用户名: 密码: 验证码:
伊通地堑岔路河断陷流体识别及油气藏分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伊通地堑是一个受剪切走滑控制的走滑-伸展盆地。盆地经历了早期右旋张剪、晚期左旋压剪的演化过程。沉积体系多且复杂,以扇三角洲、湖泊、重力流沉积体系为主。沉积物具近物源、快速沉积、分选差等特征。由于盆地性质、盆地演化、构造特征、断裂体系、沉积相和砂体展布均复杂,导致成藏过程机理不清,勘探和研究程度不够,已探明储量不足预测地质储量的15%。
     岔路河断陷是伊通地堑最大的一个断陷。断陷内储层、油气层类型多样,储层物性和孔喉结构变化大,流体及地层水性质复杂,原油密度小;泥浆性能多样,测井系列多,油层污染严重。上述多种原因造成该断陷油气层电性特征不清、油气层识别评价困难。
     因此深入认识储层及油气层特征,正确建立油气层四性关系,找出影响电性的主要因素,对比不同方法找到适合本区的流体识别方法,总结今油藏类型及分布规律,是本论文的核心所在。
     通过对岔路河断陷储层及流体基本特征研究知:(1)储层岩性主要为砂砾岩,其次为粉砂岩、泥质粉砂岩,再次为细砂岩、含砾细砂岩,中粗砂岩少量;(2)含油级别以荧光显示为主,其次为油迹,油斑、油浸较少,有油气显示砂岩的岩性普遍较粗;(3)为低孔、低渗到中孔、中渗,少量为高孔、高渗;随岩性变粗,物性变好;随深度增加,成岩作用增强,物性变差,但在次生孔隙带孔隙度略有增加;(4)岩石类型主要为岩屑长石砂岩、长石砂岩、长石岩屑砂岩,长石以钾长石为主,岩屑以岩浆岩为主,成分和结构成熟度低;(5)原油属挥发一轻质中低粘度油;地层水矿化度总体较低,多数小于10000ppm,变化较大,随深度增加有升高趋势。(6)有效储层可分为五类。
     通过四性关系研究知,岔路河断陷油藏既有正常油层、水层(即油层电阻率高、水层电阻率低),又有相对低阻油层、油水同层、高阻水层。受岩性及较淡地层水影响,砂砾岩高阻水层较发育。
     研究认为,该区影响储层电性的主要地质因素有:岩性、地层水矿化度、钙质胶结、含油气饱和度等。其中钙质胶结可引起低声波、高电阻率;低地层水矿化度可引起高电阻率;高泥质含量可以引起高声波、低电阻率;粗颗粒可引起高电阻率、低声波,因此电性特征复杂,一些因素严重掩盖了流体的电性响应。
     根据上述研究知,复杂地质条件下,地质约束是正确进行流体识别的基础。
     在对储层、流体、电性及影响因素的认识下,根据岩芯分析及岩电实验资料,建立了测井解释模型;并尝试了曲线快速识别(R_(xo)/R_t-SP重叠、中子密度孔隙度重叠、电阻率径向对比、S_p-R_t交会)、测井曲线图版识别(AC-R_t图版、R_w-R_t图版)、参数图版识别(AC-R_t/R_w图版、S_w-S_(wi)图版、Φ-Φ×S_w图版)等流体识别方法,取得一定效果。
     考虑到研究区砂砾岩储层发育、井眼质量差、泥浆性能复杂等因素,根据阵列感应、时间推移测井、横向测井资料,结合电阻率正演结果对泥浆侵入进行了研究。电阻率正演结果反映,淡水泥浆侵入储层时,随含水饱和度的增加,深侧向及深感应均由低侵向高侵变化;盐水泥浆侵入时,不论含水饱和度大小,深侧向及深感应均为低侵,且深感应受影响较大。实际测井资料反映,研究区无论油层或水层,双感应和双侧向多为低侵,一方面反映感应及侧向测井对泥浆侵入特征反映不明显,一方面也说明储层含水饱和度较高。阵列感应及横向测井反映,淡水泥浆侵入时,高含油饱和度储层为高值低侵,低含油饱和度储层电阻率径向特征为先增后减,水层为微低侵或低值高侵;盐水泥浆侵入时,不论油层还是水层均为低侵。
     根据静态阶跃模型及几何因子,利用VB语言编制电阻率反演程序,并对校正前后的部分模版进行对比,识别精度有所提高。且根据泥浆侵入电阻率径向分布的研究结果,新增了SP曲线形态分析法、电阻率径向对比法两种直观识别法。
     综合采用以上方法进行了流体识别,并绘制不同二级构造单元多条油藏剖面。通过以上研究,总结出岔路河断陷油藏分布特点为:
     (1)平面上,靠近凹陷中心,岩性以粉砂岩为主,砂体连续性较好,以岩性油气藏为主;边界处,岩性以砂砾岩、中粗砂岩为主,以断层遮挡油气藏为主;即近物源近断层处以构造油气藏为主,远断层远物源处以构造一岩性油气藏为主;
     (2)受封闭断层遮挡,断层下盘含油气性较好;即反向断层控制的屋脊式断块圈闭,构成构造油气藏的有效富集;
     (3)受构造改造的影响,边界及斜坡等张性环境地区,油气保存条件较差;
     (4)构造、沉积、流体包裹体、温压系统、地层水化学特征及SP反转等资料综合反映,整体上,梁家构造带为顶部油气性好且改造微弱型;万昌构造带为顶部改造强烈型、围斜改造微弱型;孤店斜坡为整体充注差且改造严重型。
Yitong basin is a strike slip - extensional basin limitted by sheared sliding movement. Two evolution stages had been undergone for it by earlier right lateral tension - shear and later left lateral compression shear. There are more sedimentary systems in basin, and fan delta、lacustrine deposit, gravity flow deposit are important. The sediment system has characteristics of near to source、rapid deposition and poor sorting ,etc. The basin type、evolution, structural feature、fault system, sedimentary system and sand body distribution are all complex, so as to be unclear in the mechanisms of oil and gas accumulation process and inadequate in the degree of exploration for us. For the reasons, the proved reserves is less than 15% of the predicting geological reserves.
     Chaluhe fault depression is the largest depression in area in Yitong basin. It is difficult to identify oil-, gas- and water-bearing formation for the reasons which lead to the reservoir logging properties is unclear, as follow: the firstly, there are types of reservoir and oil- and gas-bearing formation in the depression. Heterogeneity in porosity, permeability, pore throat structure of reservoir is greatly. The secondly, properties of crude oil, formation water and drilling mud are complex, such as the lower oil density and salinity of formation water; The thirdly, versatile drilling mud properties lead to reservoir damage acutely. The fourthly, logging system is complex, and so on.
     For above reasons, the nucleus points of the paper are as follow:①to analyze reservoir features deeply;②to build up relations among lithology、porosity and permeability, degree of hydrocarbon bearing and logging measurement parameters(so called the four-properties's relation) ;③to find out geological control factors on logging features ;④to explore the best method to identify oil-, gas-and water-bearing formation;⑤to summarize the pool types and distribution.
     The research about reservoir has been made by using lab data. The conclusion is as follow: (1)The lithology of reservoir is mainly sandy conglomerate, siltstone and muddy siltstone are in second position; thirdly is fine sandstone and pebbled fine sandstone, and the moderate-coarse sandstone is little. (2) The oil-bearing degree is mainly fluorescence level, secondly is oil trace, oil immersion and oil patch are little. The coarser is sandstone, and the better in oil show is it. (3) It is low-moderate porosity and low-medium permeability for reservoirs. There is only a little good quality reservoir in basin. Generally speeking, the coarser is sandstone in grain size, and the better in porosity and permeability is. The deeper in burial depth is, the more intensity is in diagenesis,and more poor in porosity and permeability is, but porosity and permeability of the reservoir increases slightly in the secondary pore zone in deeper burial formation. (4) The main santstone type is lithic arkose、arkose and feldspathic litharenite, K-feldspar is in rich. Magmatic debris is inportant, and the compositional and texture maturity are lower. (5)lt is volatile-light、middle-low viscosity oil for crude oil feature; formation water salinity is lower, most of formation water salinity is less than 10000ppm, changes greatly, and it inclines to increases with depth. (6)The five groups of the reservoir can be divided.
     From depression margin to center, (1) The line of facies is about alluvial fan, fan delta plain, fan delta front, pro-fan delta and offshore -shallow lacustrine; (2) Lithology change is about grain-supported sandy conglomerate, matrix-supported sandy conglomerate, sandstone, fine sand and siltstone; (3) Grain- size of sandstone decreases, and the porosity and permeability of sandstone decreases with the increase of calcareous cementitious intensity and decrease of the effect of mud pebble in sandstone; (4) The tendency of that formation water salinity increases reflects that the shallow reservoir on basin margin obviously is affected by the leaching of meteoric fresh water due to the tectonic uplift and erosion.
     The study the four-properties's relation has shown that the types of oil-, gas- and water-bearing reservoir includes oil and water layer with normal resistivity (oil layer's resistivity is higher, water layer's resistivity is lower), oil layer with relatively lower resistivity, oil layer with water、water layer with high resistivity in Chaluhe fault depression. Because of the effect of lithology and fresh water of lower salinity, sandy conglomerate water layers with high resistivity has been occurrence commonly in the study area.
     It is showed by study that the key geologic factors affecting reservoir electrical property features are as follow: lithology, formation water salinity, calcareous cementition, hydrocarbon saturation,etc. Calcareous cementition can cause lower interval transit time and high resistivity; lower formation water salinity can cause high resistivity; high shale content can cause high interval transit time and lower resistivity;coarse grain can cause lower interval transit time and high resistivity; so the electrical property features is complex,some factors cover up fluid' s electrical response.
     Based on the above study,under the complex geological conditions,geological constraint is the basis of correct fluid identification.
     On the study of reservoir feature, fluid feature, electrical behavior, the interpretation modelsof reservoir parameters are set up by using core and logging data. Fast identification methods(such as R_(xo)/R_t-SP overlapping, neutron-density porosity overlapping, Sp—R_t cross plot), crossplot chart methods (AC—R_t cross plot chart, R_w—R_t cross plot chart, AC—R_t/R_w, S_w—S_(w(?)),Φ—Φ×S_w) have been used,and proved being effective.
     Considering the sand-conglomerate reservoirs develop, bad quality of borehole, complex mud property , etc.According to array induction logging, time-lapse logging, laterologging data combined with the result of resistivity forward and inversion modelling, resistivity calibration of reservoir about mud invasion is studied. The results of resistivity forward modelling reflect that deep lateral and deep induction resistivity changes from high-invasion to low-invasion with the water saturation increasing when fresh muds invase reservoirs; deep lateral and deep induction resistivity have shown lower-invasion in spite of high or low water saturation, and deep induction is affected significantly when brine muds invase reservoirs. Dual induction log or dual lateral logging almost are low-invasion no matter what oil layer or water layer is in the study area by the the practical logging data. This reflects the influence of mud invading on the induction logging and lateral logging responses is not obvious, and reservoir water saturation is high. The tested resistivity has high value and low-invasion when oil saturation is high by the response of resistivity radial characteristic of array induction logging and lateral logging when fresh mud invases reservoirs; the resistivity first increases and then decreases when oil saturation is low, the resistivity is low and low-invasion in water layer; the invasion radial profile is low-invasion in spite of water layer or oil layer when brine mud invases reservoirs.
     According to static step profile model and resistivity geometric factor theory, VB computer language is used to program the resistivity inversion program. The recognition accuracy has been improved after comparing the identification charts before and later of resistivity invasion correction. Two kinds of identification methods(include SP curve shape and resistivity radial-contrast method) are added newly, according to the research results on profiles of formation resistivity when the mud filtrate invades reservoirs.
     Using a combination of above methods to recognize the fluid, several profiles of pool have been made in different secondary tectonic units. Based on above study, the characteristics of pool distribution in Chaluhe depression is summarized as follow:
     (1) In plane, close to depression center, reservoir lithology is mainly siltstone, sand body is continuous, lithologic pool type is main; lithology is mainly sandy conglomerate and moderate-coarse sandstone close to the depression boundary; fault pool type is main; structural pool type is main close to source and fault; structural-lithological reservoir type is main away from source and fault;
     (2) Because of the fault screened, oil-bearing properties in the downthrow block of fault is batter, that is to say, the trap of ridge of antithetic fault controls oil concentration;
     (3) Affected by tectonic reworking, hydrocarbon preservation condition is poor in tensional area, such as boundary and slope area;
     (4) Comprehensively, the structure, deposition, fluid inclusion, temperature-pressure system, formation water chemical characteristics, SP reverse ,etc. data reflect the top of Liangjia structural belt is the good petroliferous properties and is faint under later reformation; the top of Wanchang structural belt is strongly later reformation, the area of around structural belt is faint later reformation; Gudian slope is litter hydrocarbon accumulate by strongly later reformation.
引文
(1)《伊通地堑储层测井评价与流体性质识别》,吉林大学,潘保芝,2006
    
    (2)《伊通盆地构造、沉积及油气成藏综合评价-沉积》,中国地质大学资源学院(武汉),周江羽,2007
    
    (2)《伊通盆地构造、沉积及油气成藏综合评价-储层》,中国地质大学资源学院(武汉),周峰德,2007
    
    (2)《伊通盆地构造、沉积及油气成藏综合评价-储层》,中国地质大学资源学院(武汉),周峰德,2007
    
    [1]雍世和,洪有密.测井资料综合解释与数字处理[M].北京:石油工业出版社,1982.9-10;
    
    [2]郎丰吉,刘江,孙树文等.阵列感应测井在疑难储层开发中的应用[J].大庆石油地质与开 发,2005,24(6):87-89;
    
    [3]宋渝新,张君劫,杨宏等.综合利用测井资料评价油气层[J].新疆石油地质,2006,27(1):96-98;
    
    [4]张莉,孙宏智,张美玲等.应用阵列感应资料对复杂侵入现象的解释[J].大庆石油地质与开 发,2005,24(4):99-100;
    
    [5]姜鹏飞,杨冬梅,刘子良等.淡水泥浆侵入的电测井阻值修正[J].西南石油学院学报,2006,28(4):5-7;
    
    [6]李长喜,欧阳健,周灿灿等.淡水钻井液侵入油层形成低电阻率环带的综合研究与应用分析[J].石油勘探与 开发,2005,32(6):82-85;
    
    [7]王方雄,苏坚.电阻率和孔隙度测井曲线重叠法的新应用[J].江汉石油学院学报,2001(23)增刊:69-70;
    
    [8]杨碧松.低矿化度地层水地层油气水层识别研究[J].天然气工业,2000,20(2):42-44;
    
    [9]雍自权,赵异华,周仲礼等.八角场金华秋林香溪群四段各类产层测井响应特征及识别[J].石油天然气学 报,2006,28(2):66-68;
    
    [10]樊政军,赵冬梅,蔺学渂.复杂碎屑岩储层的流体性质判别方法研究[J],天然气工业(地质与勘 探),2007,27(1):47-50;
    
    [11]向树安,姜在兴,张元福.盐系地层低电阻率油层形成机理与识别-以江汉盆地潜江凹陷潜江组为例[J]. 天然气地球科学,2006,17(4):514-517;
    
    [12]赵永刚.侧向测井和感应测井识别水层的对比分析[J].测井技术,2004,28(5):427-429;
    
    [13]王庆胜,袁明前.江汉油田周矶地区低电阻储层流体识别技术研究[J].石油天然气学 报,2005,27(6):741-742;
    
    [14]郑雷清.双电法测井在低电阻率储层流体性质识别中的应用[J].石油天然气学报,2006,28(3):304-306;
    
    [15]郑雷清,杨斌,赵海燕等.吐哈盆地特低孔渗性砂岩储层测井评价方法[J].吐哈油气,2006,11(4):368-372;
    
    [16]闫家宁,刘兴周,王庆魁等.自来屯油田低阻油层测井识别技术研究[J],河南石油,2004,18(5):17-20;
    
    [17]刘英才,余国义,韩桂芹等.阿达油田低阻、低对比油层的成因与识别[J].江汉石油学院,2003,25(3):8-9;
    
    [18]Klein J.D.,Saturation Effects on Electrical Anisotropy,The Log Analyst,1996,37(1):47-49;
    
    [19]Lanny Nunham,Resistivity-Derived Porosity and Porosity-Derived Resistivity, The LogAnalyst,1996,39(6):16-18;
    
    [20]Oilvar A. L. de Lima,Water saturation and permeability from resistivity,dielectric and porositylogs,GEOPHYSICS,1995,60(6):1756-1764;
    
    [21]Archie,GE.,The Electrical Resistivity Log as an aid in determining some reservoir characteristics, TransAIME 146,1942,54-62;
    
    [22]闫磊,潘保芝,莫修文等.几种评价低阻储层的导电模型[J],吉林大学学报(地球科学版),2007,37(增 刊):121-125;
    
    [23]Swanson B.F.,Microporosity in reservoir Rocks:Its Measurement and Influence on Electrical Resistivity,The??Log Analyst,1985,26(6):42-52;
    
    [24]谭廷栋.测井解释发现油气层[J].天然气工业(地质勘探),2000,20(6):47-50;
    
    [25]邵春华.吐哈油田稠油层低阻成因分析及测井识别方法[J].吐哈油气,2006,11(4):373-376;
    
    [26]王贺林,申本科,陈景萍.自然伽马能谱测井对砂砾岩地层的精细划分[J].石油地球物理勘探,2006,41(增 刊):127-132;
    
    [27]代建华,李绍霞.自然伽马能谱测井在东营凹陷北部陡坡带砂砾岩体中的应用[J].油气地质与采收 率,2004,11(4):78-80;
    
    [28]吴春文,赵文杰,柏强.自然伽马能谱测井在砂砾岩油藏中的应用[J].测井技术,2005,29(1):46-48;
    
    [29]F Aminzadeh,J Barhen,C W Glover and N B Toomarian.Reservoir Parameter Estimation Using HybridNeural Net-work[J].Computers & Geoscience,2000,26:869-875;
    
    [30]张丽艳,才巨宏,陈钢花.砂砾岩储集层含油性解释方法[J].测井技术,2002,26(2):134-136;
    
    [31]常静春,郝丽萍,燕兴荣等.含砾砂岩储层岩性及流体性质判别[J].测井技术,2005,29(3):230-232;
    
    [32]高博禹,彭仕宓,刘红歧.蒙古林砾岩油藏储层测井精细解释模型[J].测井技术,2005,29(1):55-58;
    
    [33]陈福煊,孙嘉戌.泥浆滤液侵入孔隙地层径向导电特性的模拟实验[J].地球物理学报,1996,4(39):371-378;
    
    [34]Yingchun Guan.Impact of Dynamic Mud Invasion on Sw EstimaTion in Fresh Water Formations SudanBlocks 1/2/4[J],Muglad Basin.Petrophysics,2001,42(3):205-221;
    
    [35]Zhang Jianhua,Hu Qi,Ouyang Jian,et al.A method to evaluate reservoirs and estimate saturation bydynamic-responses of Dual - Induction logging tools[J].Journal of Pctroleum Scicnce and Engineering1998,19(34): 233-240;
    
    [36]Tobola,D P and Holditch,S A.Determination of ReserVoir Permeability From Repeated InductionLogging[J].SPE Formation Evaluation, 1991, (3) :20-26;
    
    [37]刘子良.吉林油田低渗透砂岩油藏流体识别:[学位论文].北京:中国地质大学(北京),2005.
    
    [38]罗蛰潭,王允诚编著.油气储集层的孔隙结构[M].科学出版社,1986.21-23,124-129;
    
    [39]辛长静,何幼斌,董桂玉.毛管压力曲线在储层微观非均质性研究中的应用[J].河南石油,2006,20(3):57-59;
    
    [40]廖明光,李士伦,谈德辉.砂岩储层渗透率与压汞曲线特征参数间的关系[J].西南石油学院学 报,2001,23(4):5-8;
    
    [41]雍世和,张超谟.测井资料处理与综合解释[M].石油大学出版社,1996.205-214;
    
    [42]林纯增,张舫.泥浆侵入特性的测井应用[J].测井技术,2002,26(4):341-346;
    
    [43]张松扬,陈玉魁.钻井液侵入机理特征及影响因素研究[J],勘探地球物理进展,2002,25(6):28-31;
    
    [44]中石油勘探与生产公司.低阻油气藏测井识别评价方法与技术[M].北京:石油工业出版社,2006.72-77;
    
    [45]邸世祥.油田水文地质学[M].西安:西北大学出版社,1991.164-169;
    
    [46]唐文生,符晓颖,白丽等.后期水侵型复杂断块/岩性油藏评价[J].测井技术,2000,24(1):36-41;
    
    [47]史建南,姜建群,张福功等.大民屯凹陷地层水水文地质特征与油气聚集关系[J].海洋地质动 态,2003,19(11):24-30;
    
    [48]陈建平,查明,周瑶琪.准噶尔盆地西北缘地层水化学特征与油气关系研究[J].地质地球化 学,2000,28(3):54-57;
    
    [49]楼章华,金爱民,朱蓉等.松辽盆地油田地下水化学场的垂直分带性与平面分区性[J].地质科 学,2006,41(3):392-403;
    
    [50]王永春.伊通地堑含油气系统与油气成藏[M].第一版.北京:石油工业出版社,2001.168-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700