用户名: 密码: 验证码:
内蒙古白绒山羊转VEGF基因细胞系的建立与VEGF基因新剪接变体(VEGF138)的发现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:克隆内蒙古白绒山羊VEGF基因,构建毛囊特异性表达载体PCDsRed2-KV,稳定转染绒山羊胎儿成纤维细胞,筛选获得稳定表达红色荧光蛋白和毛囊特异表达VEGF的转基因的细胞克隆。检测VEGF基因在皮肤细胞中的表达。此外本研究尝试发现新的剪接变体。检测VEGF 138是否存在于内蒙古白绒山羊胎儿成纤维细胞中,检测内蒙古白绒山羊脑、心脏、肝、脾、肾、肺6种组织中VEGF 164、VEGF138和VEGF 120三种剪接变体的mRNA丰度。
     方法:采用RT-PCR技术克隆内蒙古白绒山羊VEGF基因cDNA,并进行生物信息学分析。以pCDsRed2载体为基本骨架将VEGF 164基因cDNA序列亚克隆到KAP6-1启动子下游,接续连接红色荧光蛋白表达元件DsRed,构建VEGF 164基因毛囊特异表达载体pCDsRed2-KV。外源表达载体以lipofectamineTM2000介导转染胎儿成纤维细胞,G418筛选获得稳定转染的细胞克隆,PCR鉴定外源基因在细胞基因组中的整合。pCDsRed2-KV载体转染内蒙古白绒山羊皮肤成纤维细胞,RT-PCR检测VEGF mRNA表达量,Western blot检测VEGF蛋白的表达。利用Taqman探针荧光实时定量方法确认新发现的剪接变体VEGF138存在于内蒙古白绒山羊胎儿成纤维细胞中。采用SYBR Green荧光实时定量检测VEGF164、VEGF138和VEGF 120三种剪接变体在内蒙古白绒山羊6中组织中的mRNA丰度。
     结果:克隆到内蒙古白绒山羊VEDF基因的三个剪接变体VEGF164、VEGF138和VEGF120的cDNA序列,其中VEGF138是首次发现。VEGF164 cDNA序列573bp,包含了全长ORF,编码190个氨基酸,N端的26个碱基为信号肽序列;VEGF138 cDNA序列495bp,包含了全长ORF,编码164个氨基酸,N端的26个碱基为信号肽序列;VEGF120 cDNA序列441bp,包含了全长ORF,编码146个氨基酸,N端的26个碱基为信号肽序列。VEGF164、VEGF138和VEGF120三种剪接变体在内蒙古白绒山羊脑、心脏、肝、脾、肾、肺组织中均有表达,但VEGF138的mRNA丰度远小于VEGF165和VEGF120。测序结果显示表达载体pCDsRed2-KV中,VEGF164基因正确连接在毛囊特异性启动子KAP6-1下游,顺序连接CMV启动子和红色荧光蛋白基因,载体构建正确。筛选得到转基因细胞克隆,PCR检测显示外源KAP6-1启动子和VEGF164基因整合到细胞基因组中。转染VEGF基因的内蒙古白绒山羊皮肤细胞中,VEGF mRNA表达量和蛋白表达量均有明显增加。
     结论:成功构建稳定表达红色荧光蛋白和毛囊特异表达VEGF164的真核表达载体,稳定转染绒山羊胎儿成纤维细胞,并为进一步通过转基因克隆技术获得毛囊特异性超表达VEGF164基因绒山羊新品系提供了条件。VEGF基因在内蒙古白绒山皮肤细胞中表达为转基因绒山羊新品系建立提供了理论基础。VEGF基因在内蒙古白绒山羊至少有3个剪接变体,分别是VEGF164、VEGF138和VEGF120,其中VEGF138是首次发现。三种剪接变体在内蒙古白绒山羊脑、心脏、肝、脾、肾、肺组织中均有表达,VEGF138的mRNA丰度远小于VEGF165和VEGF120,为进一步研究VEGF不同剪接变体的功能奠定了基础。
Objective:To clone the cDNA of VEGF gene in Inner Mongolia Cashmere Goat, Constructing a eukaryotic expression vector pCDsRed2-KV of cashmere goat VEGF164 (vascular endothelial cell growth factor) gene. To transfer pCDsRed2-KV into Inner Mongolia Cashmere goat (Capra hircus) fetal fibroblast (GFb) cells to obtain a transgenic cell clones, which stable expresses red fluorescence and expresses VEGF gene in hair follicle cells specifically. To examin VEGF expression in Inner Mongolia Cashmere goat (Capra hircus) skin cells which tansfected pCDsRed2-KV. In addition, to discovering potential splice variants of transcription products of VEGF gene. To verify the existence of VEGF 138 splice variant in Inner Mongolia Cashmere Goat fetal fibroblast cells. To examine relative abundance of three splice variants of VEGF mRNA in brain, heart, liver, spleen, kidney and lung of Inner Mongolia Cashmere Goats.
     Method:VEGF gene cDNA was cloned by RT-PCR. The nucleotide sequence was analyzed by bioinformatics. pCDsRed2-KV, a hair-follicle-specific expression vector of VEGF164, was constructed by connecting VEGF164 gene to downstream of KAP6-1 promoter, and then inserting the KAP6-1 promoter-VEGF 164 gene fragment into the basic vector pCDsRed2, which contains a DsRed expression unit. The Inner Mongolia Cashmere goat fetal fibroblast (GFb) cells were transfected with the expression vector by lipofectamineTM2000. Transgenic cell clones were obtained after screening by G418. The recombinant of exogenous DNA was identified by polymerase chain reaction. In order to make sure pCDsRed2-KV is hair-follicle-specific expression vector, we transfected the expression vector into Inner Mongolia Cashmere goat skin cells and detected expression. Expression of VEGF examined by RT-PCR and Western blot assy. Quantitative real-time PCR (Taqman) analysis VEGF 138 mRNA, distribute in Inner Mongolia Cashmere goat (Capra hircus) fetal fibroblast (GFb) cells. The relative abundance of three splice variants of VEGF mRNA, measured in six tissues, by Quantitative real-time PCR.
     Result:We got CDS fragments of VEGF 164, VEGF 120 and new isoform VEGF138. VEGF138 was discovered for the first time. The VEGF164 gene was 573 bp in length, including an intact ORF which formed by 190 amino acids.26 amino acids of N'end are signal peptidein. The VEGF 138 gene was 495 bp in length, including an intact ORF which formed by 164 amino acids.26 amino acids of N'end are signal peptidein. The VEGF 120 gene was 441 bp in length, including an intact ORF which formed by 146 amino acids.26 amino acids of N' end are signal peptidein. VEGF 164, VEGF 138 and VEGF 138 express in brain, heart, liver, spleen, kidney and lung. VEGF 138 mRNA is less than VEGF 164 and VEGF 120. The sequencing result showed the VEGF 164 gene was connected properly to the downstream of pKAP6-1, then the CMV promoter and the DsRed2 gene in sequence. Exogenous DNA in the cell clones was examined by PCR and the promoter KAP6-1 as well as VEGF164 gene has been integrated into GFb cells genome stably. VEGF mRNA and protein increase significantly in transfected Inner Mongolia Cashmere goat (Capra hircus) skin cells.
     Conclusion:A hair-follicle-cell-specific expression vector of VEGF 164 gene was constructed successfully and transfered into GFb cells. These data provide a way to obtain the transgenic goat by nuclear transfer in the future. VEGF expression increase apparently in transfected Inner Mongolia Cashmere goat (Capra hircus) skin cells that provide a theory to obtain the transgenic goat. There are three forms of VEGF at least in Inner Mongolia Cashmere goat (Capra hircus). They are VEGF 164, VEGF138 and VEGF120; and VEGF138 was discovered for the first time. Three forms of VEGF express in brain, heart, liver, spleen, kidney and lung. VEGF 138 mRNA is less than VEGF 164 and VEGF 120. This information provides a way to study function of three forms of VEGF.
引文
[1] Dvorak. H.F.. et al., Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol. 1979. 122(1): 166-174.
    [2] Senger, D.R.. et al., Tumor cells secrete a vascular permeability factor that promotes accumulation of ascitesfluid. Science, 1983.219(4587): 983-985.
    [3] Gospodarowicz, D., J.A. Abraham, and J. Schilling, Isolation and characterization of a vascular endothelialcell mitogen produced by pituitary-derived folliculo stellate cells. Proc NatI Acad Sci USA, 1989; 86(19): 7311-7315.
    [4] Tischer, E., et al., The human gene for vascular endothelial growth factor. Multiple protein forms are encodedthrough alternative exon splicing. J Biol Chem, 1991.266(18): 11947-11954.
    [5] Jingjing, L., et al., Human Muller cells express VEGF183, a novel spliced variant of vascular endothelialgrowth factor. Invest Ophthalmol Vis Sci. 1999. 40(3): 752-759.
    [6] Poltorak, Z., et al., VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellularmatrix. J Biol Chem, 1997. 272(11): 7151-7158.
    [7] Whittle, C, et al., Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptormRMA expression in human glomeruli. and the identification of VEGF148 mRNA, a novel truncated splicevariant. Clin Sci (Lond). 1999. 97(3): 303-312.
    [8] Peters, K.G.. C. De Vries, and L.T. Williams, Vascular endothelial growth factor receptor expression duringembryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc NatlAcad Sci USA. 1993. 90(19): 8915-8919.
    [9] Vielkind. U. and M.H. Hardy, Changing patterns of cell adhesion molecules during mouse pelage hair follicledevelopment. 2. Follicle morphogenesis in the hair mutants, Tabby and downy. Acta Anat (Basel), 1996. 157(3):183-194.
    [10] Schmidt-Ullrich, R. and R. Paus, Molecular principles of hair follicle induction and morphogenesis.Bioessays, 2005. 27(3): 247-261.
    [11] Mikkola, M.L., Genetic basis of skin appendage development. Semin Cell Dev Biol, 2007.18(2):225-236.
    [12] Paus. R., et al., A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol, 1999. 113(4):523-532.
    [13] Stenn, K.S. and R. Paus. Controls of hair follicle cycling. Physiol Rev. 2001. 81 (1): 449-454.
    [14] Van Exan, R.J. and M.H. Hardy. A spatial relationship between innervation and the early differentiation ofvibrissa follicles in the embryonic mouse. J Anat, 1980. 131: 643-656.
    [15] Muller-Rover, S., et al. A comprehensive guide for the accurate classification of murine hair follicles indistinct hair cycle stages. J Invest Dermatol, 2001. 117(1):3-15.
    [16] Neufeld G. Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors.FASEBJ.1999.13:9-22.
    [17] Fidler I J. Angiogenesis and cancer metastasis. Cancer J Sci Am. 2000.6:134-141.
    [18] Dvorak H, Brown LF. Detmar M. et al. Vascular permeability factor / vascular endothelial growth factor.micro vascular hyperpermeability and angiogenesis. Am J Pathol,1999.146:1029-1039.
    [19] Yano, K., L.F. Brown, and M. Detmar, Control of hair growth and follicle size by VEGF-mediatedangiosenesis. J Clin Invest. 2001. 107(41:409-417.
    [20]姚纪元,包红喜,栾维民,姜怀志.辽宁绒山羊皮肤毛囊血管内皮生长因子基因的表达研究.中国畜牧兽医,2010,37(12):139-141.
    [1] Lachgar S, Moukadiri H, Jonca F, Charveron M, Bouhaddioui N, Gall Y, Bonafe J L, Plouet J. Vascularendothelial growth factor is an autocrine growth factor for hair dermal papilla cells. Journal of InvestigativeDermatology, 1996, 106:17-23.
    [2] Stenn K S and Paus R. Controls of hair follicle cycling. Physiological Reviews, 2001, 81:449-494.
    [3] Gao S P, Huang L, Yang X W. Effects of Huoxue Bushen Mixture on skin blood vessel neogenesis andvascular endothelial growth factor expression in hair follicle of C57BL/6 mice. Journal of Chinese IntegrativeMedicine, 2007, 5(2): 170-173.
    [4] Man X Y, Yang X H, Cai SQ, Bu Z Y, Wu X J, Lu Z F, Zheng M. Expression and localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 in human epidermal appendages: a comparison study by immunofluorescence. Clinical and Experimental Dermatology, 2009, 34:396-401.
    [5]郭旭东,毛舒燕,宝明涛,尹俊,旭日干.绵羊角蛋白关联蛋自KAP6-1基因5’端调控区的分子克隆及测序结果比较.内蒙古大学学报(自然科学版),2007,38:58-36.Guo X D, Mao S Y, Bao M T, Yin J, Bou S.G. Molecular cloning of 5' flanking region of ovine keratin associated protein 6-1 gene and comparison of the sequences. Journal of Inner Mongolia University, 2007, 38:58-63. (in Chinese)
    [6]郭旭东,尹俊,杨东山,毛舒燕,宝明涛,旭日干.IGF-I毛囊特异表达载体的构建以及转染绒山羊胎儿成纤维细胞的研究.畜牧兽医学.2009,04:1460-1467.Guo X D, Yin J. Yang D S, Mao S Y, Bao M T, Bou S G Construction of a hair-follicle-cell-specific expression
    vector of IGF-1 and its transfection into caprine fetal fibroblasts cells. Chinese Journal of Animal and Veterinary Sciences. 2009,40:1460-1467. (in Chinese)
    [7]鲍文蕾,杨娇馥,李彬,刘俊娥,王潇,郭旭东,王志钢,侯鑫,刘东军.内蒙古白绒山羊VEGF164基因cDNA克隆及组织表达特异性分析.生物技术通报,2011.2:115-120.
    [8]王彦凤,梁燕,金永,王晓晶,郭旭东,王玮,王潇,王志钢,刘东军.克隆内蒙古白绒山羊胸腺索β4基因并稳定转染胎儿成纤维细胞.中国农业科学.2010.43(21):4497-4504.Wang Y F, Liang Y, Jin Y. Wang X J, Guo X D, Wang W, Wang X, Wang Z a Liu D J. Cloning of Thymosin p 4Gene from Inner Mongolia Cashmere Goat and Its Stable Transfection into Caprine Fetal Fibroblasts Cells.Scicentia Agrculura Sinica. 2010, 43(21 ):4497-4504. (in Chinese).
    [9] Wbods J.L.and OrwinD.E G Wool Proteins of New Zealand Romneys heep. Aust. J. Biol SCi. 1987,40,1-14.[ 10] Hardy M H. The secret life of the hair follicle. Trends in Genetics, 1992,8:55-61.
    [11]黎智,阎国富,何威,何云志,黄海.phVEGF165基因导入促进硬皮病小鼠模型毛发生长及再生.第三军医大学学报.2005,27(11):1103-1105.Li Z, Yan G F, He W, He Y Z, Huang H. Transudation of phVEGF165 into sclerotic skin to promote hair growth and regeneration in mice. Ada Academiae Medicinae Militaris Tertiae. 2005.27(11):1103-1105. (in Chinese)
    [12] Powell B C, Rogers G E. The role of keratin proteins and their genes in the growth, structure and properties ofhair.£YS, 1997,78:59-148.
    [13]姚纪元,包红喜,来维民,姜怀志.辽宁绒山羊皮肤毛囊血管内皮生长因子基因的表达研究.中国畜牧兽医,2010.37(12):139一141.Yao J Y, Bao H X, Luan W M, Jiang H Z. Study on expression of VEGF gene in hair follicles of liaoningCashmere Goats. China Animal Husbandry & Veterinary Medicine, 2010. 37(12):139-141. (in Chinese).
    [1]Dvorak H F, Orenstein N S, Carvalho A C, Churchill W H, Dvorak A M, Galli S J, Feder J, Bitzer A M, Rypysc J, Giovinco P. Induction of a fibrin-gel investment:an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. Journal of Immunology,1979,122:166-174.
    [2]Senger D R, Galli S J, Dvorak A M, Perruzzi C A, Harvey V S, Dvorak H F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science,1983.219:983-985.
    [3]Gospodarowicz D, Abraham J A, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proceeding of the National Academy of Sciences of the U S A,1989,86:7311-7315.
    [4]Ferrara N, Henzel W J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research Communications,1989,161:851-858.
    [5]Senger D R, Van de Water L, Brown L F, Nagy J A, Yeo K T, Yeo T K, Berse B, Jackman R W, Dvorak A M, Dvorak H F. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Reviews,1993, 12:303-324.
    [6]Vincenti V, Cassano C, Rocchi M, et al. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation 1996:93:1493-1495.
    [7]Tischer E, Mitchell R. Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991:266:11947-11954.
    [8]Jingjing L, Xue Y, Agarwal N, et al. Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 1999:40:752-759.
    [9]Poltorak Z, Cohen T, Sivan R, et al. VEGF145. a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 1997;272:7151-7158.
    [10]Whittle C, Gillespie K, Harrison R, et al. Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF 148 mRNA, a novel truncated splice variant. Clin Sci (Lond) 1999;97:303-312.
    [11]Houck K A. Leung D W, Rowland A M. Wirier J, e Ferrar N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. The Journal of Biological Chemistry,1992, 267:26031-26037.
    [12]Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. and Klagsbrun, M., Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor, Cell,92 (1998) 735-745.
    [13]Houck, K. A., Leung. D. W., Rowland, A. M., Winer. J., and Ferrara, N. Dual Regulation of Vascular Endothelial Growth Factor Bioavailability by Genetic and Proteolytic Mechanisms. The Journal of Biological Chemistry.1992,36(267),26031-26037.
    [14]Park, J.E., Keller, G.A. and Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF, Mol. Biol. Cell,1993,4,1317-1326.
    [15]Gluzman-Poltorak, Z.. Cohen, T., Herzog, Y. and Neufeld G.. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165, J. Biol.Chem,2000,275 18040-18045.
    [16]Dvorak HF. Brown LF. Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability. and angiogenesis. Am J Pathol,1995,146.1029-1038.
    [17]Yokoyama Y.SatoS.FutagamiMet al.Prognostic significance of vascular endothelial growth factor and its receptors in endometrial carcinoma.GynecolOncol,2000,77:413-418.
    [18]Suhardja A, Hoffman H.Role of growth factors and their receptors in proliferation of microvascular endothelial cell. Microsc Res Tech,2003,60:70-75.
    [19]lachgar S, Moukadiri H, Jonca F, et al. Vascular endothelial growth factor is an autocrine growth factor for hair dermal papilla cells. J Invest Dematol 1996; 106:1-23.
    [20]Ballaun C, Weninger W, Uthman A, et al. Human keratinocytes express the three major splice forms of vascular endothelial growth factor. J Invest Dermatol 1995:104:7-10.
    [21]Kozlowska U, Blume, Peytavi U, Kodelja V, et al. Expression of vascular endothelial growth factor(VEGF) in various compartments of the human hair follicle. Arch Dermatol Res 1998;290:661-668.
    [22]Stenn KS. Combates NJ, Eilertsen KI-1, et al. Hair follicle growth controls. Dermatol Clin 1996;14:543-558.
    [23]Yano K, Brown IF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest 2001; 107:409-417.
    [24]Montgomery R A, Dallman M J.Semi-quantitative polymerase chain reaction analysis of cytokine and cytokine receptor gene expression daring thymic ontogeny.Cytokine,1997,97:173-176.
    [25]Held CA, StevensJ. Li KJ, et al. ReahimequantitativePCR. Genome Res.1996,6(10):986-994.
    [26]Woo T H, Patel B K, Cinco M. et al. Identification of leptospira biflexa by real time homogeneous detection of rapid cycle PCR product.Journal of Microbiological of Methods,1999,35:23-30.
    [27]刘晓芳,张萍,刘少卿.陈巴特尔.内蒙古白绒山羊保种及开发利用的研究与应用.种业研究,2005.6:35-37.
    [28]王丽,彭丽琴,张文彬,张震宇,杨万有,丁磊汤生明,吴海鹰.内蒙古白绒山羊皮肤毛囊发生发育规律的研究.备牧兽医学报,1996.27(6):524-530.
    [29]Hardy MH.1992. The secret life of the hair follicle. Trends Genet 8:55-61.
    [30]Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002.2:643-653.
    [31]Reddy S, Andl T, Bagasra A, Lu MM, Epstein DJ, et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 2001.107:69-82.
    [32]Yan M. Wang LC, Hymowitz SG, Schilbach S, Lee J, et al. Twoamino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 2000.290:523-527.
    [33]Kumar A, Eby MT, Sinha S, Jasmin A. Chaudhary PM. The ectodermal dysplasia receptor activates the nuclear factor-kappaB, JNK, and cell death pathways and binds to ectodysplasin A. J Biol Chem 2001.276:2668-2677.
    [34]Jamora C, DasGupta R, Kocieniewski P, Fuchs E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003.422:317-322.
    [35]Mu"ller-Rover S, Tokura Y, Welker P, Furukawa F, Wakita H, et al. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling. Exp Dennatol 1999.8:237-246.
    [36]Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E, et al. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. GATA-3:an unexpected regulator of cell lineage determination in skin. J Cell Biol,2003,163:609-623.
    [37]du Cros D L, Isaacs K, Moore G P. Localization of epidermal growth factor immunoreactivity in sheep skin during wool follicle development. J Invest Dennatol.1992.98:109-15
    [38]van Balkom ID, Hennekam RC. Dermal eccrine cylindromatosis. J Med Genet,1994.31:321-324.
    [39]Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998.14:59-88.
    [40]van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, et al. Development of several organs that require inductive epithelialmesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 1994. 8:2691-2703.
    [41]Zhou P, Byrne C, Jacobs J, Fuchs E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev,1995,9:700-713.
    [42]Galceran J, Farinas I, Depew MJ, Clevers H, Grosschedl R. Wnt3a-/- like phenotype and limb deficiency in Lef1(-/-)Tef1(-/-) mice. Genes Dev 1999.13:709-717.
    [43]Srivastava AK, Durmowicz MC, Hartung AJ, Hudson J, Ouzts LV, et al. Ectodysplasin-Al is sufficient to rescue both hair growth and sweat glands in Tabby mice. Hum Mol Genet 2001.10:2973-2981.
    [44]McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 2003.53:1-114.
    [45]Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995.172:126-138.
    [46]Iseki S, Araga A, Ohuchi H, Nohno T, Yoshioka H, et al. Sonic hedgehog is expressed in epithelial cells during development of whisker, hair, and tooth. Biochem Biophys Res Commun 1996.218:688-693.
    [47]Mill P, Mo R, Fu H, Grachtchouk M, Kim FC, et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 2003.17:282-294.
    [48]Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 1999.205:1-9.
    [49]田婷,范卫新.毛囊相关信号转导研究进展.国际皮肤性病学杂志.2006,32(4):238-240.
    [50]李金泉,尹俊,周欢敏.绒山羊绒毛生长调控机理研究进展.中国草食动物,2001,3(3):41-44.
    [51]McDonald B J,et al. Cyclical fleece growth in cashmere goats.Aust J Aagric Res,1987,38:597-609.
    [52]孙海洲,侯先志,红梅.内蒙古阿尔巴斯白绒山羊皮肤毛囊发育及其活性变化规律的研究.内蒙古畜牧科学,1998,4:3-6.
    [53]Pau R, Cotsarelis G. The biology of hair follieles.N Engl J Med,1999,491-498.
    [54]Stenn, K.S. and Paus R.. Controls of hair follicle cycling. Physiol Rev,2001.81(1):449-454.
    [55]Harris PM, McBride BW, Gurnsey MP. Direct infusion of a variant of insulin like growth factor Ⅰ into skin of sheep and effects on local blood flow, amino acid utilisation and cell replication. Endocrinology,1993,139:463 472.
    [56]Philpott MP, Sanders D, Kealey T. Effects of Insulin and Insulin-Like Growth Factors on Cultured Human Hair Follicles:IGF-I at Physiologic Concentrations Is an Important Regulator of Hair Follicle Growth In Vitro. J Invest Dermatol,1994,102:857-861.
    [57]Damak S, Su HY, Jay NP, et al. Improved wool production in transgenic sheep expressing insulin-like growth factor 1. Biotechnology,1996,14:185-188.
    [58]Hung-Yi Su. Jonathan G H Hickford, Pauline H B The, et al. Increased Vibrissa Growth in Transgenic Mice Expressing Insulin-like Growth Factor 1.The Journal of Investigative Dermatology,1999,112(2):245-248.
    [59]Sporn MB, Roberts AB. The Transforming Growth Factor-bs. Peptide Growth Factors and Their Receptors Ⅰ, Sporn, MB and AB Roberts eds., Springer-Verlag, New York 1990:419.
    [60]Daniel B. Rifkin, David Moscatelli. Recent Developments in the Cell Biology of Basic Fibroblast Growth Factor. The Journal of Cell Biology,1989,109(1):1-6.
    [61]Rosenquist TA, Martin GR. Fibroblast growth factor signalling in the hair growth cycle:expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle. Dev Dyn,1996,205 (4):379-386
    [62]Hansen L A,Alexander N,Hogan M E.Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development. Am J Pathol,1997,150:1959-1975.
    [63]Hynd PI. Factors influencing cellular events in the wool follicle. The biology of wool and hair 1989, 169-184.
    [64]Seiberg M, Marthinuss J, Stenn KS. Changes in Expression of Apoptosis-Associated Genes in Skin Mark Early Catagen. Journal of Investigative Dermatology 1995,104:78-82.
    [65]Kozlowska U, Blume-Peytavi U. Kodelja V, et al. Expression of vascular endothelial growth factor (VEGF) in various compartments of the human hair follicle. Arch Dermatol Res 1998,290:661-668.
    [66]Jindo T, Tsuboi R, Imai R, et al. Hepatocyte growth factor/scatter factor stimulates hair growth of mouse vibrissae in organ culture. J Invest Dermatol 1994,103:306-309.
    [67]Shimaoka S, Tsuboi R, Jindo T, Imai R, Takamori K. Rubin JS, Ogawa H. Hepatocyte growth factor/scatter factor expressed in follicular papilla cells stimulates human hair growth in vitro. Journal of Cellular Physiology 1995,165:333-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700