fractured Carbonate Reservoirs[R]. SPE 77332,2002.
    [48]Julio RR. Valdes, J. Carlos Santamarina. Particle Clogging in Radial Flow:Microscale Mechanisms[R]. SPE 88819,2006.
    [49]张勇,杜志敏,郭肖等.硫沉积对高含硫气藏产能影响数值模拟研究[J].天然气工业,2007,27(6):94-96.
    [50]Faruk Civan. Formation Damage Mechanisms and Their Phenomenological Modeling-An Overview[R]. SPE 107857,2006.
    [51]Terzaghi, k. Die Berechnung der Durchlaeassigkeitsziffer des Tones aus demVerlauf der hydrodynamoschen Spannungserscheinungen[J]. Sitzungsber. Akad. Wiss.Wien,1923.132:125-138.
    [52]Zoback, M.D. and Byerlee, J.D. Permeability and Effective Stress [J]. AAPG Bulletin,1975.59(1): 154-158.
    [53]Walls, J.and Nur, A. Pore Pressure and Confining Pressure Dependence of Permeability in Sandstone[J]. Proc., Seventh Formation Evaluation Symposium of the Canadian Well logging Soc., Calgary.1979.
    [54]Nur, A. et al. Effects of fluid Saturation on Waves in Porous Pock and Relation to Hydraulic Permeability [J]. SPEJ 1980:450-458.
    [55]Coyner, K.B. Effects of Stress, Pore Pressure and Pore Fluid on Bulk Strain, Velocity, and Permeability in Rocks(D), PhD dissertation, Massachusetts Inst. of Technology, Cambridge.1984.
    [56]Bernabe, Y. The Effective Pressure Law for Permeability in Chelmsford Granite and Barre Granite[J]. Intl.J.Rock Mech., Min Sci.& Geomech.Abstr.1986,23(3):267-275.
    [57]Bernabe, Y. The Effective Pressure Law for Permeability during Pore Pressure and Confining Pressure Cycling of Several Crystalline Rocks[J]. J.Geophys.Res.1987.92, No.B1,649-657.
    [58]Bernable, Y. Comparison of the effective Pressure Law for Permeability and resistivity Formation Factor in Chelmsford Granite[J]. Pageoph.1988.127:607-625.
    [59]Warpinski, N.R. and Teufel, L.W. Determination of the Effective Stress Law for Permeability and Deformation in Low-permeability Rocks[J].SPEFE.1992.7(2):123-131.
    [60]Terzaghi, K. The shearing resistance of saturated soils and the angle between the planes of shear[J]. Proc.1st Int. Conf. Soil Mech.1936.1,54-56.
    [61]Nur A, Byerlee J D. An.exact effective stress law for elastic deformation of rock with fluids [J]. J.Geophys-Res,1971,76 (26):6414-6419.
    [62]Walsh J.B. The effect of cracks on the uniaxial elastic compression of rocks[J]. J.Geophys.Res.1965,70(2),399-341.
    [63]Berryman, J.G. Effective Stress for Transport Properties of Inhomogeneous Porous Rock [J]. J. Geophys. Res.1992,97(B12):17,409-17,424.
    [64]Berryman J. G. Effective-stress rules for pore-fluid transport in rocks containing two minerals [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abst.l993,30:1165-68.
    [65]Farber, D. L., B. P. Bonner.Observations of water induced transition from brittle to viscoelastic behavior in nanocrystalline swelling clay [J].EOS,2001,82:1189.
    [66]Al-Wardy.W. and Zimmerman.R.W.2003. Effective Stress Law for the Permeability of Clay-rich Sandstones [J].16th ASCE Mechanics Conference July 16-18,2.
    [67]张浩,康毅力,陈一健等.岩石组分和裂缝对致密砂岩应力敏感性影响[J].天然气工业,2004,24(7):55-57.
    [68]李传亮.低渗透储层不存在强应力敏感[J].石油钻采工艺,2005,27(4):61-63.
    [69]李闽,乔国安,陈昊.低渗砂岩储层岩石应力敏感实验与理论研究[J]钻采工艺,2006,29(4):91-93.
    [70]李闽,肖文联.低渗砂岩储层渗透率有效应力定律试验研究[J].岩石力学与工程学报,2008(27)增:3535-3540.
    [71]郑玲丽,李闽,肖文联等.最大似然函数法确定渗透率有效应力系数[J].新疆石油地质,2008,29(6):747-749.
    [72]李相臣,康毅力,罗平亚.应力对煤岩裂缝宽度及渗透率的影响[J].煤田地质与勘探,2009,37(1):29-31.
    [73]李相臣,康毅力,罗平亚.煤层气储层变形机理及对渗流能力的影响研究[J].中国矿业,2009(3):99-102.
    [74]杨枝,孙金声,张洁.裂缝性碳酸盐岩储层应力敏感性实验研究[J].钻井液完井液,2009,26(6):5-7.
    [75]李闽,肖文联,郭肖等.塔巴庙低渗致密砂岩渗透率有效应力定律实验研究[J].地球物理学报,2009,52(12):3166-3174.
    [76]李传亮,孔祥言,徐献芝等.多孔介质的双重有效应力[J].自然杂志,1999,21(5):298-292.
    [77]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995,52.
    [78]Thomas Loimer. Linearzed description of the non-isothermal flow of a saturated vapor through a micro-porous membrane [J]. Journal of membrane science,2007,301:107-117.
    [79]Lewis.Finite element modeling of two phase heat and fluid flow in deforming porous media[J].Trans porous media,1989.4:319-334.
    [80]Yu-Shu Wu, Karsten Pruess. Numerical simulation of non-isothermal multiphase tracer transport in heterogeneous fractured porous media [J]. Advances in water resources,2000,23:699-723.
    [81]H.Class, R.Helmig, P.Bastian. Numerical simulation of non-isothermal multiphase multi-component processes in porous media.1.An efficient solution technique [J].Advances in water resources,2002,25: 533-550.
    [82]H.Class, R.Helmig. Numerical simulation of non-isothermal multiphase multi-component processes in porous media.2.Applications for the injection of steam and air [J].Advances in water resources,2002, 25:551-564.
    [83]Tanuja Sheorey, K.Muralidhar. Isothermal and non-isothermal oil-water flow and viscous fingering in a porous medium [J].International journal of thermal sciences,2003,42:665-676.
    [84]计有权.二氧化碳混相驱多组分多相非等温数学模拟[D].吉林长春:吉林大学博士论文,2005,4.
    [85]成庆林,刘扬,项新耀.二维非等温渗流驱动势场的传递分析[J].哈尔滨工业大学学报,2005,37(5):646-648.
    [86]成庆林,刘扬,项新耀.油水两液相一维非等温渗流的传递分析[J].工程热物理学报,2006,27(1):20-22.
    [87]F.Paux and H. Zhou. Field Case:Match of a 600 Bars Depletion and 40 Years of History in a Fractured Carbonate Sour Gas Field[C]. SPE 38909,1997.
    [88]付德奎,郭肖,杜志敏等.高含硫气藏硫沉积机理研究[J].西南石油大学学报(自然科学版,200931(5):109-111.
    [89]Hyne. J. B, Derdall G D. How to handle sulfur deposite by sour gas [J], World Oil,1980 Oct:111-120.
    [90]Adel M. Elsharkawy. Predicting the Properties of Sour Gases and Condensates:Equations of State and Empirical Correlations, SPE 74369.
    [91]江兴福等.川东地区飞仙关组气藏硫化氢分布特征[J].天然气工业,2002,22(2):24-26.
    [92]王一刚等.四川盆地东北部三叠系飞仙关组高含硫气藏硫化氢成因研究[J].地球化学,2002,31(6):517-523.
    [93]朱光有,张水昌,梁英波.高含硫化氢天然气形成的主控因素.天然气工业.2006,26(增刊):8-11.
    [94]何更生.油层物理[M].北京:石油工业出版社,1994:219.
    [95]曾自强,张育芳.天然气集输工程[M].北京:石油工业出版社,2001,53.
    [96]Sato C J, Beliveau D A. Reservoir souring in the Caroline Field [R].SPE 59778,2000.
    [97]郭平.油气藏流体相态理论与应用[M].北京:石油工业出版社,2000.128-130.
    [98]张书平,赵文,张宏福等.长庆气田气井腐蚀因素及防腐对策[J].天然气工业,2002,22(6):112-113.
    [99]Krouse H R,Viau C A, Eliuk L S,et al. Chemical and isotopic evidence of thermo-chemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J].Nature,1988,333 (6172):415-419.
    [100]Worden R H,Smalley P C,Oxtoby N H,et al. The effects of thermo-chemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoirs [J].Geochimica et Cosmochimica Acta,1996,60(20):3925-3931.
    [101]朱光有,张水昌,梁英波等.硫酸盐热化学还原反应对烃类的蚀变作用[J].石油学报,2005,26(5):48-52.
    [102]张水昌,朱光有.四川盆地海相天然气富集成藏特征与勘探潜力[J].石油学报,2006,27(5):1-8.
    [103]李云波,李相方,姚约东,等.高含硫气田开发过程中H2S含量变化规律[J].石油学报,2007,28(6):99-102.
    [104]冯曦.罗家6、7井二次完井试井解释研究总结[R].成都:西南油气田分公司,2004:50-52.
    [105]张勇.高含硫气藏硫微粒运移沉积数值模拟研究[D].四川成都:西南石油大学博士论文,2006,4.
    [106]杨继盛.采气工艺基础[M].北京:石油工业出版社,1992,379.
    [107]Hyne.J. B, Derdall G D. How to handle sulfur deposite by sour gas [J].World Oil,1980 Oct:111-120.
    [108]Smith J J. Jensen D and Meyer B. Liquid hydrogen sulfur in contact with sulfur [J]. J. Chem. Eng. Data,1970 (15):144-146.
    [109]Woll, W. "The Influence of Sour Gases Upon the Melting Curve of Sulfur"[J]. Erdol-Erdgas (1983) 9, 297-300.
    [110]里群,谷明星,陈卫东等.富硫化氢酸性天然气相态行为的实验测定和模型预测[J].高校化学工程学报.1994.8(3):209-214.
    [111]Adel M.Elsharkawy. Predicting the Properties of Sour Gases and Condensates:Equations of State and Empirical Correlations[R].SPE 74369,2002:
    [112]王致勇.无机化学原理[M].北京:清华大学出版社,1983,149.
    [113]岑可法.气固多相流动的理论和计算[M].浙江大学出版社,1990.332
    [114]李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997,330-334.
    [115]杨建政.裂缝性储层的应力敏感性研究[D].四川成都:西南石油大学博士论文,2002,4.
    [116]杨满平.油气储层多孔介质的变形理论及应用研究[D].四川成都:西南石油大学博士论文,2004,4.
    [117]石玉江,孙小平.长庆致密碎屑岩储集层应力敏感性分析[J].石油勘探与开发,2001,28(5):85-87.
    [118]阮敏,王连刚.低渗透油田开发与压敏效应[J].石油学报,2002,23(3):73-76.
    [119]范学平,徐向荣,张士诚.用流固耦合方法研究油藏压裂后应力应变和孔渗特性变化[J].岩土力学,2001,22(1):47-49.
    [120]许季军.可变形多孔介质渗透率的实验研究[D].辽宁沈阳:东北大学硕士论文,1997.
    [121]Geertsma.J.The effective stress laws for fluid-saturated porous rocks[J]. GeoPhys.Res, 78.5911-5921.
    [122]VAN GOLF RACHT, T., PEYTCHEV, Y., AGIP. Indirect Evaluation of Fundamental Data for a Fractured Water-Drive Oil Reservoir[C].SPE 2096,1968.
    [123]李士伦等.天然气工程[M].北京:石油工业出版社,2000.290.
    [124]付玉.考虑分子扩散和介质变形影响的裂缝性油藏改建地下储气库机理研究[D].四川成都:西 南石油大学博士论文,2007,4.
    [125]D.S.Pope, L.K.Leung, K.Julbis et al. Effects of Viscous Fingering on Fracture Conductivity[C].SPE 28511,1996.
    [126]Chrastil, J. Solubility of Solids and Liquids in Supercritical Gases[J].J. phys. Chem, (1982)86,3016.
    [127]Ali, M. A, Islam, M.R. The effect of asphaltene precipitation on carbonate rock permeability:an experimental and numerical approach[C].SPE 38856,1997.
    [128]韩大匡.油藏数值模拟基础[M].北京:石油工业出版社,1993,93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700