用户名: 密码: 验证码:
安徽铜陵狮子山铜金矿田岩浆作用与流体成矿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜陵狮子山矿田是长江中下游成矿带内具有代表性和典型性的大型铜、金矿田。矿田内构造活动、岩浆作用及成矿作用复杂。大地构造演化经历了活动(基底形成阶段)-稳定(盖层)-再活动(板内变形)三个发展演化阶段。尤其是中三叠世以后,板内变形阶段引发大规模的中酸性岩浆侵入活动,形成了与中酸性岩浆侵入有关的所谓“三位一体”和“多层楼”的矿床分布格局。
     铜陵矿集区狮子山矿田地质研究程度较高。根据目前研究现状,论文工作拟在以往工作基础上,主要采用SHRIMP同位素精确定年、矿物流体包裹体成分ICP-MS分析以及包裹体中δ~(13)C_(CO2)、δ~C_(CH4)质谱分析等现代测试技术,着重分析岩浆岩的成岩时代、流体包裹体气液相成分和微量元素成分、流体成矿的物理化学条件和C、H、O同位素组成等在时间和空间上的变化,旨在结合区域成矿背景的研究,运用现代成岩成矿地质地球化学理论,探索矿田岩浆作用及岩浆演化、成岩与成矿关系、成矿流体的时空演化、成矿物理化学场与矿床矿体定位的时空耦合。论文取得了以下主要成果和创新性认识:
     1、狮子山矿田侵入岩的岩石类型主要为辉石二长闪长岩、石英二长闪长岩和花岗闪长岩3类。根据岩石化学和地球化学的研究,侵入岩以富钾钙碱性系列岩石为主。岩石低Cr、Ni,高Rb、Th、Ba、K以及Sr富集,表明其属于以幔源物质为主的壳幔混源型岩石。结合Nd、Sr同位素地球化学研究,认为本区岩浆岩是上地幔和下地壳物质部分熔融的产物,岩浆作用发生在由挤压向拉张过渡的地球化学背景。区内岩浆岩的主量元素和稀土元素地球化学研究表明,其具有相同的来源,是同源岩浆演化的结果,成岩过程中镁铁矿物的结晶分离起着重要的作用。综合研究认为,狮子山矿田岩浆岩的形成应是起源于上地幔或下地壳的原生岩浆,当聚集到深部岩浆房中以后,在滞留的过程中发生了一定程度的分离结晶作用,但尚未固结,成分上显示了一定的带状分布,在区域构造应力的松弛及构造事件的诱发下,随机地沿发育的构造裂隙先后上升侵位,冷凝结晶。
     2、锆石SHRIMP的同位素精确定年表明,岩浆的侵位年龄为133.3Ma~142.9Ma.即晚侏罗世-早白垩世。同位素年龄的相似性和差异性表明矿田侵入岩体是在同期岩浆活动中多次定位形成的。岩浆侵入活动可以划分为分别起始于140Ma±和134Ma~136Ma的早晚两次脉动。从岩浆上升侵位到冷却结晶的时间间隔均较短,但其中的白芒山辉石二长闪长岩冷却史相对较长,且经历了早期深部岩浆房中的分离结晶作用和后期构造脉动、岩浆上升侵位、减压受热、早期晶体再熔蚀及冷却结晶的过程。
     3、矿田内多种不同类型的矿床沿狮子山铜金矿带和鸡冠石多(贵)金属矿带2个成矿带分布,深部为斑岩型矿床和层控-矽卡岩型矿床,中部为层间矽卡岩型矿床及浅部为角砾岩筒式或接触式矽卡岩型矿床。矿床矿物流体包裹体岩相学研究表明。成矿流体包裹体类型多样。但以富液相包裹体和气相包裹体为主。包裹体均—温度测定显示,矽卡岩阶段为411~600℃,石英-硫化物阶段为173~440℃,碳酸盐阶段为117~280℃,成矿温度变化具有连续性和相对集中的特点。成矿流体的盐度测定表明,在矽卡岩阶段和石英-硫化物阶段显示出高盐度和低盐度的两个端元,而且同一成矿阶段高盐度和低盐度等不同类型包裹体均一温度基本一致,反映成矿过程与流体沸腾作用有关。矿田内各矿床成矿流体在时间上从早阶段向晚阶段演化,p、pH、Eh、f_(O2)值降低;空间上从深部矿床向浅部矿床p、Eh、f_(O2)降低,而pH升高。
     4、矿田内各矿床气相成分以H_2O、CO_2为主,还原性气体CH_4、C_2H_6、N_2、H_2S、Ar为次。还原参数R及H_2S浓度在空间上的不同深度矿床石英-硫化物阶段由深向浅变小。CO_2/H_2O比值在空间上指示成矿流体减压空间为-500m~-550m和-730m~-830m中段,流体减压沸腾是矿石沉淀的主导机制。液相成分中阴离子以Cl~-、SO_4~(2-)和F~-为主,阳离子以K~+、Na~+、Ca~(2+)、Mg~(2+)为主,K~+/Na~+、F~-/Cl~-及相关图解显示,成矿溶液是岩浆热液和地下水热液的混合,成矿溶液中阴、阳离子摩尔浓度显示岩浆热液在成矿过程中起主导作用。空间上K~+/Na~+、F~-/Cl~-随深度变浅总体呈降低趋势,但在-500m~-550m左右和-730m~-830m中段显著降低,反映成矿过程中流体混合作用增强,是矿石减压沸腾的空间,也与矿田内矿床的富集部位一致。因而探索了矿床流体成分演化、成矿流体物理化学场与矿床矿体的时空定位的密切关系。
     5、首次系统的石英包裹体微量元素特征研究表明,成矿流体的微量元素特征决定矿石的微量元素的特征,不同矿床的流体具同源演化的特征,石英包裹体中成矿元素丰度指示了。富铜流体”的存在。相对而言矽卡岩阶段成矿作用较弱,而主成矿阶段石英-硫化物阶段Cu、Sr、Ba等有强烈富集的趋势,成矿作用较强。根据矿床矿石分带和流体成分分析,Cu品位较高的含铜黄铁矿石+磁黄铁矿矿石带,可能是含Cu流体汇聚和活动的异常带。空间上不同矿床反映了由深部向浅部总体上Cu富集系数降低,而Pb、Zn则富集系数增加。特征元素及其比值指示成矿热液具深源流体的特征。
     6、流体包裹体稀土元素与岩浆岩及矿床石英、石榴子石等单矿物具有较好的一致性,但与矿石存在不同,反映了矿床成矿环境对矿石沉淀的影响。铜金矿床矿石和蚀变岩石稀土元素球粒陨石配分模式呈右倾斜型,LREE界于岩浆岩和大理岩之间。但金矿床矿石蚀变岩石δEu呈弱异常,而铜矿床具弱负δEu和弱正δEu异常,反映了成矿环境的复杂性。系统的石英流体包裹体稀土元素和矿石及其单矿物稀土元素的对比分析表明,石英包裹体的稀土元素特征在刻划流体方面比矿床矿石及其单矿物更具有代表性。金矿床流体包裹体稀土元素配分模式为右倾型,轻重稀土分异弱,且δEu具弱异常;铜矿床流体包裹体总体为LREE富集型,轻重稀土分异弱,其显示了深源流体的特征。空间上,深部和中部矿床流体为负δEu异常,而浅部铜矿床均显示δEu正异常,可能与环境改变和F~-、Cl~-、CO_3~(2-)离子的络合作用有关。
     7、方解石碳氧同位素组成表明。成矿的碳质可能主要为深部岩浆来源,水-岩相互作用是热液方解石沉淀的主要因素。石英包裹体的δ~(13)C_(CO2)值总体在岩浆岩系统范围,但部分碳来源于围岩,反映了成矿流体起源于岩浆作用,但成矿晚期有外来地层成分和大气降水的加入。δ~(13)C_(CH4)特征显示有机碳和无机碳的混合,也显示成矿有围岩碳酸盐和有机质的参与,而且空间上由深部矿床向浅部矿床降低。矿田铜矿床和金矿床CH_4含量及其同位素组成的差异,可能显示CH_4是矿床铜金分离和金沉淀的主要因素。
     8、成矿流体氢氧同位素表明,成矿热液以岩浆水为主,晚期有地层水和大气降水的加入。成矿流体在空间上具有以岩浆岩体为中心,由内向外、由下向上氢氧同位素组成有规律的变化特征;在时间上成矿流体由早阶段至晚阶段岩浆水逐渐减少而大气降水逐渐增多,反映成矿作用以岩浆作用为主导。
     9、对矿田内2类不同矿石类型中的辉钼矿Re-Os年龄测定,得到成矿年龄为139.1Ma和139.4Ma。显示成岩与成矿密切的成因联系。铅同位素研究表明,矿石铅与岩浆岩的岩石铅一致,均具有深源铅的特征。而与沉积围岩的铅同位素组成不同,也显示成矿物质主要是深部来源的。
     10、综合矿床地质地球化学的研究认为,区内岩浆作用经历了幔源玄武岩岩浆底侵、下地壳岩石的部分熔融、分凝上升至不同深度的岩浆房、不同性质的岩浆的混合以及分离结晶作用和熔-流分配作用。使成矿元素Cu、Pb、Zn、Mo发生多次富集,形成了“富Cu流体”。这种“富Cu流体”沿构造有利部位主要以渗透的方式扩散,因物理化学条件的改变以及围岩和构造条件的不同,形成了矿田内一些减压区间和流体成分富集带状异常区,在不同的空间引发了流体成分的改变并沉淀,从而形成了矿田成矿金属元素表现为上金下铜、内铜外铅锌分布格局以及矿床成因类型上斑岩型-层控矽卡岩型-层间矽卡岩型-接触交代型复合的、具“多层楼”的矿床分布格局。
Shizishan ore-field of Tongling is a huge representative and typical Cu-Au ore-field in the metallogenic belt of the middle and lower reaches of Yangtze River. The tectonic activity and magmatism as well as mineralization in the ore-field are complicated. The tectonic evolution went through three stages from the active stage (the basement forming) to the stable stage (the cover forming) and to the re-active stage (the within-plateform deformation). Especially after middle Triassic period, the within-plateform deformation led to take place the cosmical middle-acid magmatic intrusion and volcano, sub-volcano movement, and formed so called "multiplayer floor" deposit distributing pattern.
     Based on the modern analysis technique such as the SHRIMP isotopic precision age determination, the ICP-MS composition analysis of fluid inclusions for minerals and the MS analysis ofδ~(13)C_(CO2) andδ~(13)C_(CH4) of fluid inclusion and so on, it is gained for the diagenetic era of magma, the gas and liquid composition of fluid inclusion, the composition of metallogenic elements and trace elements in mineralization fluids, as well as the isotopic compositions of C, H, O and Pb of ore deposits. According to these results and the studies of the setting of the region mineralization, using the modern theory of the diagenetic and metallgenic geology and geochemistry, it is discussed for the magmatism and magmatic evolution, the relation between mineralization and diagenesis, the space-time evolution of mineralizing fluid, the space-time coupling of mineralization physico-chemical field and the location of deposit ore-body. The following main results and innovative views are obtained in this paper:
     1. Magmatic rock bodies in Shizishan ore-field present as dyke and stock, which are grano-diorite, quartze-monzo-diorite, and pyroxene-monzo-diorite three main petrological types. According to the study of chemistry and geochemistry of intrusive rocks in Shizishan ore-field, they are mainly calc-alkalic series enriching K. The characters of low Cr, Ni and high Rb, Th, Ba, K and enriching Sr indicate that the magma derived from mantle and the magmatic rocks are formed by mantle-crust contamination. Connecting with the study of isotopic geochemistry of Nd and Sr, it is concluded that the magmatic rocks of this region originated from partial melting within upper mantle and lower crust. The magmatism took place in the geological setting from extrusion to spread. The geochemical study of main elements and rare earth elements of magmatic rocks indicates that they have same magmatic source and evolution, and the fractionation crystallization of femic minerals play an important role in diagenetic process. The primary magma originated from magma of upper mantle or lower crust, went up to middle and upper crust and come to magmatic chamber and then took place some extent fractional crystallization. The magma took place some zonal distributing in the composition randomly ascending, emplacing along the tectonic crack and then crystallizing.
     2. Zircon SHRIMP of precise isotopic age determination shows that the ages of the magmatic emplacement in the ore-field are 133.3Ma~142.9Ma, that is late-Jurassic period to early Cretaceous period. The similarity and difference of isotopic ages indicate that the intrusive rocks are formed by many emplacements in the same magmatic movement. There are two magmatic intrusive activities began from 140Ma and 136Ma respectively. The time for the magmas ascending and emplacing to cooling and crystallizing is generally rather short. But the cooling history of pyroxene monzo-diorite of Baimangshan is longer, the latter went through the fractional crystallization in deep magma chamber, magma ascending and emplacement with tectonic pulsation, heated due to pressure reducing, the re-dissolution of early crystals as well as cooling and crystallizing process.
     3. Many kinds of mineral deposits distribute in the ore-field, mainly including porphyry deposit in the deep and stratabound skam deposit, interstratified skarn deposit in the middle and breccia pipe or contact skarn deposit in the shallow. The geochemistry study of fluid inclusion shows that there are many kinds of fluid inclusions, but the main types are rich-liquid inclusions and rich-gas inclusions. The homogenization temperature measured reveals that the mineralization temperature is 411℃~600℃in the skarn stage, 173℃~440℃in the quartz-sulfide stage, and 117℃~280℃in the carbonate stage. The changes of mineralizing temperature have characters of continuity and relatively concentration. The salinity of mineralizing fluid has two ends of high salinity and low salinity on the skarn stage and the quartz sulfide stage. Moreover the homogenization temperatures of the inclusions of different types containing high salinity and low salinity are basically identical, which reflects that mineralizing process is related to fluid boiling. In addition, for the mineralizing fluid of every deposits the values of p, pH, Eh, f_(O_2) reduced with mineralization evolution from early stage to late stage, but the values of p, Eh, f_(O_2) reduced and the value of pH increased from deep deposit to low deposit in space.
     4. Gas component of all deposits are mainly H_2O and CO_2, secondly are reduction gases such as CH_4, C_2H_6, N_2, H_2S, Ar. Reduction parameter and H_2S concentration reduces from the deep to the shallow in the same quartz-sulfide stage of different deposit The ratio of CO_2/H_2O denotes that the depressurization space of mineralizing fluid is from -520m to -730m in the middle part And the boiling of fluid caused by depressurization is the dominant mechanism of ore precipitation. In the fluid inclusions, the anions in liquid are mainly Cl~-, SO_4~(2-) and F, and the cations mainly K~+, Na~+, Ca~(2+), Mg~(2+), K~+/Na~+, F~-/Cl~- and other relative figures show that the mineralizing solution mainly came from the magmatism. The stratigraphic component and the meteoric water may mix in ore-forming fluids in the later mineralization stages. In space, K~+/Na~+, F~-/Cl~- totally submits reducing trend with the depth declining, but the ratios of K~+/Na~+, F~-/Cl~- changed obviously from -500m to -730m in the middle part of the section, which reveals that the ore-forming fluids mixed strongly, and this space is according to the mineral enriching position in ore-field.
     5. The minor element characteristics of fluid inclusions in quartz indicate that the minor element characteristics of the ores are determined by the characteristics of the minor element in mineralizing fluid. The metallogenic element abundance in the fluid instructs that the mineralizing fluids are copper-rich fluids. Comparing with skarn stage and carbonate stage in ore-forming process, Cu, Sr, Ba intensely enriched in quartz-sulphide stage, the main mineralization stage. thus ore-forming processes are more intense. According to the zonal distribution of ore and the characteristics of fluid component of deposits, the zone containing Cu pyrite and pyrrhotite ore belt which have high Cu contents perhaps is the zone of mineralization fluid confluence and unloading mineralization material. Generally, the enrichment coefficients of Cu decrease, but the enrichment coefficient of Pb, Zn increase from the deep to the shallow in space for different ore deposits. Characteristic elements and their ratios show that ore-forming hydrothermal solutions have characteristic of deep sources.
     6. The comparison studies of REE show that REE geochemical characteristics in fluid inclusions, in magmatic rocks, and in minerals such as quartz and garnet are identical, but different from those in ores, which indicates that ore-forming environment of the deposits may have an important effect for ore deposition. The REE geochemical characteristics of the fluid inclusion in quartz are more representative than those in ores and in minerals. The REEs of fluid inclusion in copper and gold deposits have a right-inclination pattern, weak differentiation between LREE and HREE and less 8Eu abnormality, which shows the mineralization fluids come from deep source. The differentiation between LREE and HREE and SEu abnormality indicate that the mineralization is controlled by the evolution of the mangmatic fluid. The fluids of deposits in the deep and the middle have 8Eu negative abnormality, while those in the shallow have 8Eu positive abnormality. These phenomena perhaps are relative to environment changes and the complex action of F~-, Cl~-, CO_3~(2-).
     7. The C, O isotope composition of calcite indicates that C possibly originated from the deep magma, and water-rock reaction is the main factor of hydrothermal depositing. The values ofδ~(13)C_(CO2) in fluid inclusion in quartz totally are within the range ofδ~(13)C in magmatic system, but perhaps parts of carbon root from wall-rocks, andδ~(13)C_(CH4) values show the mixture of organic carbon and inorganic carbon. All of these reflect that mineralizing material comes from magmatism, but the stratigraphic component and the meteoric water may add to ore-forming fluids in the later mineralization stages. The values ofδ~(13)C_(CH4) reduce from the deep deposit to the shallow deposit perhaps reveal that CH4 is the main factor for separating copper and gold in mineralization process.
     8. Hydrogen and oxygen isotopes of mineralizing fluids show that the ore-forming fluid is mainly magmatic hydrothermal solution, and has the addition of stratum water and the meteoric precipitation in the later mineralization stages. In spatial changes of the composition of hydrogen and oxygen isotopes are regular from the inside to the outside, and from the bottom to the upper, which imply that ore-forming fluids flow from the center of the magmatic body to the outward and the upper. In time, magmatic hydrothermal in the ore-forming fluids reduced gradually and the atmospheric precipitation increased gradually from the early stage to the later stage. These phenomena reveal that magmatism plays the most important role in the mineralization process.
     9. Re-Os age determination for molybdenite in the two different types of ores in Dongguashan copper deposit shows that the ore-forming ages are 139.1Ma and 139.4Ma. The identity of the diagenetic age and the metallogenic age indicates that the mineralization is closely related to the magmatism. Lead isotope studies show that the lead isotopic compositions of the sulphide in ores are consistent with those of the magmatic rocks, and different from those of the sedimentary rocks, which shows that the mineralization material is also mainly from the deep source.
     10. Synthesizing above geological and geochemical studies, the magmatism mineralization process can describe as follows: The underplating of the upper mantle-derived basalt magma melted the lower earth crust and formed diorite and monzonite magmas and the metallogenic element enriched firstly. The magma raised, mixed and assimilated the middle or upper earth crust and formed the monzo-diorite magma and the metallogenic element secondly. The magma in chamber took place fractional crystallization of femic minerals and differentiation of melt and solution, and the metallogenic element enriched again. The fluid diffused by the way of infiltration along the favorable structural positions, and the heat of the magmatic bodies cause meteoric precipitation circulated and leached the metallogenic material from the wall-rocks (water-rock reaction). The metallogenic element enriched many times and formed the rich-Cu fluid. Because of the physical and chemical conditions changed, the wall-rocks and structure changed, and different mineralization fluids mixed, the ores deposited.
引文
[1] 安徽地矿局321队.1990.中国地质大学(北京).铜陵地区铜金等矿床综合预测报告.
    [2] 安徽地矿局321地质队.1990.安徽铜陵鸡冠石银(金)矿床详查地质报告.
    [3] 安徽地质局321地质队.1994.安徽铜陵包村金矿床勘查地质报告.
    [4] 安徽地矿局321队.1995.安徽沿江重要成矿区铜及有关矿产勘查研究(上、下册).
    [5] 安徽地矿局321队等.1995.安徽沿江重要成矿区铜及有关矿产勘查研究报告.
    [6] 安徽地矿局321队.1997.铜陵地区矽卡岩型金矿找矿研究报告.
    [7] 安徽地质局321地质队.1997.安徽铜陵朝山金矿床详查地质报告.
    [8] 别风雷,侯增谦,李胜荣,等.2000.川西呷村超大黑矿型矿床成矿流体稀土元素组成.岩石学报,16(4):575~580.
    [9] 常印佛,刘学圭.1983.关于层控式矽卡岩型矿床-以安徽省内下扬子坳陷中一些矿床为例.矿床地质,2(1):11~20.
    [10] 常印佛,刘湘培,吴昌言.1991.长江中下游铁铜成矿带.北京:地质出版社.
    [11] 陈沪生.1988.下扬子地区H Q 13线的综合地球物理调查及其地质意义.石油与天然气地质,(3):8~17.
    [12] 陈沪生.1993.1:100000中国东部灵壁一奉贤(HQ13)地学断面图说明书.北京,地质出版社
    [13] 陈江峰,谢智,张巽等.安徽的地壳演化:Sr、Nd同位素证据.安徽地质,11(2):123~130).
    [14] 陈江峰,周泰禧,李学明,等.1993.安徽南部燕山期中酸性侵入岩源区的锶/钕同位素制约.地球化学,(3):261.
    [15] 陈江峰,喻钢.2003.安徽沿江地区铜矿床的物质来源:Pb同位素组成的制约.安徽地质13(3):27~33).
    [16] 陈毓川等.1993.中国矿床成矿模式.北京地质出版社.
    [17] 陈毓川.1999.中国主要成矿区带矿产资源远景评价.北京地质出版社.
    [18] 储国正.1991.狮子山矿田构造及其控岩控矿特征的研究.中国地质大学(北京)研究生论文.
    [18] 储国正,李东旭.1991.顺层滑动构造对安徽狮子山矿田“多层楼”矿床的控制,现代地质,6(4):504~512.
    [20] 储国正.1999.安徽沿江地区铜金多金属矿化系列及其相互关系.安徽地质,9(1)45~53.
    [21] 储国正.2003.铜陵狮子山铜金矿田成矿系统及其找矿意义.中国地质大学博士论文.
    [22] 翟裕生等.1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社.
    [23] 翟裕生,姚书振,周宗桂,等.长江中下游铁铜金矿床矿田构造.武汉:中国地质大学出版社.1999 153~167.
    [24] 戴金星,戴春森,宋岩等.1994.中国东部无机成因的二氧化碳气气藏及其特征.中国海上油气(地质),8(4)215~222.
    [25] 邓晋福等.1996.中国大陆根-柱构造-大陆动力学的钥匙.北京:地质出版社.
    [26] 邓晋福,莫宣学,赵海玲等.1999.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境.矿床地质,18(4):309~315.
    [27] 邓晋福,吴宗絮.2001.下扬子克拉通岩石圈减薄事件与长江中下游Cu、Fe成矿带.安徽地质,11(2):86.
    [28] 邓晋福,戴圣潜,赵海玲,等.2002.铜陵Cu-Au(Ag)成矿区岩浆-流体-成矿系统和亚系统的识别.矿床地质,21(4):317.
    [29] 董树文,孙先如,张勇,等.1993.大别山碰撞造山带基本结构.科学通报.38(6):542-545.
    [30] 杜杨松,李学军.1997.安徽铜陵典型矿区岩石包体及其岩浆-成矿作用过程探讨.高校地质学报,3(2):171.
    [31] 杜杨松,周斌,黄许陈等.1998.层控式矽卡岩矿床特征和成矿机制.贵金属地质,7(2):91-95.
    [32] 杜杨松,田世洪,李学军.2003.安徽铜陵天马山矿床与大团山矿床流体成矿作用对比研究.地质学报(英文版)77(1):116~124.
    [33] 杜杨松;秦新龙;李铉.2004.具安徽铜陵地区中生代幔源岩浆底侵作用-来自矿物巨晶和岩石包体的证据.岩石矿物学杂志.
    [34] 狄永军,赵海玲,张贻全,等.2003.安徽铜陵地区花岗岩类岩石中的岩浆混合结构.北京地质,15(1):12~17.
    [35] 狄永军.2003.铜陵矿集区燕山期岩浆作用及深部过程[博士论文].导师:赵海玲.北京;中国地质大学(北京).1~82.
    [36] 狄永军,赵海玲,吴淦国等.2005.铜陵地区燕山期侵入岩成因与三端元岩浆混合作用.地质论评,51(5):528.
    [37] 范建国,倪培,苏文超等.2000.辽宁四道沟热液金矿床中石英的稀土元素和特征及意义.岩石学报,16(4):587~590.
    [38] 富士谷,阎学义,袁成样,等.1977.长江中下游成矿带中石炭纪海底火山喷发-沉积黄铁矿型铜矿地质特征.南京大学学报(自然科学版),(4):43~67.
    [39] 胡欢,王汝成,陆建军,等.2001.安徽铜陵狮子山矿田矽卡岩型金矿床的矿物组合、化学成分及成因意义[J].矿床地质,20(1):86.
    [40] 华仁民,李晓峰,张开平,等.2002.江西金山金矿成矿过程流体作用地球化学特征.南京大学学报(自然科学),38(3):408~417.
    [41] 高庚,徐兆文,杨小男等.2006.安徽铜陵白芒山辉石闪长岩体的成因:Sr、Nd、Pb、O同位素制约.南京大学学报(自然科学),42(3):269~279.
    [42] 顾连兴,徐克勤.1984.江西武山中石炭世海相火山岩和块状硫化物矿床.桂林冶金地质学院学报,4(4):91~102.
    [43] 顾连兴,徐克勤.1986a.论大陆地壳断裂拗陷带中的华南型块状硫化物矿床.矿床地质.5(2):1~13.
    [44] 顾连兴,徐克勤.1986b.论长江中、下游中石炭世海底块状硫化物矿床.地质学报,2:176~188.
    [45] 顾连兴,徐克勤.1987.长江中下游断裂拗陷带的构造发展及成矿作用.桂林冶金地质学院学报,7(4),243~251.
    [46] 顾连兴,富士谷.1999.下扬子威宁期断裂拗陷、火山活动及块状硫化物成矿作用-答黄志诚《安徽铜陵新桥黄龙组沉积期海底火山喷发、沉积质疑》一文.高校地质学报,5(2):228~232.
    [47] 顾连兴,陈培荣,倪培等.2002.长江中、下游燕山期热液铜-金矿床成矿流体.南京大学学报(自然科学),38(3):392~407.
    [48] 郭文魁.1957.论安徽省铜官山铜矿.地质学报,37(3):317~332.
    [49] 郭宗山.1957.扬子江下游某些矽卡岩型铜矿床,地质学报,37(1).
    [50] 黄斌.安徽铜陵地区块状硫、铁、金矿床的铅同位素特征[J].地质学报,1991,4:347~359.
    [51] 黄顺生,徐兆文,倪培.2003.安徽铜陵冬瓜山热液叠加改造型铜矿床流体包裹体地球化学,18(1):34~36.
    [52] 黄顺生,徐兆文,顾连兴等.2004.安徽铜陵狮子山矿田岩浆岩地球化学特征及成因机制探讨.高校地质学报,10(2):217~226).
    [53] 黄许陈,储国正.1992.铜陵地区矿床类型、成矿系列与成矿特征.安徽地质,2(4):53~61.
    [54] 黄许陈,储国正.1993.铜陵狮子山矿田多位一体(多层楼)模式.矿床地质,12(3):221~230.
    [55] 黄许陈,储国正.1993.铜陵狮子山矿田多位一体(多层楼)模式.矿床地质,12:221~230.
    [56] 黎彤,倪宋斌.1990.地球和地壳的化学元素丰度.北京:地质出版社.
    [57] 李龙,郑永飞,周建波.2001.中国大陆地壳铅同位素演化的动力学模型.岩石学报,17(1):61~68.
    [58] 李厚民,沈远超,毛景文,等.2003.石英、黄铁矿及其包裹体的稀土元素特征—以胶东焦家式金矿为例.岩石学报,19(2):267~274.
    [59] 李进文.2004.铜陵矿集区矿田构造控矿与成矿化学动力学研究[D](博士论文).北京:中国地质科学院.导师:裴荣富.1~142.
    [60] 李进文,裴荣富,梅燕雄等.2006.安徽铜陵狮子山铜(金)矿田成矿流体地球化学研究.矿床地质,25(4):427~437.
    [61] 李文达.1989.论扬子型铜矿床及其成因.中国地质科学院南京地质矿产研究所所刊.10(2):1~14.
    [62] 李文达,毛建仁,朱云鹤等.1996.中国东南部中生代火成岩与矿床.北京地震出版社.
    [63] 李文达.王文斌,范洪源,等.1997.长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性.火山地质与矿产.20(增刊):1~131.
    [64] 梁样济.1995水-岩相互作用和成矿物质来源.北京:学苑出版社.
    [65] 林新多.1989.岩浆成因矽卡岩的某些特征及形成机制初探,现代地质,3(3):751~358.
    [66] 凌其聪,程惠兰,陈帮国.1998.铜陵东狮子山铜矿床地质特征及成岩成矿机理研究.矿床地质,17(2):158~164.
    [67] 凌其聪,周贵斌,黄许陈等.1998.“层控式”矽卡岩矿床特征及成矿机制—以铜陵大团山铜(金)矿床为例.贵金属地质,7(2):91~95.
    [68] 凌其聪.1999.层控矽卡岩型铜矿床的成矿作用动力学研究.中国地质大学博士学位论文.
    [69] 凌其聪,刘丛强.2002.冬瓜山层控矽卡岩型铜矿床成矿流体特征,吉林大学学报(地球学版)[J],32(3):219~224.
    [70] 凌其聪,刘丛强.2003.层控矽卡岩及在有关矿床形成过程中的稀土元素行为-以安徽冬瓜山矿床为例.岩石学报,19(1):192~200.
    [71] 刘家军,何明勤,李志明等.2004.云南白秧坪铜多金属矿集欧区碳氧同位素组成及其意义.矿床地质,23(1):1~10.
    [72] 刘建明,刘家军.1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,17(4):448~456.
    [73] 刘建明,张宏福,孙景贵等.2003.山东幔源岩浆岩的碳、氧和锶、钕同位素地球化学研究.中国科学(D辑),33(10):921-930.
    [74] 刘亮明,2000.大型铜矿集区成矿聚集机制与隐伏矿床定位预测-以中条山矿集区和铜陵矿集区为例.博士后论文.
    [75] 刘文灿,高德臻,储国正.1996.安徽铜陵地区构造变形分析及成矿预测,北京:地质出版社.
    [76] 刘文灿,高得臻,储国正等.1996.安徽铜陵地区构造变形分析及成矿预测.北京:地质出版社.1-131.
    [77] 刘英俊等.1984.元素地球化学.北京:科学出版社.
    [78] 刘裕庆,刘兆廉.1991.铜陵地区层状铜(铁、硫)矿床同位素地球化学和矿床成因研究.中国地质科学院矿床地质研究所所刊,1:47~114.
    [79] 卢焕章,李秉伦,沈昆,等.1989.包裹体地球化学..北京:地质出版社.
    [80] 马振东,单光祥.1996.长江中下游及邻区区域铅同位素组成背景及其应用,地质学报,70 (4):324~334.
    [81] 马振东,单光祥.1997.长江中下游区域地壳热结构及研究意义.地球科学,中国地质大学学报,22(1):62~64.
    [82] 马振东,张本仁,蒋敬业等..1998,长江中下游及邻区基底和花岗岩成矿元素丰度背景的研究,地质学报,72(3):267~275.
    [83] 马振东等.1999.长江中下游及邻区基底地球化学分区及区域成矿远景预测.地球科学.中国地质大学学报,24(3):288~291.
    [84] 岑况.1999.共存矿物溶解度与硫化物金属成矿作用.地质学报,73(3):243~249
    [85] 岑况,崇文.2001.成矿流体的流动—反应—输运祸合与金属成矿地学前缘,8(4):323~328.
    [86] 毛建仁,苏郁香,陈三元.1990.长江中下游中酸性侵入岩与成矿.北京:地质出版社.
    [87] 毛景文,赫英,丁悌平.2002.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质,21(2):121~127.
    [88] 毛景文,王志良,李厚民等.2003b.云南鲁甸地区二叠纪玄武岩中铜矿床的碳、氧同位素对成矿过程的指示.地质论评,49(6):610~615.
    [89] 毛景文.Holly stein,杜安道,等.2004.长江中下游地区辉钼矿Re-Os年龄侧定及其对成矿作用的指示地质学报,78(1):121~131.
    [90] 蒙义峰,侯增谦,杨竹森等.2004.铜陵矿集区蚀变-流体填图与成矿流体系统.矿床地质,23(3):261~270.
    [91] 孟宪民.1963.矿床分类与找矿方向.矿床学论文集.北京:科学出版社,1~72.
    [92] 潘志君.1992.安徽铜陵龙虎山金矿床地质特征.中国地质大学(北京)研究生论文.
    [93] 彭建堂,胡瑞忠.2001.湘中锡矿山超大型锑矿床的的C-O同位素体系.地质论评,47(1):34~41.
    [94] 秦新龙,杜杨松,田世洪,等.2002.安徽铜陵地区含磁黄铁矿、黄铜矿角闪石巨晶的首次发现.自然科学进展,12:834~838.
    [95] 邱瑞龙.1997.贵池铜山铜矿矽卡岩稀土元素地球化学特征,地质学报,(1):93~98.
    [96] 任云生.2003.铜陵地区铋-金型金/银金独立与叠加成矿.吉林大学博士学位论文.
    [97] 苏文超,胡瑞忠,漆亮,等.1998.黔西南卡林型金矿床流体包裹体中微量元素研究,地球化学,30(6):512-516.
    [98] 苏文超,漆亮,胡瑞忠,等2001.流体包裹体中稀土元素的ICP-MS分析研究.科学通报,43(10):1094~1098.
    [99] 覃祖文.1987.安徽铜陵老鸦岭铜矿床地质特征及成因探讨武汉地质学院研究生论文.
    [100] 唐永成,吴言昌,储国正等.1998.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1~351.
    [101] 田世洪,丁悌平,杨竹森等.2004.安徽铜陵朝山金矿床稳定同位素、稀土元素地球化学研究.矿床地质,23(3):365~374).
    [102] 涂光炽,等.1982.地球化学.上海:上海科学技术出版社.
    [103] 汪洋,邓晋福,姬广义,等.2004.长江中下游早白垩世埃达克质岩的大地构造背景及其成矿意义[J].岩石学报,20(2):297.
    [104] 王葆华.2004.铜陵矿集区海底喷流沉积热液体系的成矿流体特征.北京:科技大学学位论文.
    [105] 王道华等.1987.长江中下游区域铜金铁硫矿床基本特征及成矿作用.北京:地质出版社.
    [106] 王道经.1981.铜陵地区地质构造与矽卡岩型铜矿的若干关系,地质论评,27(4).
    [107] 王莉娟,王京彬,王玉往等.2003.蔡家营、大井多金属矿床成矿流体和成矿作用.中国科 学,33(10):941~950.
    [108] 王莉娟.王京彬,王玉往等.2004.新疆准噶尔地区金矿床成矿流体稀土元素地球化学特征.岩石学报,20(4):977~987.
    [109] 王强,许继峰,赵振华,等.2003.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约[J].中国科学(D辑),33(4):323.
    [110] 王文斌,李文达,董平等.1994.论长江中下游地区含铜黄铁矿型矿床成因.火山地质与矿产,15(2):25~34.
    [111] 王文斌,李文达,范洪源.1995.长江中下游铁铜多金属矿床铅同位素特征,火山地质与矿产,16(2):11~20.
    [112] 王先彬,刘刚,陈践发等.1996.地球内部流体研究的若干关键问题.地球前缘,3(3-4):105~118.
    [113] 王训成,吴多元,周育才,等.2000.安徽铜陵鸡冠石银金矿床稀土元素地球化学特征[J].安徽地质,10(1):51.
    [114] 王彦斌,刘敦一,曾普胜等.2004.安徽铜陵地区幔源岩浆底侵作用的时代-朝山辉石闪长岩锆石SHRIMP定年.地球学报,25(4):423~427).
    [115] 王彦斌,刘敦一.曾普胜等.2004.安徽铜陵地区幔源岩岩浆底侵作用的时代—朝山灰石闪长岩锆石SHRIMP定年.岩石矿物学杂志.23(4).
    [116] 王彦斌,刘敦一,曾普胜等.2004c.铜陵地区铜官山石英闪长岩锆石SHRIMP的U-Pb年龄及其成因指示.岩石矿物学杂志,23(4):298~304.
    [117] 王元龙,王焰,张旗等.2004.铜陵地区中生代中酸性侵入岩的地球化学特征及其成矿-地球动力学意义.岩石学报,20(2):325~338).
    [118] 温春齐,黄华盛,刘兆廉.1996.铜陵地区石炭系铁铜矿床的矿石组构组分特征.成都理工学院学报.23(2):7~15.
    [119] 吴才来,周.若,黄许陈等.1994.铜陵地区中酸性侵入岩锆石群结晶特征及成因,岩石矿物学杂志,13(3):239~247).
    [120] 吴才来,周旬若,黄许陈等.1996.铜陵地区中酸性侵入岩年代学研究.岩石矿物学杂志,15(4):299~307.
    [121] 吴才来,陈松永,史仁灯,郝美英.2003.铜陵中生代中酸性侵入岩特征及成因.地球学报,24(1):41.
    [122] 吴才来,陈松永,史仁灯等.2003.铜陵中生代中酸性侵入岩特征及成因,地球学报,24(1):41~48.
    [123] 吴淦国,张达,威文栓.2003.铜陵矿集区构造滑脱及分层成矿特征研究.中国科学(D辑);33(4):300~308.
    [124] 吴良士,邹晓秋.1997.江西城门山铜矿床Re-Os同位素年龄及其意义.矿床地质,16 (4):376~381.
    [125] 肖新建,顾连兴,倪培,等.2002.铜陵地区海底喷流沉V(SEDEX)块状硫化物矿床成矿流体研究.矿床地质,21(增刊):491~494.
    [126] 肖新建,顾连兴.倪培.2002.安徽钢陵狮子山铜、金矿床流体多次沸腾及其与成矿的关系.中国科学(D辑),32(3):199~206.
    [127] 谢家荣.1996.中国之矿产时代与矿产区域.地质论评,(3):263~380.
    [128] 邢凤鸣,徐祥.1995.铜陵鸡冠山岩体中的堆晶淬冷包体,岩石矿物学杂志,14(1):19~25.
    [129] 邢凤鸣,徐祥.1995,安徽沿江中生代岩浆的基本特征.岩石学报,11(4):25~31.
    [130] 邢凤鸣,徐祥.1996.铜陵地区高钾钙碱系列侵入岩地球化学.地球化学,25(1):29~38.
    [131] 邢凤鸣,1996.AFC混合与铜陵地区侵入岩的成因.岩石矿物学杂志,15(1):10~20.
    [132] 邢凤鸣.1998.扬子岩浆岩带东段基性岩地球化学.地球化学,27(3):258~268.
    [133] 邢凤鸣.1999.安徽沿江地区岩浆成矿带.安徽地质,272~279.
    [134] 徐九华,谢玉玲,刘建明等.2004.小秦岭文峪-东闯金矿床流体包裹体的微量元素及成因意义.地质与勘探,40(4):1~6.
    [135] 徐九华,谢玉玲,杨竹森等.2004.安徽铜陵矿集区海底喷流沉积体系的流体包裹体微量元素对比[J].矿床地质,23(3):344~352.
    [136] 徐克勤,朱金初.1978.我国东南部几个断裂拗陷带中沉积(或火山沉积)—热液叠加类铁铜矿床成因探讨.福建地质科技情报,(4):1~68.
    [137] 徐克勤,朱金初,任启江.1980.论中国东南部几个断裂拗陷带中某些铁铜矿床的成因问题.国际交流地质学术论文集二集,北京:地质出版社:49~58.
    [138] 徐兆文,方长泉,陆现彩等.2004.与朝山金矿有关岩体地质地球化学特征,地质与勘探,40(3):42~46
    [139] 徐兆文.2005.铜陵冬瓜山铜矿成矿流体特征与演化.地质论评,51(1):36~41.
    [140] 闫峻,陈江峰,喻钢等.2003.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据.高校地质学报,9(2):195~206).
    [141] 阎学义,袁成祥等.1977.长江中下游成矿带中石炭纪海底火山喷发-沉积黄铁矿型铜矿地质特征.南京大学学报(自然科学版),(1):43~67.
    [142] 杨竹森.侯增谦,蒙义峰,等.2002.安徽铜陵矿集区流体系统与成矿.矿床地质,21(增刊):1080~1083.
    [143] 余金杰,毛景文.2002.宁芜玢岩铁矿钠长石40Ar-39Ar定年及意义.自然科学进展,12(10):1059~1063
    [144] 岳书仓,徐晓春.1999.火山-侵入杂岩带的成岩-成矿专属性[J].地学前缘,6(2):305.
    [145] 岳书仓,周涛发.1998.长江中下游铜、金成矿带形成的背景.安徽地质.8(4):1~3
    [146] 岳文浙,业治铮,魏乃颐,等.1993.长江中下游威宁期沉积地质与块状硫化物矿床.北京:地质出版社.
    [147] 曾普胜,裴荣富,侯增谦,等.2002.安徽铜陵地块沉积—喷流块状硫化物矿床.矿床地质.21(增刊):532~535.
    [148] 张理刚.1983.稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿.西安:陕西科学技术出版社.
    [149] 张旗,王焰,钱青,等.2001.中国东部燕山期埃达克岩的特征及其构造—成矿意义.岩石学报,17(2):
    [150] 赵斌,赵劲松,张重泽.岩浆成因矽卡岩的实验依据,科学通报,1993,38(21):1986~1989.
    [151] 赵斌等.1997.长江中下游地区若干铁铜(金)矿床中块状及脉状钙质矽卡岩的氧锶同位素.地球化学,5:34~51.
    [152] 赵斌,赵松,刘海臣.1999.长江中下游若干Cu(Au)、Cu-Fe(Au)和Fe矿床中钙质矽卡岩的稀土元素地球化学.地球化学,28(2):113.
    [153] 赵振华.1997.微量元素地球化学原理.北京:科学出版社.
    [154] 中国地质科学院等.2003.铜陵大型矿集区深部精细结构和含矿信息项目研究报告.
    [155] 周泰禧,陈江峰,李学明,等.1988.安徽省印支期岩桨活动质疑岩石学报.(3):46-53.
    [156] 周涛发,岳书仓.2000.长江中下游铜、金矿床成矿流体系统的形成条件及机理.北京大学学报(自然科学版),36(5):697~707.
    [157] 周殉若等.1993.铜陵中酸性侵入岩同源包体特征及岩浆动力学,岩石矿物学杂志,12(1):20~31.
    [158] 周真.1984.铜陵马山金矿床成因研究[J],地质论评,30(5):467~476.
    [159] 朱和平,王莉娟.2001.四极质谱测定流体包裹体中的气相成分.中国科学(D辑),31(7): 586-590.
    [160] 朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定.岩石学报,2003,19(2):314~318.
    [161] Andreas A, Detlefq Christoph A H. Formation of a magmatic-hydrothermal ore deposit insights with LA-ICP-MS analysis of fluid inclusions. Science, 1998, 279: 2091~2094.
    [162] Arthur W R and Donald M B. Hydrothermal alteration. In: Barnes H Led. Geochemistry of hydrothermal oredeposits.New York: A Wwiley-interscience Publication. 1979.173~236.
    [163] Bi Xianwu, Hu Ruizhong. REE geochemistry of primitive ore fluids in Ailaoshan gold belt, southwest China. Chinese Journal of Geochemistry, 1998, 17(1): 91~96
    [164] Bondar. 1993,Revised equation and table for determing the freezing point depression of H_2O-Na-Clsolution geochemica et cosmochemica Act, 57:683~684.
    [165] Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R. 2000.In homogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt.Chariotte and Drysdale gold deposits, Western Austraqlia).Contrib Mineral Petrol, 139:251~264.
    [166] Chaderi M, Palin M J, Sylvester P J, Campbll I H.1999.Rare earth element systematics from hydroth-ermal gold deposits in the Kalgoorlie-Norseman region, Western Australia.Econ Geol, 94:423~438
    [167] Chen Jiangfeng.Foland K A and Zhou Taixi.1985.Mesozoic granitoids of the Yangtze fold boat.Chain:Isotopic constraints on the magma sources.In: The Crust he significantce of Granites-gneisses in the Linhosphere(ed.Wu.L.et al.). Theophrastus.Athens, pp.217~237.
    [168] Compston W, Williamsl S, Kirschvink JL, et al.1992.ZirconU-Pbagesforthe Early Cambrian time scale [J]. Journal of the Geological Society, 149:171~84.
    [169] CompstonW, Williams I Sand Meyer C.1984.U_Pb geochronology of zircons from lunarbreccia 73217 using asensitive high mass_ resolution ion microprobe.Journal of Geophysical Research, 89 (Supplement):B325~B534.
    [170] Dickin A P. 1988 .Evidence for limited REE leaching from the Roffna Gneiss, Switzerland —a discussion of the paper by Vocke et al. Cent rib. Mineral. Pet rol,99: 273~275.
    [171] Flynn R T and Burnham C W. 1978.An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts. Geoch Cosmoch Acta, 42: 685.
    [172] Gao S, Zhang B.Luo T C, et al.. Chemical composition of the continental crust in the Qinling Orogenic Belt and its scent North China and Yangtu ciatons. Geochim. Cosmochim. Acts, 1992, 56:3933~3950.
    [173] Grancy and Kesler S E. Naetors affecting gas analysis of inclusion fluid quandrupole mass spectrometry.Geochim Cosmochim Acta, 1995, 59(19):3977~3896.
    [174] Hecht L, Freiber R, Gilg T A.Grundmann G, Kostitsyn Y A.1999. Rareearth element and isotope (C, O, Sr)characteristics of hydrothermal carbonates:genetic implications for dolomitehosted talc mineralization at Gopfersgrun(Fichteigbirge, Germany).Chem Geol, 155:115~130.
    [175] Hoefs J. 1997.Stable isotope geocbemistry[M].Berlin:Spring Verlag.4thed.65~168.
    [176] Hu Ruizhong, Turner G and Burnard P G, et al. Helium and argon isotopic geochemistry of Jinding supedarge Pb-Zn deposits. Science in China (Series D), 1998, (4): 42~48
    [177] Kay R W and Kay S M. Creation and destruction of lower continental crust. Geologische Rundschau, 1991 80:259~278.
    [178] Lan Cartwright. Regional oxygea isotope zonation at Broken Hill, New South Wales, Australia: large-scale fluid flow and implications for Pb-Zn-Ag mineralization. Econ Geol, 1999, 94: 357~374
    [179] Lottermoser B G.1992. Rare earth elements and hydrothermal ore formation processes.Ore Geol Rev, 7:25~41.
    [180] Mengel and Kern H. Evolution of the petrological and seismic Moho-implications for the continental crust-mantle boundary. TerraNova, 1992, 4:109~116.
    [181] Michard A, Rare earth element systematics in hydrothermal fluids. Geochim. Acts. 1989, S3:745~750.
    [182] Michael Bau. REE mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology , 1991, 93:219~230
    [183] Monecke T. Monecke J, Monch W. Kempe U. Mathematical analysis of rare earth element patterns of fluorites from the Ehrenfriedersdorf tin deposit, Germany: evidence for a hydrothermal mixing process of lanthanides from two different sources. Mineralogy and Petrology. 2000.70(3~4): 235~256
    [184] Norman D I. Musgrave J A. N2-Ar-He compositions in fluids: indicators of fluid source. Geochim CosmochimActa, 1994, 58:1119~1131
    [185] Ohmoto H and Rye R O. Isotopes of sulfur and carbon. In: Barnes H L ed. Geochemistry of hydrother-mal ore deposits(2'4 edition). New York: A Wiley-interscience Publication. 1979. 509~567.
    [186] Ohmoto H. Stable isotope geochemistry of ore deposits. In Valley J W, Taylor, H P, O'Neil J R ed Stable Isotopes in High Temperature Geological Processes. Washington D C: Mineral Soc Am,1986, 491~555
    
    [187] Ohmoto H. Stable isotope geochemistry of ore deposits. Rev. Mineral. 1986, 16:491~556.
    [188 ] Oi T, Kikawada, Honda T, Ossaka T and Kakihana H. 1990 . Determination of the lanthanoids in a neutral hot spring water by neutron activation analysis.. J . Radioanal. N ucl. Chem., 140 :365~377.
    [189] Oreskes N and Einandi T. 1990.Origin of rare-Earth elements-enrichded hematite breccias at the Olympic Dam-Cu-u-Au-Ag-deposits,Roxby Downs,south Austrlia,Econ.geol.,85:1~28
    [190]Pan Y M and Dong P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:intrusion and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, deposits. Ore Geology Reviews,1999, 15:177~242.
    [191] Roedder E. 1984. Fliud inclusion. Reviews in Mineralogy. Mineralogical Society ofAmerica, 12:644.
    
    [192] Roedder E. 1984.Fluidinclusions [J].Reviewsin Miner Geology, 12:57~72.
    [193] Rollinson H B.1993.Using geochemical data:Evolution, presentation. New York:Longman Scientific& Technical, 270~343.
    [194] Rudnick RL and Fountain D M. Nature and composition of the continental crust: a lower crust perspective. Rev.Geophys., 1995, 33:267~309.
    [195] Rye RO. Hall WE and Ohmoto H. Carbon, hydrogen, oxggen, and sulfur isotope study of the Darwin lead-zinc deposit, southern California: Econ Geol, 1974, 69:468~481
    [196] Sang ster D F. Sulfur and lead isotopes in stratabound -depsits of calc-alkaline affiliation , Geol.Assoc .Canada Spec. Paper14, 1976a.
    [197] Sanjuan B , Michard A and Michard G. 1988 Influence of the temperature of CO_2:rich springs on their aluminium and rae-earth element contents. Chem. Geol, 68: 57~67.
    [198]Taylor H , P. 1978 .Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth and Planetary Science Letters , 38:177~210.
    [199] Taylor H P. 1980 .The effect s of assimilation of country rocks by magmas on 18 O/14 O and 87 St/86 Sr systermatics in igneous rocks. Earth and Planetary Science Letters 47:243~254.
    [200] Taylor R P and Fryer B J. Rare earth element geochemistry as an aid to interpreting hydrothermal ore deposits, in Metallization Associated with Acid Magmatism. John Willey & Sons Ld., 1982
    [201] Taylor H P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes H L ed Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, 1997, 236~277
    [202] Ulrich and Gunther D and Heinrieh C A. Gold concentrations of magmatic brines and the metal budget ofporphyry copper deposits. Nature, 1999, 399: 676~679.
    [203] Wang P, Ishihara S. Sulfur isotopic variation of Yanshanian magmatic-hydrothermal deposits in southern China. Resource Geology, 2000, 50(4):257~265
    [204] Whitney P R, Olmsted J F. 1998. Rar earth element metasomatism in hydrothermal systems:the Willsboro-Lewis wollastonite ores, New York, USA.Geochim Cosmochim Acta, 62:2965~2977.
    [205] Williams I S and Ciaesson S.1987.Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Sere Nappes, Scandinavian Caledonides: Ionmcroprobezircon U_Th_Pb. Contributionsto Mineralogy and Petrology, 97:205~217.
    [206] Xu Xiaochun, Lu Sanming, Luo Jinwei. Characteristics of ore-forming fluids of iron and copper ore-deposits in Lujiang-Zongyang volcanic basin. First Meeting: Asia current research on fluid inclusion, 2006.5 Nanjing, China Eds: Pei Ni, and Zhaolin Li, 282~283
    [207] Zheng Y F.1990.Carbon-oxygen isotopic covaiationsin hydrothermal calcite during degassing of CO_2: A quantitative evaluation and applicationto the Kushikino gold mining area in Japan. Mineralium
    [208] Zheng Y F and Hoefs J.1993.Carbon and oxygen isotopic covaiations in hydrothermal calcites .Mineralium Deposita, 28:79~89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700