用户名: 密码: 验证码:
深埋硬岩隧道围岩稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道埋深的增加,地应力逐渐增加,岩爆风险进一步加大,围岩变形的时间效应显著,而深埋环境下硬岩隧道开挖过程中围岩表现出特殊的非线性力学行为使得传统的岩石力学理论与分析方法面临着新的挑战。论文以国家杰出青年科学基金项目“岩土工程减灾(50625824)”为依托,开展深埋硬岩隧道围岩稳定性的研究:对围岩稳定的重要影响因素—二次应力场进行了研究,在此基础上针对深埋硬岩弹脆性破坏的主要形式-岩爆灾害进行了预测;分析了隧道围岩和支护结构的蠕变特性;借助耗散非线性科学理论,确定深埋隧道围岩的非线性动力学特征,即围岩稳定性与能量耗散之间的关系。论文的主要工作如下:
     ①分析了测量隧道二次应力测试的改进的二次应力恢复法,即测定三个方向在应力解除前后应变的改变量,再进行二次应力恢复,根据应力恢复过程得到的压力,计算三个方向( x、z和45°方向)的二次应力(σ_x、σ_z和σ_(45))。进行室内试验和数值实验求解改进应力恢复法的应力等效系数,探讨应力等效系数与岩石力学参数、围岩压力大小之间的关系,修正了改进的二次应力恢复法,从而系统的研究了改进的二次应力恢复法测定隧道围岩二次应力的可行性和正确性。
     ②采用改进的二次应力恢复法对隧道深埋硬岩段进行了二次应力的现场测定,比较改进的二次应力恢复法与弹性力学计算结果。进而探讨了在深埋硬岩开挖隧道,接近和通过某一段面时,围岩主应力的变化以及开挖对平面应力和剪应力主要影响范围以及地应力的变化对隧道断面不同部位的二次应力场的影响。
     ③分析国内外岩爆预测的判据,选择岩爆发生所需的力学条件、完整性条件、储能条件和脆性条件作为岩爆预测指标。引入岩爆预测的相对隶属度概念,计算了岩爆的相对隶属度模糊矩阵和预测指标的权重,以信息熵来描述并比较岩爆评价中的不确定性,定义了加权广义权距离来表征岩爆的差异。根据最大熵原理建立了岩爆预测的模糊最优化模型,对国内外一些岩石地下工程实例进行了分析,预测结果与其他方法的分析结果以及实际情况基本一致。并将模型运用于葡萄山隧道岩爆预测,预测结果与实际岩爆情况符合较好。进一步应用蒙特卡罗法讨论了岩爆指标的随机误差权重对于预测结果的影响。
     ④采用MTS-815液压伺服系统对隧道衬砌的混凝土和微晶白云岩试件进行了三轴压缩试验和蠕变试验,分析了隧道衬砌混凝土三轴压缩蠕变变形的特点,认为采用摩尔-库伦准则和Burgers模型串联组合而成的粘弹塑性模型可以合理的描述衬砌混凝土和微晶白云岩的蠕变特性。组合模型的粘弹性状态与Burgers模型一致,塑性状态与M-C模型一致,它不仅能够反映衬砌结构蠕变过程,且能模拟材料的粘弹塑性变形特性,解决了典型Burgers蠕变模型只能描述粘弹性蠕变的缺陷。同时也研究了三轴试验条件下组合蠕变模型参数的求解方法,得到隧道衬砌混凝土和围岩的蠕变参数,建立数值分析模型,研究深埋硬岩隧道围岩的蠕变特征。
     ⑤选取隧道深埋硬岩段典型部位多个点的剪切应变时间序列,进行相空间重构。计算隧道不同部位的非线性动力学指标:Lyapunov指数和Kolmogorov熵,定量分析围岩系统演化过程中变形的非均匀性和非线性稳定性,发现深埋隧道围岩系统演化对初始条件的敏感性,处于混沌状态。
     ⑥对深埋隧道硬岩围岩进行了长期的监控量测,分析围岩变形,发现不同与浅埋隧道的变形特征。利用DGM(2,1)、全域法、局域法和混沌重构相空间-灰色DGM(2,1)最优组合模型对深埋隧道的围岩变形进行了预测,结果表明组合模型(全域法+DGM)的综合预测误差比全域法和灰色DGM(2,1)模型都小,精度也很高,能很好地预测深埋硬岩隧道围岩的动态变形特征,得到了与实测位移一致的预测结果。
The risk of rock burst will be higher and more nonlinear effect is manifested in the surrounding rock with the ground stress increased gradually because of the tunnel buried depth increasing. With special nonlinear mechanical behavior significant, the traditional theory for rock mechanics faces a new challenge.This research work is being supported by grants from National Science Fund for Distinguished Young Scholars of China (NO.50625824). The secondary stress after excavated, a very important influencing factors for the stability of surrounding rock is studied. Rock burst, a familiar brittle fracture of hard rock in deep-buried tunnel, is forecasted using the method of optimal relative membership degree based on the maximum entropy principle. And meanwhile, the creep characters of surrounding rock and supporting structure are researched. The nonlinear characteristics in construction process of hard rock deep tunnel namely the relationship between energy dissipation and stability of surrounding rock are analyzed by means of nonlinear dissipative scientific theory.The main work and research conclusions are as follow:
     ①An improved stress restoring method based on the historical stress restoring method is discussed. And the principle of improved stress restoring method is that: calculation the strain variation of the three directions; then restoration the secondary stress; calculation the secondary stress(σ_x、σ_zandσ_(45)) according to the pressure based on strain variation. The key coefficient of improved stress restoring method, equivalent coefficient, is obtained by laboratory test and numerical experiments. It is discussed the relationship between the rock mechanics parameters, cofining pressure and equivalent coefficient, and its feasibility and rightness are tested by field practice.
     ②Secondary stress of hard rock tunnel sections is obtained by field test through improved stress restoring method. And the results are compared with that of elastic mechanics method. It is discussed that there is a relation between excavation distance and principal stress of surrounding rock, the influence scope of plane stress and shear stress to correct the improved stress restoring method. Furthermore, the principle how the ground stresses variation effect of stress field in some sections of tunnel has been studied.
     ③The prediction standards of rock burst are selected including the conditions of mechanics、integrity、energy and brittle on the basis of the analysis rock burst criterion prediction at home and abroad. The concept of relative membership degree on the rock burst prediction was introduced. The weight of standards and fuzzy matrix of relative membership degree are calculated. Uncertainty in rock burst prediction is described and compared according to the information entropy. Generalized to weighted distance is also defined to characterize the differences in rock burst Based on the maximum entropy principle, the establishment of a rock burst prediction fuzzy optimization model. The results from the application to practical example and comparisons with other methods are fairly good. And the prediction model is applied in putaoshan tunnel and the predictions are consistent with the actual rock burst. Furthermore, it is discussed the ralationship between the random error-weight and predict results.
     ④The triaxial compression creep test on supporting structure and micritic dolomite of the deep tunnel concrete specimens is performed by using the MTS-815 hydraulic servo system. A combined viscoelastic plasticity model is developed after the characteristics of concrete creep deformation were analyzed, which can be used to describe the creep behavior and whole creep process of the deep tunnel support structure. The combined model is characterized by a visco-elasto-plastic deviatoric behavior and an elasto-plastic volumetric behavior. The viscoelastic constitutive law corresponds to a Burger model, and the plastic constitutive law corresponds to a Mohr-Coulomb model. The characteristics of viscoelastic plasticity can be described by the combined model. The problem which the typical Burgers model was only can be used to describe viscoelasticity creep is resolved perfectly. In addition, the methods to solve triaxial compression creep model parameters are given and the parameters of supports for deep tunnel are determined to analyze the stability of surrounding rock.
     ⑤Shear strain time series of several typical points which placed in the tunnel at deep hard rock location are selected to reconstruct phase space. Some nonlinear dynamics indexes (largest Lyapunov exponents and Kolmogorov entropy) are calculated to study the deformation heterogeneity in evolution process of excavation and the nonlinear stability of surrounding rock. And the evolution of surrounding rock system at chaotic state is sensitive to initial conditions.
     ⑥The deformation features of surrounding rock in deep hard rock tunnel are analyzed after long-term monitoring measurement. It is fund that the deformation features are different greatly from shallow tunnel. By applying whole domain method,local region method and mixed optimizing model(chaotic reconstruct phase space mixed with Gray Model)to the engineering, the deformation of surrounding rock is predicted and the results of these displacement-predicting models agree well with the measured results. In addition, analysis is made about the comparison prediction results with every method to discuss the comprehensive error and precision.
引文
[1] Simser B. , Joughin W. C. , Ortlep W. D. The Performance of Brunswick Mine’s rock burst support system during a severe seismic episode. Journal of the South African Institute of Mining and Metallurgy, 2002, 102(5/6): 217-223.
    [2] Jesenak P, Brummer R. K. Rock burst damage potential assessment. An update Proceedings of the 3rd International Symposium on Rock bursts and Seismicity in Mines, 1993: 81–87.
    [3] Turner M, Player J. Seismicity at Big Bell mine. Australasian Institute of Mining and Metallurgy Publication Series, 1999, (7): 791–797.
    [4] Waldeck HG. Monitoring of seismicity and measures implemented to alleviate rock burst damage at Kloof. Proceedings of the International Symposium on rock burst and Seismicity in Mines.
    [5] Webster, Robert J. CANMET offers Canadian industry a unique R&D Prater. AMC Journal, 2000, (7): 8–9.
    [6]徐林生,王兰生,李天斌.国内外岩爆研究现状综述[J].长江科学院院报, 1999, 16(4): 24–27.
    [7]徐则民,黄润秋,范柱国,等.长大隧道岩爆灾害研究进展[J].自然灾害学报, 2004, 13(2): 16–24.
    [8]张秉鹤,陈剑平.某特长公路隧道相对浅埋洞段岩爆机理初探[J].地下空间与工程学报, 2006, 2(6): 956–961.
    [9]黄润秋,许强.工程地质广义系统科学分析原理与应用[M].北京:地质出版社, 1997.
    [10]黄润秋,许强.地质灾害系统演化特性的定量判定[J].中国科学基金, 2000, (5): 265–269.
    [11]孙广忠.岩体结构力学[M].北京:科学出版社, 1988.
    [12]周维垣.高等岩石力学IM].北京:水利电力出版社, 1990.
    [13]安欧.构造应力场[M].北京:地震出版社, 1992.
    [14] Goodman R. E.岩石力学原理及其应用[M].北京:水利电力出版社, 1990.
    [15]刘同有.金川岩石力学与工程地质研究[J].岩石力学与工程学报, 1996, 15(4): 97–101.
    [16] Kurita K, Fuji N. Stress memory of crystalline rocks in acoustic emission [J]. Geophysical Research Letters, 1979, 6(1): 9–12.
    [17] Herget G. First experiences with the CIR triaxial stain cell for stress determinations. Int. J. Rock Mech Min Sci & Geomech. Abstract. 1973 10.
    [18] Haimson. B. C. The hydro fracturing stress measuring method and recent field results. Int. J. Rock Mech Min Sci & Geomech. Abstract. 1978, 15: 167–178.
    [19]聂德新.岩体场位特征及其工程应用[J].工程地质学报, 2000, 8(1): 68–72.
    [20]聂德新,符文熹,任光明,等.天然围压下软弱层带的工程特性及当前研究中存在的问题分析[J].工程地质学报, 1999, 7(4): 298–302.
    [21]徐干成.粘弹性边界元法预测锚喷支护隧道围岩稳定性[J].岩土力学, 2001, 22(1): 12–15.
    [22]张倬元,王士天,王兰生.工程地质分析原理(第二版),北京:地质出版社, 1994.
    [23] vs.沃特科里.岩石力学性质手册[M].北京:水利出版社, 1981.
    [24] TR.斯塔西.地下岩石力学实用手册[M].北京;煤炭工业出版社, 1990.
    [25]李先炜.岩体力学性质[M].北京:煤炭工业出版社, 1990.
    [26]谭以安.岩爆形成机理研究[J].水文地质工程地质, 1989, (1): 34–38. .
    [27]谭以安,岩爆特征及岩体结构效应,中国科学(B辑), 1991, (9): 985–991.
    [28]李焯芬,王可钧.高水平地应力对岩石工程的影响[J].岩石力学与工程学报, 1996, 15(1): 26–31.
    [29]唐宝庆,曹平.岩爆研究现状的分析[J].湖南有色金属. 1996, 12(1): 7–10.
    [30]李庶林.岩爆倾向性的动态破坏实验研究[J].辽宁工程技术大学学报(自然科学版), 2001, 20(4): 436–438.
    [31]潘一山,章梦涛,李国臻.稳定性动力准则的圆形洞室岩爆分析[J].岩土工程学报, 1993, 15(5): 59–66.
    [32]徐林生,王兰生,李永林.岩爆形成机制与判据研究[J].岩土力学, 2002, 23(3): 300–303.
    [33]黄润秋,王贤能.岩石结构特征对岩爆的影响研究[J].地质灾害与环境保护, 1997, 8(2): 15–20.
    [34]杨淑清.隧洞岩爆机制物理模型试验研究[J].武汉水利电力大学学报, 1993, 26(2): 160–166.
    [35] Hoek E, Brown E T.岩石地下工程(译).北京:冶金工业出版社, 1986.
    [36]许迎年,徐文胜,王元汉,等.岩爆模拟试验及岩爆机理研究,岩石力学与工程学报, 2002, 21(10): 1462–1466.
    [37]费鸿禄,徐小荷,唐春安.地下洞室岩爆的突变理论研究,煤炭学报, 1995, 20(1): 29–33.
    [38] Haimson. B. C. The hydro fracturing stress measuring method and recent field results. Int. J. Rock Mech Min Sci & Geomech. Abstract. 1978, 15: 167–178.
    [39]潘一山,徐秉业.考虑损伤的圆形洞室岩爆分析[J].岩石力学与工程学报, 1999, 18(2): 152–156.
    [40]王挥云,李忠华,李成全.基于岩石细观损伤机制的岩爆机理研究[J].辽宁工程技术大学学报, 2004, 23(2): 188–190.
    [41]梁志勇,连凌云,石豫川.岩爆机理的统计损伤解释[J].地质灾害与环境保护, 2004,15(2): 23–26.
    [42] Nakamura S, Shikano K, Kuwabara H. Voice conversion through vector quantization [J]. ICASSP, 1988: 655–658.
    [43]刘长江,卢海军.深部巷道岩爆的发生机理及防治对策[J].煤炭科学技术, 2005, 33(11): 30–32.
    [44]祝方才,潘长良,曹平,等.冬瓜山矿床岩爆发生机制分析[J].金属矿山, 2002, 308(2): 20–21.
    [45]徐则民,黄润秋,罗杏春,等.静荷载理论在岩爆研究中的局限性及岩爆岩石动力学机理的初步分析[J].岩石力学与工程学报, 2003, 22(8): 1255–1262.
    [46]徐则民,黄润秋.岩爆与爆破的关系[J].岩石力学与工程学报, 2003, 22(3): 414–419.
    [47]何满潮,苗金丽,李德建,等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报, 2007, 26(5): 865–876.
    [48]李广平.岩体的压剪损伤机理及其在岩爆分析中的应用[J].岩土工程学报, 1997, 19(6): 49–55.
    [49]王桂尧,孙宗颀,卿笃干.隧洞岩爆机理与岩爆预测的断裂力学分析[J].中国有色金属学报, 1999, 9(4): 841–845.
    [50]潘一山,章梦涛,李国臻,稳定性动力准则的圆形洞室岩爆分析[J].岩土工程学报, 1993, 15(5): 59–66.
    [51]王挥云,李忠华,李成全.基于岩石细观损伤机制的岩爆机理研究[J].辽宁工程技术大学学报, 2004, 23(2): 188–190.
    [52]刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报, 1997, 16(2): 140–147.
    [53]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究, 1998, 16(4): 281–285.
    [54]邵鹏,张勇,贺永年.岩爆发生的随机共振机制[J].煤炭学报, 2004, 29(6): 668–671.
    [55]康政虹,高正夏,丁向东,等.基于扰动响应判据的洞室岩爆分析[J]河海大学学报(自然科学版), 2003, 31(2): 188–192.
    [56]谢勇谋,李天斌.爆破对岩爆产生作用的初步探讨[J]中国地质灾害与防治学报, 2004, 15(1): 61–64.
    [57]费鸿禄,徐小荷,唐春安.地下洞室岩爆的突变理论研究[J],煤炭学报, 1995, 20(1): 29–33.
    [58]谢和平,陈忠辉,段法兵,等.综放顶煤爆破能量的分形研究[J].力学与实践, 2000, 22(1)16–18.
    [59]谢和平.分形–岩石力学导论[M].北京:科学出版社. 1996.
    [60]王元汉,李卧东,李启光,等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报, 1998, 17(5): 493–501.
    [61]徐林生,王兰生,李天斌,等.二郎山公路隧道岩爆特征与预测研究[J].地质灾害与环境保护, 1999, 10(2): 56–59.
    [62]董志高,吴继敏,刘成君.地下洞室岩爆预测计算方法综述.地质灾害与环境保护, 2002. 13(2): 6–9.
    [63]冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报(自然科学版), 2002, 23(1), 57–59.
    [64]徐则民,黄润秋.岩爆与爆破的关系[J].岩石力学与工程学报, 2003. 22(3): 414–419.
    [65]梁志勇,石豫川,李天斌.基于统计损伤的岩爆预测.工程地质学报, 2005. 13(1): 85–88.
    [66]刘高.高地应力区结构性流变围岩稳定性研究[D].成都理工大学博士学位论文, 2001.
    [67] Griggs D. T. Creep of rocks [J]. J. of Geol. 1999, 47: 225–251.
    [68] Langer M. Rheological behavior of rock masses Proc of 4th Cong of ISRM, 1979.
    [69] Ladanyi B. Determination of creep properties of rock salt. Proc of 5th Cong of ISRM, 1983.
    [70] Ito H. , Sasajima S. A ten year creep experiment on small rock specimens [J] Int J Rock Mech Min Sci Geomech Abstr 1987, 24(2): 113–121.
    [71] Ito H. The phenomenon and examples of rock creep In: Hudson, J. A. , et al. (Eds. ), Comprehensive Rock Engineering, vo1. 3 Pergamon Press, Oxford, 1993, pp: 693–708.
    [72] Okubo S. , Nishimatsu Y , Fukui K. Complete creep curves under uniaxial compression[J] Int J Rock Mech Min Sci Geomech Abstr 1991, 28 (1), pp: 77–82.
    [73] Korzeniowski W. Rheological model of hard rock pillar [J] Rock Mech and Rock Engng 1991, 24: 155–166.
    [74] Matsumoto M, Tatsuoka F. Stu of rheological modeling of creep behavior for sedimentary soft rock [A]. In: Proc of the Slth Annual Conference of the Japan Society of Civil Engineers[C], 1996, 660–661.
    [75] Malan, D. F. An investigation into the identification and modeling of time–dependent behavior of deep level excavations in hard rock, PhD thesis, University of the Witwatersrand, Johannesburg, South Africa, 1998.
    [76] Malan, D F, Vogler U W , Drescher K. Time–dependent behavior of hard rock in deep level goldmines [J] Journal of the South African Institute of Mining and Metallurgy, 1997: 135–147.
    [77] Maranin E. , Brignoli M. Creep behavior of a weak rock: experimental characterization [J]. Int J Rock Mech Min Sci. , 1999, 36 (1): 127–138.
    [78] Senseny, P. E. Specimen size and history effects on creep of rock salt In: Proc. of the lth Conference on the Mechanical Behaviour of salt, 1981, 369–379.
    [79] Vouille G. , Tijani S. M. , Grenier F. Experimental determination of the geological behavior of Tersanne rock salt, Proc. of the lth Conference on the Mechanical Behaviour of sa1t, 1981, 408–420.
    [80] Cornelins R. R. , Scott P. A materials failure relation of accelerating creep as empirical description of damage accumulation Rock Mach and Rock Engage 1993, 26(3): 233–252.
    [81] Munson D. E. Constitutive model of creep in rock salt applied to underground room closure [J]. Int J Rock Mech Min Sci. , 1997, 34 (2): 233–247.
    [82] Callahan G D. , Mellegard K. D. , Hansen F. D. Constitutive behavior of reconsolidating crushed salt[J] Int J Rock Mech Min Sci. , 1998, 35(4–5): 422–423.
    [83] Haupt M. A constitutive law for rock salt based on creep and relaxation tests [J]. Rock Mech and Rock Engng 1991, 24: 179–206.
    [84]宋德彰,孙钧.岩质材料非线性流变属性及其力学模型[J].同济大学学报, 1991, 19(4): 395–401.
    [85]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报, 1995, 14(1): 39–47.
    [86]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报, 1993, 12(4): 304–312.
    [87]陈有亮,孙钧岩石的流变断裂特性[J].岩石力学与工程学报, 1996, 15(4): 323–327.
    [88]刘保国,孙钧.岩体流变本构模型的辨识及其应用[J].北方交通大学学报, 1998, 22(4): 10–14.
    [89]白世伟,吴玉山.金川镍矿二矿区不良岩层巷道稳定性研究报告[R].中国科学院武汉岩土力学研究所, 1991.
    [90]徐海滨,朱维申,白世伟.岩体粘弹塑性损伤本构模型及其有限元分析[J].岩土力学, 199213(1): 11–20.
    [91]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报, 1996(4): 63–67.
    [92]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报, 2001, 20(增): 1882–1885.
    [93]杨春和,白世伟,吴益民.应力水平及加载路径对盐岩时效的影响[J].岩石力学与工程学报, 2000, 19(3): 270–275.
    [94] Yang Chunhe, Bai Shiwei. Analysis of stress relaxation behavior of salt rock In: Proc of the 37th US Rock Mechanics Symposium, John Willy&Sons(Eds. ), New York, 1999, pp: 935– 938.
    [95]杨春和,殷建华, J. K Daemen.盐岩应力松弛效应的研究[J].岩石力学与工程学报, 199918(3): 262–265.
    [96]彭苏萍,王希良,刘咸卫,等.“三软”煤层巷道围岩流变特性研究[J].煤炭学报, 2001 26(2): 149–152.
    [97]徐卫亚,杨圣奇,杨松林,等.绿片岩三轴流变力学特性的研究(1):试验结果[J].岩土力学, 26(14): 31–37.
    [98]过镇海.钢筋混凝土原理[M].北京:清华大学出版社, 1999.
    [99]高政国,赵国藩.混凝土徐变分析的双功能函数表达[J].建筑材料学报, 2001, 4(3): 250–254.
    [100]唐崇钊.混凝土的徐变力学与试验技术[M].北京:水利电力出版社, 1982.
    [101]朱伯芳.混凝土结构徐变应力分析的隐式解法[J].水利学报, 1983, 11(5): 53–57.
    [102]李兆霞.混凝土非线性徐变理论的研究[J].河海科技进展, 1991, 11(2): 26–33.
    [103]唐家华,张玉坤.混凝土徐变的分析与研究[J].泰州职业技术学院学报, 2005, 5(6): 24-26.
    [104]高虎,刘光廷,陈凤岐.混凝土双轴压缩徐变实验初步研究[J].清华大学学报, 2001, 41(11): 110–113.
    [105]尼科里斯, G.普里高津.非平衡系统的自组织[M].徐锡申等译,科学出版社, 1986.
    [106]普里高津.探索复杂性[M].四川教育出版社, 1986.
    [107] Li T Y, J. A. Yorke. Period three implies chaos[J]Am. Marh. Monthly, 1975(82): 985~997
    [108] Anold V. I. Smale Oenominators I. Mappings of the circumferences onto itself[J]. Amer. Math. Soc. Transl. Ser. 1965, 2(40): 231-284
    [109] Smal S. Diffeomophisms with many period point: in differential and combinational topology [J]. S. S. Cairns, Princeton Universyty press, 1963
    [110] Kolmogorov A. N. Preservation of conditionally periodic movements with small change in the Hamilton Function[J]. Akad Navk. SSSR Doklady, 1954
    [111] Melnikov V K. On the stability of center for time periodic perturbations[J]. Trans. MoscowMath. Sc, 1963(12): 1-57
    [112] Moser J. Stable and random motions in dynamical systems[M]. Princeton University press, 1973
    [113]郑颖人,刘兴华.近代非线性科学与岩石力学问题[J].岩土工程学报, 1996, 18(1): 98–100.
    [114]谢和平,刘夕才,王金安.关于21世纪岩石力学发展战略的思考[J].岩土工程学报, 1996, 18(3): 98–102.
    [115]秦四清,张倬元,王士天,等.非线性工程地质学导引[M].成都:西南交通大学出版社, 1993.
    [116]王连国,宋扬,缪协兴.底板岩层变形破坏过程中混沌性态的Lyapunov指数描述研究[J].岩土工程学报, 2002. 24(3): 356–359.
    [117]包腾飞.混凝土坝裂缝的混沌特性及分析理论和方法[D].河海大学博士学位论文, 2004.
    [118]蒋卫东,李夕兵,贺怀建.基于灰色算子的尾矿坝浸润线混沌研究[J].岩土力学, 2004, 25(2): 242–245.
    [119]刘传孝.砂岩强度MTS试验及阶段特征的混沌动力学研究[J].岩土力学, 2004, 25(12): 1910–1914.
    [120]蒋斌松,韩立军,贺永年.深部岩体变形的混沌预测方法[J].岩石力学与工程学报, 2005, 24(16): 2934–2940.
    [121]蔡美峰.地应力测量原理和技术(修订版)[M].科学出版社, 2000.
    [122] Hast N. The state of stress in the upper part of the earth's crust [M]. Tectonophysics 1969, 8: 169–211.
    [123]靳晓光,王兰生,李天斌,等.二郎山隧道洞壁位移应力测试与信息化施工[J].地质灾害与环境保护, 1999, 10(2): 77–81.
    [124]李造鼎.岩体测试技术[M].北京:冶金工业出版社, 1993.
    [125]王锺琦,孙广忠,刘双光,等.岩土工程测试技术[M].北京:中国建筑工业出版社, 1986.
    [126]李兆权.应用岩石力学[M].北京:冶金工业出版社1994.
    [127]陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社, 1991.
    [128]徐志英.岩石力学[M].北京:水力电力出版社, 1993.
    [129]靳晓光,王兰生,李天斌等.地应力测量的应力恢复法试验和数值模拟研究.成都理工学院学报, 1999, 26(3): 287-290.
    [130]靳晓光,王兰生,李晓红.地下工程围岩二次应力场的现场测试与监测[J].岩石力学与工程学报, 2002, 21(5): 651–653.
    [131]靳晓光,王兰生,卫宏.公路隧道围岩变形监测及其应用.中国地质灾害与防治学报, 2000, 11(1): 19–23.
    [132]俞万禧,李炜,魏善斌等.巷道围岩应力的套筒致裂法测试及元应变的推算[J],岩石力学与工程学报, 1996, 15(1): 40–47.
    [133]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社, 1995.
    [134]钱七虎.深部地下空间开发中的关键科学问题[C]//钱七虎院士论文集.北京:科学出版社, 2007: 549–568.
    [135]王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报, 2006, 25(3): 448–455.
    [136]古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社, 2006.
    [137]陈红江,李夕兵,张毅.基于集对分析法的岩爆烈度分级预测研究[J].南华大学学报(自然科学版), 2008, 22(4): 10–14.
    [138]徐则民,黄润秋,范柱国,等.长大隧道岩爆灾害研究进展[J].自然灾害学报, 2004, 13(2): 16–24.
    [139]徐林生,唐伯明,慕长春,等.高地应力与岩爆有关问题的研究现状.公路交通技术, 2002, 4: 48–51.
    [140]王善勇.岩爆机理的数值试验研究[D].东北大学博士学位论文, 2003.
    [141]康勇,李晓红,王青海等.隧道地应力测试及岩爆预测研究[J].岩土力学, 2005, 26(6): 959–963.
    [142]张斌,符文熹,聂德新,等.影响深埋长隧道岩爆的主要因素分析[J].山地学报, 2000, (18)(supp): 94–97.
    [143]张志强,关宝树,翁汉民.岩爆发生条件的基本分析[J].铁道学报, 1998, 20(4): 82–85.
    [144]梁志勇,连凌云,石豫川.岩爆机理的统计损伤解释[J].地质灾害与环境保护, 2004, 15(2): 23–26.
    [145]白明洲,王连俊,许兆义.岩爆文献性预测的神经网络模型及应用研究[J].中国安全科学学报, 2002, 12(4): 65–69.
    [146] E. T. Jaynes. Information theory and statistical mechanics [J]. Phys. Rev. 1957, 106: 620–630; 108: 171—190.
    [147]吴乃龙,袁素云.最大熵方法[M].长沙:湖南科学技术出版社. 1991.
    [148]陈鸣钊,张志烈,樊宝康.模糊数学及其应用[M].南京:河海大学出版社, 1993.
    [149]陈守煜.相对隶属函数的系统辩证论哲学基础[J].系统辩证学学报, 1996, 4(2): 26-29.
    [150]解可新.最优化方法[M].天津:天津大学出版社, 2001.
    [151]谷明成,何发亮,陈成宗,等.秦岭隧道岩爆的研究[J].岩石力学与工程学报, 2002, 21(9): 1324–1329.
    [152]吴德兴,杨健.苍岭特长公路隧道岩爆预测和工程对策[J].岩石力学与工程学报, 2005, 24 (21): 3965–3971.
    [153]王文星,潘长良,冯涛.确定岩石岩爆倾向性的新方法及其应用[J].有色金属设计, 2001, 28(4): 42–46.
    [154]姜彤,黄志全,赵彦彦,等.灰色系统最优归类模型在岩爆预测中的应用[J].华北水利水电学院学报. 2003(6), 37–40.
    [155]王栋.熵及其在水系统中的研究与应用[D].河海大学博士论文, 2001.
    [156]孙钧.世纪之交的岩石力学研究[A]中国岩石力学与工程学会第五次学术大会论文集[C].上海:中国科学技术出版社, 1998, 1–16.
    [157]沈振中,徐志英.三峡大坝地基花岗岩蠕变试验研究[J].河海大学学报, 1997, 25(2):1–7.
    [158]陈渠.沉积软岩的三轴蠕变实验研究及分析评价[J].岩石力学与工程学报, 2003, 22(6): 905–912.
    [159] Okubo S. , Fukui K. Long–term creep test and constitutive equation of Tage tuff [J]. Journal of Mining and Materials, 2002, 118(1): 36–42.
    [160]曹树刚.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报, 2002, 21(5): 632–634.
    [161]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社. 1999.
    [162]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社. 1996.
    [163]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社. 1996.
    [164]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报, 2007, 26 (6): 1081–1106.
    [165]希尔克.大爆炸[M].北京:科学普及出版社, 1988.
    [166]赵瑜.深埋隧道围岩系统稳定性及非线性动力学特性研究[D].重庆大学博士学位论文. 2007.
    [167]陈剑平.岩土体变形的耗散结构认识[J].长春科技大学学报, 200131(3): 288–293.
    [168]郑在胜.岩石变形中的能量传递过程与岩石变形力学分析[J].中国科学(B辑), 1990, (5): 612–619.
    [169]秦四清.初论岩体失稳过程中耗散结构的形成机制[J]岩石力学与工程学报, 2000, 19(3)265–269.
    [170] Pal N R. , Pal S K Higher.《Order Fuzzy Entropy and Hybrid Entropy of a Set》Information Science,№3, 1992.
    [171] Wiley E. Entropy and Evolution, Entropy, Information, and Evolution, USA: Massachusett Institute of Technology, 1988.
    [172] Wolf A. , Swift J B. , Swinney H. et al. Determining Lyapunov exponents from a time series [J]. Physica, 1985, 16(2): 285–317.
    [173]刘传孝.砂岩全应力应变试验曲线阶段特征的Kolmogorov熵分析[J].计算力学学报, 2006, 23(2): 247–251.
    [174]冯端,冯步云.熵[M].北京:科学出版社, 1992.
    [175] Benettin G. , Galgani l. Strelcyn JM kolmogorov entropyand numerical experiments Phys Rev, A, 1976, 14: 2338–2345.
    [176]刘传孝.砂岩节理裂隙贯通的Kolmogorov熵定量判别及应用[J].岩土工程学报, 2007, 11 (29): 1730–1732.
    [177] Takens F. Detecting strange attractors in turbulence [J]. Lecture Notes in Math,1981(336): 898–910.
    [178] Holger Kantz, Thomas Schraiber. Nonlinear Time Series Analysis[M]. Cambridge University Press and清华大学出版社, 2000.
    [179]王妍,徐伟,曲继圣.基于时间序列的相空间重构算法及验证(一)[J].山东大学学报(工学版), 2005. 35(4)109–114.
    [180]王妍,徐伟.基于时间序列的相空间重构算法及验证(二)[J].山东大学学报(工学版), 2005. 35(6): 89–94.
    [181] Kantz H. , Schreiber T. Nonlinear Time Series Analysis [M] Cambridge: Cambridge University Press, 1997, p127.
    [182] Fraser A. M. , Swinney H. L. Independent coordinates for strange attractors form time series [J] Phys Rev. A 1986, 33: 1134–1140.
    [183] Grassberger P. , Procaccia I. Measuring the strangeness of strange attractors [J] Physica D, 1983, 9: 189–208.
    [184] Kennel M. B. , Brown R. , Abarbanel H. D. I. Determining embedding dimension for phase–space reconstruction using a geometrical construction [J] Phys Rev A 1992, 45: 3403.
    [185] Kugiurmtzis D. State space reconstruction parameters in the analysis of chaotic times series– the role of the time window length [J]. Physical D, 1996, 95: 13–28.
    [186] H. S. Kim, R. Eykholt, J. D. Salas. Nonlinear dynamics, delay times and embedding windows [J] Physica . D, 1999, 127: 48–60.
    [187]陈先国.隧道结构失稳及判据研究[D].西南交大博士学位论文. 2002.
    [188]张东明.岩石变形局部化及失稳破坏的理论与实验研究[D].重庆大学博士学位论文, 2004.
    [189]徐营.岩石局部化变形与巷道围岩分岔失稳机理研究[D].山东科技大学硕士学位论文, 2006.
    [190]尤明庆.岩石试样的强度及破坏过程[M].北京:地质出版社, 2000.
    [191]黄润生.混沌及其应用[M].武汉:武汉大学出版社, 2000.
    [192]马军海,陈予恕.混沌时序相空间重构及其应用研究[J].应用数学和力学, 2000, 21(11): 1237–1245.
    [193] Wolf A. Determining Lyapunov exponents from a time series [J]. Physical, 1988, 60: 285–288.
    [194] Rosenstein M. T. , Collins J. , et al. A practical method for calculating largest Lyapunov exponents from small data sets [J]. Physics D, 1993, (65): 117–134.
    [195]周创兵,陈益峰.基于相空间重构的边坡位移预测[J].岩土力学, 2000, 21(3): 205–208.
    [196]靳晓光.山区公路建设中的岩土工程监测与信息化控制[D].成都理工学院博士学位论文, 2000.
    [197]亢会明.隧道围岩稳定性分析智能决策支持系统研究.重庆大学博士学位论文, 2001.
    [198]邓聚龙.灰色理论基础[M].武汉:华中科技大学出版设, 2002. 02.
    [199]刘思峰,郭天榜.灰色系统理论及其应用[M].开封:河南大学出版社, 1991. 02.
    [200]孙虎元,魏绪钧.非等间隔灰色模型及应用[J].应用基础与工程科学学报, 1996, 4(4): 407–411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700