用户名: 密码: 验证码:
考虑扰动影响的土体性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快,隧道、桩基和基坑等工程的施工日益频繁,由此带来的环境问题越来越引起人们的重视。在工程施工过程中,不可避免地会对土体产生扰动,使得土体性状不断发生变化。而室内试验测定的物理力学参数只能反映土体在特定状态下的性状,无法描述其在工程施工全过程中的动态变化。于是,本文在前人研究基础上,探讨了扰动对土体性状的影响。主要工作和研究成果如下:
     (1)以中国ISO标准砂和福建中级砂为试验材料,分别进行了干砂三轴压缩试验和饱和砂三轴排水剪切试验。试验结果表明:随着密实度的增加,饱和砂和干砂的应力-应变曲线斜率逐渐增大;干砂主应力差的峰值以及饱和砂主应力比的峰值也均呈增大的趋势。在试验基础上,基于扰动状态概念理论,以相对密实度为扰动参量,建立了统一扰动函数。
     (2)基于统一扰动函数并结合干砂的三轴压缩试验结果对Duncan-Chang模型中的参数K和(σ1-σ3)f进行修正,建立了考虑扰动影响的修正Duncan-Chang模型。在给定砂土材料参数d、g以及初始状态的Duncan-Chang模型参数的基础上,可通过本文修正模型预测任意扰动度下的砂土应力-应变关系。模型预测与试验结果对比表明:修正Duncan-Chang模型可以更好地反映扰动状态下砂土的应力-应变关系。
     (3)基于Lade-Duncan模型,以SMP准则构建势函数,建立了一种新的砂土弹塑性模型——SMP-Lade模型。试验资料表明:与Lade-Duncan模型相比,SMP-Lade模型的预测值更接近于试验结果。同时,新模型所需的10个参数可通过常规的三轴试验测得,利于模型应用。
     (4)根据统一扰动函数并结合饱和砂的三轴排水剪切试验结果对SMP-Lade模型参数K和(κf-ft)进行修正,建立了考虑扰动影响的SMP-Lade模型。算例分析表明:SMP-Lade模型无法对扰动状态下砂土性状进行准确预测,而只要给定材料参数χ、ψ以及初始状态下的SMP-Lade模型参数,采用考虑扰动影响的SMP-Lade模型可以预测任意扰动状态下的砂土强度和变形特性。因此,本文考虑扰动影响的SMP-Lade模型可在考虑施工扰动的弹塑性有限元分析中推广应用。
     (5)基于统一扰动函数,对已有的隧道周围土体变形计算公式进行了改进,建立了考虑扰动影响的土体变形弹性计算方法,并在ABAQUS平台上,开发了修正Duncan-Chang模型的相应UMAT子程序。该模型的数值预测结果与常规三轴试验结果具有较好的一致性。最后,将修正Duncan-Chang模型引入盾构施工的有限元分析中,并与考虑扰动影响的土体变形弹性计算结果进行了对比,结果表明:模拟结果与弹性预测值比较一致。因此,采用本文开发的修正Duncan-Chang模型对实际工程问题进行有限元模拟是可行的。
     (6)根据扰动状态概念理论,通过引入刚性挡土墙位移与墙后填土相对密实度之间的比例系数,将本文提出的统一扰动函数应用到土压力计算领域,以平动模式下刚性挡土墙位移作为扰动参量,建立了能反映墙后土体从静止状态到极限平衡状态(包括被动和主动极限状态)变化全过程的位移扰动函数(Ds)。并将其应用到墙后填土为无粘性土的刚性挡土墙土压力计算中,建立了能求解任意扰动状态下土压力的修正朗肯计算方法。最后,本文提出了扰动摩擦角概念及其计算公式,参照库伦土压力理论,分析了任意扰动状态下土楔的最不利受力情况,建立了求解任意扰动状态下土压力的修正库伦计算方法。通过比较,本文提出的两种土压力计算方法所预测的土压力分布以及土压力系数与模型试验实测结果及有限元模拟结果均吻合良好。
With the rapid development of urbanization in China, civil engineering construction such as tunneling and pile foundation and excavation has become more and more frequent. Meanwhile, problems of geo-environment caused by construction have become more and more serious. Construction inevitably leads to the disturbance to soils, which will change the property of soils. Unfortunately, the physical and mechanical parameters obtained from the laboratory tests only reflect the properties of soils at a certain state but not the true properties of soils during the whole process of construction. Therefore, the changes of the properties caused by disturbance were studied by benefiting from former archievements. The major works and results of this dissertation are as follows:
     (1) Taking ISO standard sands of China and intermediate sands of Fujian as the test materials, the triaxial compressed tests of dry sands and drained triaxial shear tests of saturated sands were carried out respectively. It is found that the bigger the relative density is, the bigger the slope of the stress-strain curve is. It is also obtained that the bigger the relative density is, the bigger the peak value of the principal stress difference of dry sands and the peak value of the principal stress ratio is. According to the test results, a unified disturbance function was proposed based on the Disturbed State Concept theory. In the disturbance function, the relative density was chosen to be the disturbance parameter.
     (2) According to the triaxial compression test results of dry sands, the modified Duncan-Chang model, was developed through establishing the relationship between parameters K, peak strength (σ1-σ3)f and disturbed degree. Once the material parameters d, g and the parameters of Duncan-Chang model at initial state were given, the stress-strain relation of sands at randomly disturbed state could be predicted by the newly developed modified model. Comparing the results predicted by the proposed modified model with the test results, it is found that the modified Duncan-Chang model can describe the strength-strain relation of sands better than Duncan-Chang model at the disturbed state.
     (3) Based on the Lade-Duncan model, a new elasto-plastic model---- the SMP-Lade model was established by taking SMP criterion as the plastic potential function of the Lade-Duncan model. The true triaxial test results of sands show that the SMP-Lade model is better than the Lade-Duncan model. Furthermore, the ten parameters of the SMP-Lade model could be obtained from triaxial test. Therefore, the SMP-Lade model could be easily used for numerical simulation.
     (4) According to the drained triaxial shear test results of saturated sands, the elasto-plastic model, which could reflect the contribution of disturbance to the strength-deformation properties of sands, was proposed through establishing the relationship between parameters K,(κf-ft) and disturbed degree. Calculations show that the properties of sands at disturbed state cannot be predicted correctly by the SMP-Lade model. However, if the material parametersχandψand the parameters of the SMP-Lade model at initial state were given the stress-strain-volume change relations of sands at randomly disturbed state could be properly predicted by the proposed SMP-Lade model which considered disturbance. Therefore, the modified SMP-Lade model could be widely used in the elasto-plastic finite element analysis of the properties of soil under the condition of construction disturbance.
     (5) Benefiting from the general disturbance function and former studies, the modified elastic computing method of soil deformation, which could reflect the contribution of disturbance to the strength-deformation properties of soils, was developed. Furthermore, the user material subroutine (UMAT) of the modified Duncan-Chang model was developed based on ABAQUS. The simulated results show that the predicted results of ABAQUS in which the developed UMAT subroutine has been used agree well with triaxial tests. At last, the modified Duncan-Chang model was applying to the soil deformation analysis caused by shield construction through an engineering example. It is found that the simulated results agree well with the predicted results of modified elastic method. Therefore, it is reliable to simulate the practical problem by the developed modified Duncan-Chang model.
     (6) On basis of the Disturbed State Concept theory and by introducing the propotion coefficient between the movement of the rigid retaining wall and the relative density of backfill, the proposed unified disturbance function was used to calculate the earth pressure. Then, The movement disturbance function (Ds), which could reflect the whole changing process of backfill from the rest state to the limit state including the passive and active limit state, was established by considering the movements of the rigid retaining wall for the translation mode as the disturbed parameter. Furthermore, the modified Rankine's method, which could predict the earth pressure at randomly disturbed state, was proposed by applying DS to compute the earth pressure against rigid retaining wall with cohesionless backfill. At last, the disturbed frictional angle concept was proposed and the relationship between the disturbed frictional angle and disturbed degree was obtained. By analyzing the forces on the most unfavorable soil wedge at arbitrary disturbed state, the modified Coulomb's method, which could predict the earth pressure at randomly disturbed state, was established. The predicted results of the proposed two methods, including the magnitude and distribution of earth pressure, show good agreement with the model test and FEM results.
引文
[1]Adel H. F., Imad A. K.Passive earth Pressure of overconsolidated cohesionless backfill [J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(8):978-986.
    [2]Akaqi, Komiya. Finite element analysis of interaction of a pair of shield tunnel [C]. Proceedings of the 14~(th) International Conference on soil Mechanics and Foundation Engineering,1997,13:1449-1452.
    [3]Armaleh, S.H., Desai, C.S. Modeling include testing ofcohesionless soils under disturbed state concept [R]. Rep. Prepared for the NSF, Dept. of Civ. Engrg. and Engrg. Mech., University of Arizona, Tucson, Ariz.1990,8-20.
    [4]Attewell P. B., Woodman J. P. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil [J]. Ground Engineering,1982,15(8):13-20.
    [5]Bang S. Active earth pressure behind retaining walls [J]. Journal of Geotechnical Engineering 1985,111(3):407-412.
    [6]Chang M.F. Lateral earth pressure behind rotating walls [J]. Canadian Geotechnical Journal, 1997,34(2):498-509.
    [7]Desai C.S. A Consistent finite element technique for work softening behavior [C]. Proc. Int. Conf. on Computer Methods in Nonlinear Mechanics, University of Texas, Austin, TX, 1974.
    [8]Desai, C.S.,.Ma, Y. Modelling of joints and interfaces using the disturbed state concept [J]. International Journal for Numerical and Analytical Methods in Geomechanics.1992,16 (9):623-653.
    [9]Desai. C.S., Toth J. Disturbed State Constitutive Modeling Based on Stress-strain and Nondestructive Behavior [J]. International Journal of Solids Structures,1996,33(11): 1619-1650
    [10]Desai, C.S. Mechanics of materials and interfaces:The disturbed state concept [M]. CRC Press, Boca Raton, Fla.,2001,7-15.
    [11]Desai, C.S., EI-Hoseiny, K.E. Prediction of field behaviour of reinforced soil wall using advanced constitutive model [J]. Journal of Geotechnical and Geo-environmental Engineering, ASCE,2005,131(6),729-739.
    [12]Desai, C.S., Wang, Z.C. Disturbed state model for porous saturated materials [J]. International Journal Geomechanics, ASCE,2003,3(2):260-264.
    [13]Drucker, D.C., Prager, W. Soil mechanics and plastic analysis or limit design [J]. Quart. Appl. Math.,1952,10(2):157-165.
    [14]Dubrova G.A. Soil/Structure interaction [M]. Moscow(in Russian):Inland Waterway Transport Publishing House,1963,9-17.
    [15]Duncan J.M., Chang C.Y. Nonlinear analysis of stress and strain in soils [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1970,96(SM5):1629-1653.
    [16]Fang Y.S, Ishibashi I. Static earth pressure with various wall movements [J].Journal of Geotechnical Engineering,1986,112(3):317-333.
    [17]Fang Y.S, Chen T.J, Wu B.F. Passive earth pressure with various wall movements [J]. Journal of Geotechnical Engineering, ASCE,1994,120(8):1307-1323.
    [18]Frantziskonis G.., Desai C.S. Constitutive Model with Strain Softening [J]. Internal Journal of Solids and Structures,1987,23(6):733-768.
    [19]Janbu N. Soil compressibility as determined by oedometer and triaxial tests [C]//European Conference on Soil Mechanics & Foundations Engineering, Wiesbaden, Germany,1963,1: 19-25.
    [20]Hardin B.O., Dmevich V.P. Shear Modulus and Damping in Soils:Measurement and Parameter Effects [J]. Journal of Soil Mechanics and Foundation Division, ASCE,1972,98 (6):603-624.
    [21]Kachanov L. M. Introduction to Continuum Damage Mechanics [M]. Dordrecht, The Netherlands:Martinus Nijhoff Publishers,1986,6-14.
    [22]Katti, D.R., and Desai, C.S., Modeling and testing of cohesive soil using disturbed state concept [J]. Journal of Engineering and Mechanics, ASCE,1995,121(5):648-658.
    [23]Kondner R.L., Zelasko J.S. A hyperbolic stress-strain formulation for sands [C]. Proceedings of the Second Pan-American Conference on Soil Mechanics and Foundations Engineering, Brazil,1963, I:289-324.
    [24]Kondner R.L., Zelasko J.S. Void ratio effect on the hyperbolic stress-strain response of a sand [C]. Laboratory Shear Testing of Soils. American Society for Testing and Materials STP No.361, Ottawa,1963,250-257.
    [25]Ladd C. C., Lambe T. W. The Strength of Undisturbed Clay Determined from Undrained Test [J]. ASTMSTP,1963,85:361-365.
    [26]Lade, P.V., Duncan, J. M. Cubical triaxial tests on cohesionless soil [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1973,99(SM10):793-812.
    [27]Lade, P.V., Duncan, J. M. Elasto-plastic stress-strain theory for cohesionless soil [J]. Journal of the Soil Mechanics and Foundations Division. ASCE,1975,101(GT10):1037-1053.
    [28]Lade, P.V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces [J]. Int. J. Solids Structures,1977,13:1019-1035.
    [29]Lade, P.V., Kim, M. K. Single hardening constitutive model for frictional materials, Ⅱ Yield criterion and plastic work contours [J]. Computers and Geotechnics,1988, 6(1):13-29.
    [30]Lade, P.V., Pradel, D.. Instablity and plastic flow of soils. I:experimental observations [J]. Journal of Engineering Mechanics, ASCE,1990,116(11):2532-2550.
    [31]Lambe, T. William, Whitman, Robert V. Soil Mechanics, SI Version [M]. New York:John Wiley&Sons.,1979,162-167.
    [32]Lin D.G., Tseng C.T. and Phienwej N., etc.3-D deformation analysis of earth pressure balance shield tunneling in Bangkok subsoil [J]. Journal of the Southeast Asian Geotechnical Society,2002,4:13-27.
    [33]Liu, M.D., Carter, J.P., Desai, C.S., et al. Analysis of the compression of structured soils using the disturbed state concept [J]. International Journal for Numerical and Analytical Methods in Geomechanics.2000,126(24):723-735.
    [34]Liu M.D., Carter J.P., Desai C.S. Modeling compression behavior of structured geomaterials [J]. International Journal of Geomechanics, ASCE,2003,3(2):191-204.
    [35]Logananthan N. and Poulos H.G. Analytical prediction for tunneling-induced ground movement in clays [J]. Journal of Geotechnical and Geoenviromental Engineering,1998, 124(9):846-856.
    [36]Padhan, S.K., Desai, C.S. DSC model for soil interface including liquefaction and prediction of centrifuge test [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(2):214-222.
    [37]Park, I.J., Desai, C.S. Cyclic behavior and liquefaction of sand using disturbed state concept [J]. Journal of geotechnical and geoenvironmental engineering.2000, 126(9):834-846.
    [38]Peck R B. Deep excavations and tunneling in soft ground[C]. State of the Art Report. Proceeding of 7~(th) International Conference on Soil Mechanics and Foundation Engineering. Mexico City:[s.n.],1969,225-290.
    [39]Matsuzawa H., Hazarika H. Analyses of active earth pressure against rigid retaining walls subjected to different modes of movement [J]. Soils and Foundations,1996,36 (3):51-65.
    [40]Matuso S., Kamon M. Microscopic Study on Deformation and Strength of Clay [C]. Proceeding 9nd International Soil Mechanics and Foundation Engineering,1977,1: 147-154.
    [41]Matsuoka H., Hoshikawa T., Ueno, K. A general failure criteria and stress-strain relation for granular materials to metals [J]. Soils and Foundations,1990,30(2):119-127.
    [42]Matsuoka H., Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses[C]. Proc Japan Soc Civil Engrs,1974,232:59-70.
    [43]Matsuoka H., Nakai T. Relationship among Tresca, Mises, Mohr-Coulomb and Matsuoka-Nakai failure criteria [J]. Soils and Foundations,1985,25(4):123-128.
    [44]Matsuoka, H., Yao, Y. P., Sun, D. A. The cam-clay models revised by SMP criterion [J]. Soils and Foundations,1999,39(1):81-95.
    [45]Mindlin RD, Force at a point in the interior of a Semi-Infinite solid[J]. Physics,1936,7(5): 195-201.
    [46]Naikai T. Finite element computations for active and passive earth pressure problems of retaining wall [J]. Soils and Foundations,1985,25(3):98-112.
    [47]Pradhan, S.K., Desai, C.S. DSC model for soil and interface including liquefaction and prediction of centrifuge test [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(2),214-222.
    [48]Roscoe K.H. The influence of strains in soil mechanics [J]. Geotechnique,1970,20(2): 129-170.
    [49]Rouania M., Wood D. M. A Kinematics Hardening Constitutive Model for Natural Clays with Loss of Structure [J]. Geotechnique,2000,50(2):153-164.
    [50]Rowe R.K., Lo K.Y., Kack G.J. A method of estimating surface settlement above tunnels constructed in soft ground [J]. Canadian Geotechnical Journal,1983,20:11-22.
    [51]Rutledge P. C. Relation of Undisturbed Sampling to Laboratory Test [J]. Journal of Transportation Engineering, ASCE,1994,109:1155-1183.
    [52]Sagaseta C. Analysis of undrained soil deformation due to ground loss [J]. Geotechnique, 1987,37(3):301-320.
    [53]Sagaseta C. Author's reply to Schmit [J]. Geotechnique,1988,38(4):647-649.
    [54]Sherif M.A. Fang Y.S, Sherif R I. KA and KO behind rotating and non-yielding walls [J]. Journal of Geotechnical Engineering,1984,110(1):41-56.
    [55]Terzaghi K. Record earth pressure testing machine [J]. Engineering News Record,1932, 109(29):365-369.
    [56]Terzaghi K, Large retaining wall tests I-pressure of dry sand [J]. Engineering News Record. 1934,112(1):136-140.
    [57]Terzaghi K. A fundamental fallacy in earth pressure computations [J]. Journal of Boston Society of Civil Engineering.1936,23:71-88.
    [58]Verruijt A. and Booker J.R. Surface settlements due to deformation of a tunnel in an elastic half plane [J]. Geotechnique,1996,46(4):753-756.
    [59]Vesic A. S. Expansion of Cavity in Infinite Soil Mass [J]. Journal of Soil Mechanics Foundation, Division, ASCE,1972,98(3):265-289.
    [60]蔡奇鹏.刚性与柔性挡墙的土压力研究[硕士学位论文].杭州:浙江大学,2007,5-20.
    [61]陈枫,胡志平.盾构偏航引起的地表位移预测[J].岩土力学,2004,25(9):1427-1431.
    [62]陈页开,汪益敏,徐日庆等.刚性挡土墙被动土压力数值分析[J].岩石力学与工程学报,2004a,23(6):980-988.
    [63]陈页开,汪益敏,徐日庆等.刚性挡土墙主动土压力数值分析[J].岩石力学与工程学报,2004b,23(6):989-995.
    [64]陈育民,刘汉龙.邓肯-张本构模型在FLAC~(3D)中的开发与实现[J].岩土力学,2007,28(10): 2123-2126.
    [65]邓子胜,邹银生,王贻荪.考虑位移非线性影响的挡土墙土压力计算模型研究[J].中国公路学报,2004,17(2):24-27.
    [66]方从启.基于半解析元法研究顶管施工引起的地层运动[博士学位论文].杭州:浙江大学,1998,9-18.
    [67]费康,张建伟.ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2009,146-158.
    [68]冯海宁,温晓贵,龚晓南.顶管施工环境影响的二维有限元计算分析[J].浙江大学学报(工学版),2003,37(4):432-435.
    [69]冯海宁,龚晓南,徐日庆.顶管施工环境影响的有限元计算分析[J].岩石力学与工程学报,2004,23(7):1158-1162.
    [70]顾慰慈,武全社,陈卫平.挡土墙墙背填土中滑裂体形状的试验研究[J].岩土工程学报,1988,10(2):49-56.
    [71]龚晓南.土塑性力学(第二版)[M].杭州:浙江大学出版社,1999,180-184.
    [72]顾长存,陆海源,刘汉龙等.不同变位模式下挡土墙被动土压力的计算与分析[J].河海大学学报(自然科学版),2005,33(4):430-433.
    [73]胡亚元,陈云敏.本构模型与软黏土强度增长的关系研究[J].浙江大学学报(工学版),2004,38(6):731-735.
    [74]黄宏伟,胡昕.顶管施工力学效应的数值模拟分析[J].岩石力学与工程学报,2003,22(3):400-406.
    [75]蒋明镜,沈珠江.考虑材料应变软化的柱形扩张问题[J].岩土工程学报,1995,17(4):10-19.
    [76]姜忻良,赵志民,李园.隧道开挖引起土层沉降槽曲线形态的分析与计算[J].岩土力学,2004,25(10):1542-1544.
    [77]姜忻良,崔奕,李园等.天津地铁盾构施工地层变形实测及动态模拟[J].岩土力学,2005a,26(10):1612-1616.
    [78]姜忻良,赵志民.镜像法在隧道施工土体位移计算中的应用[J].哈尔滨工业大学学报,2005b,27(6):801-803.
    [79]连镇营,韩国城,姚仰平.基于SMP准则的改进剑桥模型及其在基坑工程中应用[J].大连理工大学学报,2002,42(1):93-97.
    [80]李广信.高等土力学[M].北京:清华大学出版社,2004,123-126.
    [81]李亮,杜修力,赵成刚等.饱和砂土弹塑性动力本构模型研究[J].岩石力学与工程学报,2005,24(18):3380-3385.
    [82]李亮,赵成刚.基于SMP破坏准则的饱和砂土弹塑性本构模型[J].应用力学学报,2004,21(4):84-87.
    [83]李玲玲.结构性软土的性状研究及其应用[博士学位论文].杭州:浙江大学,2007,3-5.
    [84]李昕睿.考虑位移效应刚性挡土墙被动土压力计算方法研究[硕士学位论文].杭州:浙江大学,2010,11-13.
    [85]廖少明,余炎,彭芳乐.盾构近距离穿越相邻隧道施工的数值解析[J].岩土力学,2004,25(增2):223-226.
    [86]林敏,张平之.铁路顶管施工中路基面沉降的研究[J].北方交通大学学报,2001,25(4):69-72.
    [87]卢坤林,杨扬.非极限土压力的近似计算方法[J].合肥工业大学学报(自然科学版),2008,31(6):946-949.
    [88]卢坤林,杨扬.非极限被动土压力的近似计算方法[J].合肥工业大学学报(自然科学版),2009,32(4):523-527.
    [89]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997,10-18.
    [90]卢国胜.考虑位移的土压力计算方法[J].岩土力学,2004,25(4):586-589.
    [91]梅国雄,宰金珉.考虑位移影响的土压力近似计算方法[J].岩土力学,2001,22(4):83-85.
    [92]苗天德,刘忠玉,任九生.湿陷性黄土的变形机理与本构关系[J].岩土工程学报,1999,21(4):383-387.
    [93]彭长学,杨光华.软土e-p曲线确定的简化方法及在非线性沉降计算中的应用[J].岩土力学,2008,29(6):1706-1710.
    [94]彭述权.砂土挡墙破坏机理宏细观研究[博士学位论文].上海:同济大学.2007,6-13.
    [95]彭述权,刘爱华,樊玲.不同位移模式刚性挡墙主动土压力研究[J].岩土工程学报,2009,31(1):32-35.
    [96]黄斌.扰动土及其量化指标[硕士学位论文].杭州:浙江大学,2005,30-36.
    [97]胡中雄,候学渊.打桩的挤土效应[C].中国土木上程学会第五届土力学及地基上程学术会议论文选集.北京:中国建筑上业出版社,1988:387-392.
    [98]齐静静.盾构隧道的环境效应及结构性能研究[博士学位论文].杭州:浙江大学,2007,17-26.
    [99]屈智炯.土的塑性力学[M].成都:成都科技大学出版社,1987,59-71.
    [100]邵允铖.受扰动土性状室内试验研究[硕士学位论文].杭州:浙江大学,2008,72-79.
    [101]盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[博士学位论文].武汉:中国科学院岩土力学研究所,2002,10-16.
    [102]施成华,彭立敏,刘宝琛.盾构法施工隧道纵向地层移动与变形预计[J].岩土工程学报,2003,25(5):585-589.
    [103]施成华,黄林冲.顶管施工隧道扰动区土体变形计算[J].中南大学学报,2005,36(2):323-328.
    [104]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28.
    [105]沈珠江.粘土的双硬化模型[J].岩土力学,1995,16(1):1-8.
    [106]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000,21(1):1-4.
    [107]孙钧,周健,龚晓南等.受施工扰动影响土体环境稳定理论与变形控制[J].同济大学学报(自然科学版),2004,32(10):1261-1269.
    [108]孙钧等.城市环境土工学[M].上海:上海科学技术出版社,2005,6-10.
    [109]肖树芳,王常明,王清等.海积软土变形时效本质及结构性模型研究[R].长春:吉林大学,国家自然基金资助项目报告,2000.12.
    [110]肖树芳,雷华阳,房后国.近代海积软土结构性及弹-塑性模型研究[J].工程地质学报,2000,8(4):394-399.
    [111]王保建,熊巨华,朱碧堂.围护结构变形模式对土压力的影响[J].岩土工程学报,2006,28(增刊):1475-1480.
    [112]王常明.海积软土微观结构定量化及固结模型研究[博士学位论文].长春:长春科技大学,1999,14-18.
    [113]王金昌,陈页开.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006,60-67.
    [114]王景春.考虑施工扰动的基坑性状分析[博士学位论文].杭州:浙江大学,2008,24-25;83-98.
    [1]5]王立忠,吴承章.施工扰动对软地强度的影响[J].工业建筑,2001,31(9):48-50.
    [116]王立忠,吴承章.温州煤场软土结构性试验研究[J].土木工程学报,2002,35(1):88-92.
    [117]王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯—张模型[J].水利学报,2004,(1):83-89.
    [118]王元战,黄长虹.关于挡土墙主动土压力计算问题[J].港工技术,2003,(2):22-27.
    [119]魏纲.顶管工程土与结构的性状及理论研究[博士学位论文].杭州:浙江大学,2005,68-107.
    [120]魏纲,徐日庆.软土隧道盾构法施工引起的纵向地面变形预测[J].岩土工程学报,2005,27(9):1077-1081.
    [121]魏纲,徐日庆,屠玮.顶管施工引起的土体扰动理论分析及试验研究[J].岩石力学与工程学报,2004,23(3):476-482.
    [122]吴修锋.顶管施工引起的地层移动与变形控制研究[硕士学位论文].南京:南京工业大学,2004,6-18.
    [123]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形-强度的关系[J].水利学报,1999,(10):1-6.
    [124]徐建平,周健,白冰.土体取样的扰动影响及其评价指标[J].佛山科学技术学院学报(自然科学版),2000,18(3):20-24.
    [125]徐日庆,陈页开,杨忠轩等.刚性挡墙被动土压力模型试验研究[J].岩土工程学报,2002,24(5):569-575.
    [126]徐日庆,龚慈,魏纲等.考虑平动位移效应的刚性挡土墙土压力理论[J].浙江大学学报(工学版),2005,39(1):119-122.
    [127]徐永福.盾构施工对周围土体扰动影响的研究[R].上海:同济大学研究报告,2000,4-9.
    [128]徐永福,陈建山,傅德明.盾构掘进对周围土体力学性质的影响[J].岩石力学与工程学报,2003,22(7):1174-1179.
    [129]张孟喜.受施工扰动土体的工程性质研究[博士学位论文].上海:同济大学,1999,10-11.
    [130]张孟喜,孙钧,杨洪振.打桩对周围黄土的扰动特性影响[J].地下空间,2004,24(3):327-331.
    [131]曾庆有,周健.不同墙体位移方式下被动土压力的颗粒流模拟[J].岩土力学,2005,26(增刊),43-47.
    [132]曾小清.地铁工程双线隧道平行推进的相互作用及施工力学的研究[博士学位论文].上海:同济大学,1995,9-16.
    [133]张连卫,张建民,张嘎.基于SMP的粒状材料各向异性强度准则[J].岩土工程学报, 2008,30(8):1107-1111.
    [134]章瑞文.挡土墙主动土压力理论研究[博士学位论文].杭州:浙江大学,2007,12-19.
    [135]赵明华.土力学与基础工程[M].武汉:武汉工业大学出版社,2000,19.
    [136]中华人民共和国水利部.SL237-1999土工试验规程[S].北京:中国水利水电出版社,1999.
    [137]周火明,盛谦,李维树等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究[J].岩石力学与工程学报,2004,23(7):1078-1081.
    [138]周应英,任美龙.刚性挡土墙主动土压力的试验研究[J].岩土工程学报,1990,12(2):19-26.
    [139]朱忠隆,张庆贺,易宏伟.软土隧道纵向地表沉降的随机预测方法[J].岩土力学,2001,22(1):56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700